
A Literature Survey on Pitfalls of Open-Source Dependency
Management in Enterprise

Andrey Kharitonov, Amro Abdalla, Abdulrahman Nahhas, Daniel Gunnar Staegemann,
Christian Haertel, Christian Daase and Klaus Turowski

Otto von Guericke University Magdeburg, Universitätsplatz 2, 39106 Magdeburg, Germany

Keywords: Open-Source Dependencies, Enterprise Software Development, Dependency Management, Software
Dependencies.

Abstract: Open-Source dependencies are an integral part of the modern enterprise software development process for
numerous technology stacks. Often, these dependencies are distributed through public repositories located
outside of the secure corporate environment, which introduces numerous challenges in ensuring the security,
compliance, and maintainability of the developed software. In this work, we conduct a systematic literature
review focused on the pitfalls of relying on open-source dependencies. We discovered 23 relevant publica-
tions between 2016 and the beginning of 2024 pointing out that supply chain attacks, outdated or abandoned
dependencies, licensing issues, security vulnerabilities, as well as reliance on trivial packages and complex
dependency trees are mentioned in the analyzed literature as significant challenges. Among the ways to tackle
these, it is commonly suggested in the literature to use scanning tools to ensure security, consciously select
the used dependencies, document, and keep track of the open-source dependencies used in software projects.
Maintaining up-to-date dependencies and actively contributing to the development of the open-source project
is encouraged.

1 INTRODUCTION

In recent years, open-source libraries have become an
integral part of many software development projects.
Reliance on open-source packages for the implemen-
tation of many common and complex software fea-
tures allows to alleviate a lot of workload on software
engineers. These packages are commonly referred
to as dependencies, as the software products where
these are applied depend on these for their implemen-
tation of various critical functions. The use of such
open source packages also offers numerous benefits
such as maintenance cost savings, community sup-
port, and flexibility (Lakhan and Jhunjhunwala, 2008;
Simon, 2005; Fitzgerald, 2006). Companies benefit
from open-source software as it leads to better secu-
rity and higher software quality. According to Red
Hat’s industry report done in 2022 (Haff, 2022), 52%
of the surveyed companies rely on open-source soft-
ware for application development. It also notes that
the main advantages of open-source software usage
for companies are flexibility and innovation access.
Furthermore, the publicly available code used as part

of the developed software product is often referred to
as a dependency of the specific software project.

However, the use of open-source software de-
pendencies introduces risks and challenges that must
be carefully managed, particularly when it comes to
managing software dependencies (Decan et al., 2018).
The success of software development projects often
hinges on the effective management of open-source
dependencies, particularly in enterprise environments
where the security risk is high (Gustavsson, 2020;
Kikas et al., 2017).

Managing open-source dependencies is complex
and challenging for software developers and project
managers (Garrett et al., 2019). It is important to
know which potential pitfalls exist in relying on open-
source dependencies in software development. In this
context, the research question of this paper is: What
are the common pitfalls and solutions for open-source
dependency management in enterprise environments?

To answer this question, we conduct a systematic
literature survey. We search for the discussed risks
and challenges associated with open-source depen-
dency management, with a special interest in issues

Kharitonov, A., Abdalla, A., Nahhas, A., Staegemann, D., Haertel, C., Daase, C. and Turowski, K.
A Literature Survey on Pitfalls of Open-Source Dependency Management in Enterprise.
DOI: 10.5220/0012710800003753
Paper published under CC license (CC BY-NC-ND 4.0)
In Proceedings of the 19th International Conference on Software Technologies (ICSOFT 2024), pages 15-22
ISBN: 978-989-758-706-1; ISSN: 2184-2833
Proceedings Copyright © 2024 by SCITEPRESS – Science and Technology Publications, Lda.

15

relevant to enterprise software development environ-
ments.

Furthermore, we concentrate on the currently pop-
ular programming languages so that we avoid exten-
sive discussion of obscure or highly specialized tech-
nologies that are typically not used in enterprise soft-
ware development. The survey covers recent litera-
ture from 2016 to the beginning of 2024 and discusses
the finding’s impact on enterprise environments. With
this review, we aim to provide software developers,
researchers, and project managers with valuable in-
sights into best practices for managing open-source
dependencies in enterprise environments.

Following, in section 2, we present the description
of the literature search and selection process. After
this, in section 3, we present the pitfalls and mitiga-
tion measures discovered in the process of analyzing
the selected literature. Then we present with a brief
discussion of possible future work directions in sec-
tion 4. Finally the paper conclusion is summarized in
section 6.

2 LITERATURE SURVEY

We begin this work with a brief description of the lit-
erature search process. We also discuss specific crite-
ria for selecting or excluding the discovered literature
from consideration.

2.1 Literature Search

To identify relevant publications for this literature sur-
vey, a systematic search was conducted on the two
search terms presented below.

Search Term 1. (”managing” OR ”management”
OR ”manage”) AND (”open-source” OR ”open
source”) AND (”dependency” OR ”package” OR
”packages”)

Search Term 2. (”detecting” OR ”finding” OR ”de-
tect” OR ”find” OR ”discover”) AND (”suspi-
cious” OR ”malicious” OR ”pitfalls” OR ”vulner-
abilities” OR ”vulnerability” OR ”issues”) AND
(”package” OR ”packages” OR ”dependency”
) AND (”npm” OR ”maven” OR ”pypi” OR
”NuGet” OR ”Packagist” OR ”pkg.go”)

Search term 1 aimed at the broad dependency
management overview as discussed in the literature.
Search term 2 is a second step in the literature re-
view and is aimed at a set of challenges specific to
the most popular package management systems that
are discussed in the literature.

