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Abstract: Background: The intricate architecture of container orchestration systems like Kubernetes relies on the crit-
ical role of declarative manifest files that serve as the blueprints for orchestration. However, managing these
manifest files often presents complex challenges requiring significant DevOps expertise. Methodology: This
position paper explores using Large Language Models (LLMs) to automate the generation of Kubernetes
manifest files through natural language specifications and prompt engineering, aiming to simplify Kubernetes
management. The study evaluates these LLMs using Zero-Shot, Few-Shot, and Prompt-Chaining techniques
against DevOps requirements and the ability to support fully automated deployment pipelines. Results show
that LLMs can produce Kubernetes manifests with varying degrees of manual intervention, with GPT-4 and
GPT-3.5 showing potential for fully automated deployments. Interestingly, smaller models sometimes outper-
form larger ones, questioning the assumption that bigger is always better. Conclusion: The study emphasizes
that prompt engineering is critical to optimizing LLM outputs for Kubernetes. It suggests further research into
prompt strategies and LLM comparisons and highlights a promising research direction for integrating LLMs
into automatic deployment pipelines.

1 INTRODUCTION

In the evolving landscape of cloud-native computing,
Kubernetes has emerged as a central tool that revolu-
tionises how we deploy, scale, and manage container-
ized applications. However, the intricate architecture
of Kubernetes and similar systems relies on the criti-
cal role of manifest files, which declaratively describe
an intended state of operation. These manifest files
serve as the blueprints for orchestrating these contain-
ers. However, managing these manifest files presents
significant challenges that are often complex and re-
quire considerable expertise (Kratzke, 2023). Herein
lies an untapped potential for automation and opti-
mization.

Alongside the progress in Kubernetes, the de-
velopment of Large Language Models (LLMs) has
seen significant growth (Chang et al., 2023; Kad-
dour et al., 2023), marking their ability to process
and generate text that mimics human writing (Naveed
et al., 2023). These models have expanded in com-
plexity and capabilities, opening up possibilities for
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programming in high-level languages. An intrigu-
ing question arises regarding their capabilities in gen-
erating declarative deployment instructions for Ku-
bernetes or similar technologies (Zhao et al., 2023).
This could simplify Kubernetes manifests, making
them more accessible to DevOps engineers and po-
tentially rendering deployment-specific languages un-
necessary (Quint and Kratzke, 2019).

An underexplored or even overseen link between
Kubernetes and LLMs could be prompt engineering.
This approach leverages LLMs to tackle Kubernetes
challenges, especially in managing manifests. Prompt
engineering’s applications could revolutionize cloud
computing and Kubernetes management, leading to a
smarter, more efficient system management approach.

This study demonstrates the potential of innova-
tive integration of Large Language Models (LLMs)
into Kubernetes management through prompt engi-
neering. The study’s contribution lies in its novel
approach to simplifying Kubernetes operations, po-
tentially transforming how developers and system ad-
ministrators interact with Kubernetes environments to
address the existing challenges in Kubernetes mani-
fest management.

1. Pioneering Integration: This study is one of
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the first explorations into using state-of-the-art
(non-fine-tuned) LLMs for streamlining Kuber-
netes manifest generation, setting a precedent for
future research and practical applications. Recent
studies like (Lanciano et al., 2023), (Xu et al.,
2023) , and (Komal et al., 2023) focus mainly on
fine-tuned LLMs.

2. Setting a Framework for Future Innovations:
The study lays a framework for how AI and ma-
chine learning, especially LLMs, can be leveraged
in other areas of cloud computing and IT infras-
tructure management, opening doors for further
innovations and research.

Overall, this study contributes to the technical field
of container orchestration but also adds to the grow-
ing body of knowledge on the practical applications
of LLMs and prompt engineering in technology and
cloud-native computing in general.

2 BACKGROUND AND RELATED
WORK

In Kubernetes. manifest files, primarily in YAML
or JSON, define the desired state of operations, in-
cluding pods, services, and controllers. These files
are crucial for deploying and managing applications
within Kubernetes. However, managing these files
becomes challenging with scaling, including main-
taining configuration consistency, updating features,
and ensuring security compliance. The complexity in-
creases with many microservices (Tosatto et al., 2015;
Sultan et al., 2019). Integrating AI and machine
learning, mainly through large language models, of-
fers potential improvements in managing and gener-
ating these manifests by automating tasks and opti-
mizing configurations, promising to simplify manage-
ment and enhance container orchestration efficiency
and reliability.

Large Language Models: Like OpenAI’s GPT se-
ries, LLMs have significantly advanced natural lan-
guage processing with their ability to understand,
generate, and manipulate written texts. These mod-
els have evolved from simple beginnings to complex
systems with remarkable linguistic abilities, shifting
from rule-based to neural network architectures that
learn from extensive data to produce context-rich text
(Petroni et al., 2019). Their role in automation and
data processing is expanding, enabling the automation
of complex language tasks such as document summa-
rization, code generation, language translation, and
content creation (Hou et al., 2023). LLMs analyze

text to extract insights and trends in data process-
ing, supporting business and technology strategies.
Their precise language processing capabilities offer
potential in domains like healthcare, finance, cus-
tomer service, and system management, like Kuber-
netes, where they can streamline manifest file genera-
tion, error diagnosis, and configuration optimization,
reducing manual work and enhancing efficiency.

Prompt Engineering: However, training LLMs for
domain-specific purposes involves a computationally
intensive pre-training phase for general language un-
derstanding, followed by a problem-specific fine-
tuning phase. Recently, the focus has shifted to-
wards a ”pre-train, prompt, predict” approach, re-
ducing computational effort and requiring specialized
datasets using prompt engineering (Liu et al., 2023;
Chen et al., 2023). This prompt engineering tech-
nique involves designing strategic inputs (prompts) to
guide LLMs in generating desired outcomes. In the
context of Kubernetes, prompt engineering could sig-
nificantly improve LLMs’ ability to handle technical
tasks, such as generating or optimizing manifest files,
diagnosing deployment issues, and suggesting con-
figuration practices without task-specific fine-tuning.
Although not systematically explored, prompt engi-
neering offers a promising method for making Kuber-
netes management more intuitive and efficient, poten-
tially lowering technical barriers and enhancing sys-
tem reliability.

Related Work: The current research on integrating
LLMs with Kubernetes shows promising but limited
approaches. Lanciano et al. propose using specialized
LLMs to analyze Kubernetes deployment files and
aid non-experts in design and quality assurance (Lan-
ciano et al., 2023). Xu et al. introduce CloudEval-
YAML, a benchmark for evaluating LLMs in generat-
ing cloud-native application code, focusing on YAML
and providing a dataset with unit tests (Xu et al.,
2023). Kowal et al. suggest a pipeline utilizing LLMs
for anomaly detection and auto-remediation in mi-
croservices to enhance system stability. These meth-
ods typically rely on training specialized LLMs (Ko-
mal et al., 2023). Our research, however, investigates
the use of standard LLMs combined with straight-
forward prompt engineering to automate Kubernetes
configurations for security and compliance, distin-
guishing from the reliance on specialized models.
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Figure 1: Analyzed prompt chain composed of a drafting Zero-Shot and an iteratively refining Few-Shot stage.

3 METHODOLOGY

We aim to leverage standard LLMs like GPT-3.5/4
and Llama2 across various sizes (7B, 13B, 70B) to au-
tomate Kubernetes manifest file generation and man-
agement without specific fine-tuning. We aim to use
the inherent knowledge base of these LLMs (Petroni
et al., 2019) to create accurate Kubernetes configura-
tions. We explored different LLMs and prompt engi-
neering techniques to assess their suitability for this
task. Advanced prompt engineering can guide LLMs
to understand Kubernetes manifest intricacies better,
ensuring best practices in container security and op-
erations. This research intends to connect LLMs’ ad-
vanced language capabilities with the technical re-
quirements of Kubernetes management, aiming for
improved DevOps efficiency and security in Kuber-
netes operations.