The first search term was used in three major
academic literature indexes: Scopus, ScienceDirect,
IEEE. The second search term was used only in Sco-
pus and IEEE, as the search engine in ScienceDirect
does not allow such complex search strings at the time
of writing. The search was limited to the title, ab-
stract, and keywords of articles and conference publi-
cations published between 2016 and 2023. This time
frame is chosen to ensure that our review includes
the most recent studies on open-source dependency
management. Year 2016 was specifically selected, be-
cause that is the year when the notorious left-pad inci-
dent took place (Decan et al., 2018). This incident is
said to have “almost broken the internet.” The search
is limited to conference publications and journal ar-
ticles to ensure the studies are peer-reviewed. Only
English-language publications are considered. After
applying the above-mentioned filter criteria, a total
number of 715 was found, as shown in Table 1.

Table 1: Search term results.

Source Search Term 1 Search Term 2
Scopus 648 34
ScienceDirect 97 Not applicable
IEEE 91 31
Duplicates 186
Sum 715

2.2 Inclusion Criteria

For our literature survey process, we defined the fol-
lowing explicit inclusion criteria. First, the ana-
lyzed literature must either be general or focused on
open-source dependencies, distributed through pub-
lic package management platforms or repositories,
for software written in one of the top 15 program-
ming languages according to the TIOBE index Jan-
uary 2024. These languages include Python, C++,
Java, C#, JavaScript, PHP, and Go.

Secondly, we are specifically interested in the po-
tential technical or legal pitfalls of integrating open-
source dependencies in software projects. These as-
pects include issues that compromise security, main-
tainability, or licensing aspects of software use and
distribution.

Lastly, we are focusing on suggestions and solu-
tions to common pitfalls that are relevant to enterprise
software developers in managing their open-source
dependencies.

2.3 Exclusion Criteria

Additionally, we define a number of clear exclusion
criteria to maintain the specific focus of this survey.

ICSOFT 2024 - 19th International Conference on Software Technologies

16

Firstly, we do not consider any open-source depen-
dencies outside of these that are directly integrated
with the code base of a developed software project.
Specifically, any open-source dependencies on the op-
erating or environment level are not considered in this
survey. Similarly, container images are excluded from
this review. Although there are important parts of the
open-source ecosystem that can be used for managing
dependencies, this literature review will not include
them to narrow the scope of the open-source depen-
dencies to those that integrate with the codebase itself.

Secondly, we do not consider the code quality or
functionality assessment of the open-source depen-
dencies. That means that code smells, code quality
metrics, test coverage, and similar criteria are outside
of this work’s scope.

Furthermore, we do not consider any suggestions
to open-source repositories maintainers. Management
of mirrors for popular package management plat-
forms, as well as private package management dis-
tribution best practices, are beyond the scope of this
work.

2.4 Selection Process

As shown in Figure 1, according to the mentioned
inclusion and exclusion mentioned in subsection 2.2
and subsection 2.3, a total of 715 papers’ titles were
checked, and based on how the title matched those
criteria, 76 papers were selected. Then, the abstract
sections for those selected papers were checked, and
according to that, 30 papers were chosen. Finally, af-
ter reading the 30 selected papers, 23 were selected
for the thorough literature review.

Papers identified
through databases

search (n=715)

Selected papers
based on title

(n=76)

Selected papers
based on abstract

(n=30)

Selected papers
based on full-text

(n=23)

Excluded papers
(n=639)

Excluded papers
(n=7)

Figure 1: Literature review selection process.

3 ANALYSIS

In this section, we list all the possible pitfalls in open-
source dependency management mentioned in the pa-
pers selected for the literature review and explain
what each one means. Additionally, we list and ex-
plain the recommended solutions to avoid these pos-
sible pitfalls that were discovered in the literature.

3.1 Possible Pitfalls

Within our literature survey, we discovered a number
of possible challenges and pitfalls of relying on open-
source dependencies in software development. These
are summarized in Table 2 and briefly discussed in
this section.

3.1.1 Breaking Functionality - Unmaintained
Packages

Open-source dependencies often comprise the build-
ing blocks of fundamental software (Gustavsson,
2020) layers (e.g., network communication, encryp-
tion, data management). These layers might change
in the future, causing breaking functionalities in the
packages that are not up to date with that change.
Furthermore, old unmaintained packages might con-
tain known but unfixed vulnerabilities (Zimmermann
et al., 2019).

It is specifically an issue when the project on
which an open-source dependency is based is aban-
doned while being a fundamental component of
the software product. Such unmaintained or aban-
doned open-source dependencies result in an in-
creased workload on the software developers (Miller
et al., 2023) to resolve and replace the outdated pack-
ages.

3.1.2 Delayed Dependencies Update - Technical
Lag

When software dependencies are not being updated
for an extended period of time, the process of chang-
ing between two major versions of these might
become time and resource-intensive (