3.1 Research Questions

Although prompt engineering is still very young and
dynamic, several distinct approaches exist to different
prompting techniques that can be derived from exist-
ing prompt engineering overviews (Liu et al., 2023).
The following methods seem very promising from the
current state of knowledge and were used to derive
our research questions.

Zero-Shot: Large LLMs are tuned to follow in-
structions and are pre-trained on large amounts of
data to perform some tasks out of the box (zero-shot).
For example, an LLM can generate text with a single
prompt without any required specifications as input.
This works astonishingly well for simple tasks like
categorization (Wei et al., 2021).
RQ1: We want to determine how well LLMs can gen-
erate Kubernetes manifests out-of-the-box.

Few-Shot: Although LLMs demonstrate remark-
able zero-shot capabilities, they fall short on more

complex tasks when using the zero-shot setting. In
these cases, prompting can enable in-context learn-
ing where we provide a guess of expected output text
within a prompt, so-called demonstrations (e.g., Ku-
bernetes manifest files) to steer the model to better
performance. The demonstrations serve as condition-
ing for subsequent examples where we would like the
model to generate a response. According to (Touvron
et al., 2023a), few shot prompting needs models with
sufficient size (Kaplan et al., 2020).
RQ2: We are therefore interested in seeing whether
larger LLMs produce better results in Few-Shot set-
tings.

Prompt-Chaining: To enhance the performance
and reliability of LLMs, an essential prompt engineer-
ing technique involves breaking down complex tasks
into smaller, manageable subtasks. This approach
starts by prompting the LLM with one subtask at a
time. The response generated from each subtask be-
comes the sequence’s input for the following prompt.
This method of sequentially linking prompts allows
the LLM to tackle complex tasks that might be chal-
lenging to address in a single, comprehensive prompt.
Prompt chaining not only improves the LLM’s ability
to handle intricate tasks but also increases the trans-
parency and controllability of LLM applications. This
approach makes debugging and analysing the model’s
responses at each stage easier, facilitating targeted im-
provements where needed. A frequently used frame-
work in this context is LangChain (Topsakal and Ak-
inci, 2023).
RQ3: We want to determine whether Kubernetes
manifests can be gradually refined with prompt chain-
ing in order to add capabilities that LLMs do not ”re-
trieve from their memory” by default in Zero-Shot set-
tings.

Further Prompting Techniques: The techniques
mentioned above seem the most promising for an ini-
tial explorative analysis based on the current state
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of knowledge. Nevertheless, techniques such as
Chain-of-Thought (Wei et al., 2022; Kojima et al.,
2022), Self-Consistency (Wang et al., 2022), Gener-
ated Knowledge Prompting (Liu et al., 2021), Tree
of Thoughts (Yao et al., 2023; Long, 2023; Hulbert,
2023), Automatic Reasoning and Tool-use (Paran-
jape et al., 2023), Program-Aided Language Mod-
els (Gao et al., 2022), ReACT Prompting (Yao et al.,
2022) , and Retrieval Augmented Generation (Lewis
et al., 2020) should also be investigated in a system-
atic screening in the future.

3.2 Analyzed Use Case (NoSQL DB)

We examine basic prompt engineering methods like
Zero-/Few-Shot and Prompt-Chaining to assess if
non-fine-tuned LLMs (e.g., GPT-3.5, GPT-4, Llama2,
Mistral) can efficiently generate Kubernetes manifest
files. Our goal is to determine the effectiveness of
these LLMs and identify which prompt engineering
techniques, as discussed in Sec. 3.1, are most ef-
fective for designing and optimizing manifest genera-
tion. Our exploratory approach centred on deploying
and operating a NoSQL database (MongoDB or sim-
ilar systems) within Kubernetes, adhering to typical
real-world constraints, including those from the ”Ku-
bernetes Security Hardening Guide”.

• The database or application containers
should not be executed with privileges
(securityContext.priviledged: false)

• The database/application should only be acces-
sible from within its namespace (so a correct
NetworkPolicy should be generated).

• The database/application containers should not be
able to monopolise resources (so memory and
CPU resource limits should be generated)

Furthermore, we expect the LLM to derive the re-
quired manifests, even if these are not explicitly re-
quested in the prompt. An experienced DevOps engi-
neer would have developed manifests for the above-
mentioned setting. We use this DevOps experience as
a frame of reference for our expectations of LLMs.

• Deployment (or StatefulSet including a
PersistentVolumeClaimTemplate)

• Correct Volume mounts in
Deployment/StatefulSets

• PersistentVolumeClaim (unless the LLM de-
cides in favour of a StatefulSet)

• Service

3.3 Generation and Evaluation Strategy

Would the following prompt
Create required manifests to deploy a MongoDB
database in Kubernetes.

be passed to an LLM, the following or a similar Ku-
bernetes manifest file would be generated.
apiVersion: apps/v1
kind: Deployment
metadata:

name: mongo
labels:

app: mongo
spec:

replicas: 1
selector:

matchLabels:
app: mongo

template:
metadata:

labels:
app: mongo

spec:
containers:
- name: mongo
image: mongo
ports:
- containerPort: 27017

This example, produced by GPT-4 and slightly
modified for clarity, demonstrates the model’s abil-
ity to generate a complete deployment manifest
using a basic zero-shot approach, including a
PersistentVolumeClaim and a Service manifest.
This indicates that certain LLMs can create valid Ku-
bernetes manifest files independently without requir-
ing specialized tuning. Our evaluation employed a
prompt chain (as illustrated in Fig. 1) that begins with
a zero-shot prompt to create initial manifests. This is
followed by a second phase of iterative refinement to
ensure operation constraints are met, using a specific
check and refinement prompt template.
Please refine the following Kubernetes manifests.
{{CHECK PROMPT}}
Manifests (YAML):
{{MANIFESTS}}
Refined manifests (YAML):

The following check and refinement prompts1

(CHECK PROMPT) were applied in the refinement stage
in the following order:

1. Check whether a Deployment manifest
has been generated for the database.

2. Check whether a PersistentVolumeClaim
manifest has been generated for the
database.

1Slightly shortened for presentation.
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3. Check whether the
PersistentVolumeClaim manifest has
been mounted within the database
container.

4. Assure that a container has a
securityContext set to privileged
false.

5. Assure that containers have sensible
resource/limit settings.

6. Check whether a service manifest that
addresses the database port has been
generated.

7. Check whether a NetworkPolicy exists
that makes the database port only
accessible from the namespace.

The resulting manifests in the draft stage and the re-
finement stage were analysed by Kubernetes experts
and tools (kubectl apply --dry-run) to determine
whether the generated manifests a) adequately de-
scribe the situation and b) are valid and Kubernetes
deployable (kubectl apply).

If a manifest adequately fits an orchestration re-
sponsibility by criterion a) (e.g., it includes a required
deployment manifest), one point was awarded in each
case; otherwise, 0 points were awarded. If criterion b)
was violated and a manual correction was required,
the number of points was halved for each required
correction (i.e., 1/2 point for one error, 1/4 point for
two errors, etc.).

This assessment was both manual and automated.
The Kubernetes command-line tool kubectl auto-
matically determined whether the generated manifests
were syntactically correct and deployable. A DevOps
expert corrected and counted errors detected by the
tool. Corrections had to be made so that a minimum
number of changes led to a deployable result. In our
further research, we strive to automate these manual
analysis steps, on the one hand, to increase the ob-
jectivity of the assessment and, on the other hand, to
be able to evaluate larger deployments and data sets.
Nevertheless, this semi-automated approach was suf-
ficient for our initial analysis to derive a research po-
sition and direction.

We have made this evaluation for the following
manifest generation strategies, which are based on
Fig. 1.

1. Zero-Shot: The prompt did not explicitly specify
the constraints to be met. Therefore, the refine-
ment stage in Fig. 1 was not run.

2. Zero-Shot+Constraints: The constraints to be
met were explicitly specified in the prompt (see

CHECK PROMPTS above). However, no incre-
mental refinement was carried out constraint by
constraint. This means the refinement stage of
Fig. 1 was not run through here either.

3. Few-Shot+Refinement: The prompt did not
specify the constraints to be met. However, the
draft stage results were explicitly refined itera-
tively for each constraint in the refinement stage
of Fig. 1.

The main difference between Zero-
Shot+Constraints and Few-Shot+Refinement
is that in the first case, an LLM must take all con-
straints into account at once, and in the second case,
it can process and improve constraint by constraint.

4 RESULTS

The question is which strategy best fulfils all the con-
straints to be complied with and whether there are dif-
ferences between the LLMs. The results can be seen
in Fig. 2 and in more detail in the Appendix in Tables
1, 2, and 3. The following models were selected for
an explorative evaluation based on their current pop-
ularity (OpenAI) or reported performance in the case
of self-hostability (Llama2, Mistral).

• GPT-4 (Achiam et al., 2023), OpenAI managed
service (operation details unknown)

• GPT-3.5-turbo (Ye et al., 2023), OpenAI man-
aged service (operation details unknown)

• Llama2 13B (Touvron et al., 2023b), Quantiza-
tion: AWQ, self-hosted, Memory: 46.8Gi of an
Nvidia A6000 with 48Gi

• Llama2 7B (Touvron et al., 2023b), Quantization:
AWQ, self-hosted, Memory: 14.7Gi of an Nvidia
A4000 or A2 with 16Gi

• Mistral 7B (Jiang et al., 2023), Quantization:
AWQ, self-hosted, Memory: 10.8Gi of an Nvidia
A4000 or A2 with 16Gi (fine-tuned for instruct
and coding assistance functionalities)

All self-hosted machine learning models were run via
HuggingFace’s Text Generation Inference Interface,
enabling AWQ quantisation (Lin et al., 2023). We
worked with the non-fine-tuned basic models from
HuggingFace, except for the Mistral model. In the
case of Mistral, we explicitly worked with a model
tuned for coding assistance to better assess possible
fine-tuning effects. The models were used program-
matically using the LangChain library2 and OpenAI3

2https://pypi.org/project/langchain
3https://pypi.org/project/langchain-openai
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Figure 2: Which degrees of fulfilment were achieved with which LLM and prompt strategies? Experiments were not repeated
because the temperature parameter was set to 0.0. Details are in the Appendix.

or the Text Generation Inference Interface from Hug-
gingFace4. We used the LangChain default values and
set the temperature parameter to 0.

4.1 Explanation of Results

Fig. 2 shows the degree of fulfilment achieved. All
LLMs were able to create a working deployment.
However, compliance with the desired operation con-
straints varied.

Fulfilment was measured on a scale from 0.0 (no
requirements met) to 1.0 (all requirements met), with
values of 1.0 indicating the possibility of fully auto-
matic, error-free deployment in Kubernetes – values
below 1.0 required manual corrections, detailed in the
appendix.

GPT-4 and GPT-3.5 achieved the highest ful-
filment scores, indicating their capability for fully
automatic deployment. The free Llama2 and Mis-
tral models had lower fulfilment levels, with more
straightforward Zero-Shot approaches outperforming
iterative refinement strategies. Notably, the smaller
7B Llama2 model performed comparably or slightly
better than its 13B counterpart, and the most minia-
ture Mistral model outperformed Llama2 in Zero-
Shot tasks but not when operation constraints were
integrated into the prompt.

4.2 Discussion of Results

What conclusions can be drawn?

RQ1: How Well Can LLMs Generate Kuber-
netes Manifests out-of-the-box? All LLMs gener-
ated Kubernetes manifest files correctly, accurately
considering semantic relationships between concepts

4https://pypi.org/project/text-generation

like Deployment, PersistentVolumeClaim, Service,
and NetworkPolicy. However, most cases required
some manual adjustments. Notably, the two com-
mercial GPT series models demonstrated the potential
for fully automated database deployment without user
intervention. Coding-optimized models like Mistral
performed better on simple Zero-Shot prompts than
Llama2 but did not surpass GPT-series models. How-
ever, further investigation is needed to assess the gen-
eralizability of these findings.
RQ2: Generate larger LLMs better results in Zero-
/Few-Shot settings? Commercial LLMs like
GPT-4 and GPT-3.5 outperform free models such
as Llama2 and Mistral, though larger model sizes
(13B) do not necessarily yield better results than
their smaller counterparts (7B). Our results indicate
that result quality depends on model size and train-
ing data; for instance, Mistral, optimized for cod-
ing tasks, performs better in Zero-Shot tasks than
Llama2. Similarly, GPT-3.5 and GPT-4’s superior
performance likely stems from more extensive train-
ing data. Prompt engineering emerges as a crucial
factor, with proper techniques allowing free models
to nearly match GPT-4’s performance, suggesting that
further research should explore prompt engineering’s
role in enhancing LLM outcomes.
RQ3: Is it worthwhile to gradually refine Kuber-
netes manifests with prompt chaining? Our study
initially posited that iterative refinement would en-
hance Kubernetes manifest quality across various
LLMs by addressing specific optimization aspects.
Contrary to expectations, the outcomes diverged sig-
nificantly. Incremental refinement showed minimal
benefits for commercial models like GPT-4 and GPT-
3.5, which already performed well with basic prompt
engineering. Conversely, this approach negatively im-
pacted the performance of free models like Llama2
and Mistral, possibly due to the overwriting of ear-
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lier optimizations over seven iterations. This outcome
suggests that the predefined structure of manifest files
limits the effectiveness of iterative refinements due
to their low complexity. Interestingly, the final re-
finement stage focusing on SecurityPolicy yielded ef-
fective policies, raising questions about the iterative
strategy’s optimality and the organization of result
integration. This discrepancy highlights a potential
area for future research, particularly the impact of
increasing complexity on the effectiveness of refine-
ment prompts. These findings can be used to optimize
the refinement stage. The design and sequence of the
individual steps appear to influence the results signif-
icantly, and care must be taken to ensure that later
refinement steps do not ”overwrite” previous ones.

4.3 Limitations to Consider

This study investigates prompt engineering in Kuber-
netes, specifically assessing Large Language Mod-
els’ (LLMs) capabilities in expressing Kubernetes op-
erational states via YAML. Our findings, which fo-
cus on single-component and typical database de-
ployments, are preliminary and context-specific, cau-
tioning against their generalization for broader LLM
performance assessments. Acknowledging the ex-
ploratory nature of our work, we emphasize its role in
laying foundational knowledge for future, more com-
plex studies. Although our initial research aligns with
existing literature, highlighting the utility of LLMs
in DevOps, it deliberately avoids the challenges of
multi-service, interconnected deployments to ensure
a solid baseline for subsequent investigation. Our
phased research approach has been designed to en-
hance our methodical understanding of LLMs and
Kubernetes deployments, setting the stage for a com-
prehensive exploration of these technologies’ inter-
play in future studies.

5 CONCLUSION AND OUTLOOK

LLMs demonstrated the capability to generate Ku-
bernetes manifests from natural language, with GPT-
4 and GPT-3.5 showing promise for fully automated
deployments. Interestingly, model size was not a
definitive indicator of performance, as smaller mod-
els like Llama2 and Mistral 7B occasionally sur-
passed their larger counterparts, highlighting the im-
portance of training data and optimization. Future
work will explore more complex deployments, focus-
ing on security and API integrations, to further un-
derstand LLMs’ potential. Nevertheless, the study’s
reliance on partly manual YAML evaluation as a pri-

mary assessment method can be seen as a limitation
for large-scale analysis. Therefore, intensified auto-
mated validation techniques are planned to improve
the research’s robustness and objectivity. Prompt en-
gineering played a crucial role in enhancing the per-
formance of models like Llama2, though its effec-
tiveness varied. This study underscores the potential
of LLMs in automating Kubernetes deployments and
suggests a focus on prompt optimization and LLM
comparison for integration into deployment pipelines.
It might even question the ongoing necessity of tradi-
tional DevOps roles as LLM capabilities advance.
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APPENDIX

Table 1: Analyzed results of Zero-Shot draft manifest generation for different LLMs without explicitly mentioned constraints.

GPT-4 GPT-3.5 Llama2 (13B) Llama2 (7B) Mistral (7B)
1. Deployment OK (1P) OK (1P) Missing Image

(1 fix, 0.5P)
OK (1P) OK (1P)

2. Volume Claim OK (1P) - - - -
3. Volume Mount OK (1P) EmptyDir

(0.5P)
EmptyDir

(0.5P)
Missing

claim (1 fix,
0.5P)

Missing
claim (1 fix,

0.5P)
4. Non priviledged sec. context - - - - -
5. Requests/Limits - - - - -
6. Service OK (1P) OK (1P) - - OK (1P)
7. Network Policies - - - - -
Coverage of Criteria 5/7 3.5/7 1/7 1.5/7 2.5/7

Table 2: Analyzed results of Zero-Shot draft manifest generation for different LLMs with explicitly mentioned constraints.

GPT-4 GPT-3.5 Llama2 (13B) Llama2 (7B) Mistral (7B)
1. Deployment OK (1P) OK (1P) OK (1P) Missing port

(1 fix, 0.5P)
OK (1P)

2. Volume Claim OK (1P) OK (1P) Not generated
(0P)

Wrong class
(1 fix, 0.5P)

Wrong class
(2 fixes,
0.25P)

3. Volume Mount OK (1P) OK (1P) OK (1P) OK (1P) Syntax (1 fix,
0.5P)

4. Non priviledged sec. context OK (1P) OK (1P) OK (1P) OK (1P) Syntax (1 fix,
0.5P)

5. Requests/Limits OK (1P) OK (1P) OK (1P) OK (1P) OK (1P)
6. Service OK (1P) OK (1P) OK (1P) Wrong port

(1 fix, 0.5P)
OK (1P)

7. Network Policies Wrong
selector (1
fix, 0.5P)

OK (1P) Wrong
definition (2
fixes, 0.25P)

Wrong
selector (1
fix, 0.5P)

Wrong
selector (1
fix, 0.5P)

Coverage of Criteria 6.5/7 7/7 5.25/7 5.5/7 4.75/7

Table 3: Analyzed results of Few-Shot constraint refinements for different LLMs.

GPT-4 GPT-3.5 Llama2 (13B) Llama2 (7B) Mistral (7B)
1. Deployment OK (1P) OK (1P) OK (1P) OK (1P) OK (1P)
2. Volume Claim OK (1P) OK (1P) Not generated

(0P)
Not

generated
(0P)

Not
generated

(0P)
3. Volume Mount OK (1P) OK (1P) OK (1P) OK (1P) EmptyDir

(0.5P)
4. Non priviledged sec. context OK (1P) OK (1P) Not generated

(0P)
Not

generated
(0P)

Not
generated

(0P)
5. Requests/Limits OK (1P) OK (1P) Not generated

(0P)
Not

generated
(0P)

Not
generated

(0P)
6. Service OK (1P) OK (1P) Not generated

(0P)
Not

generated
(0P)

OK (1P)

7. Network Policies OK (1P) Wrong
selector (1
fix, 0.5P)

Not generated
(0P)

Not
generated

(0P)

Not
generated

(0P)
Coverage of Criteria 7/7 6.5/7 2/7 2/7 2.5/7

CLOSER 2024 - 14th International Conference on Cloud Computing and Services Science

256


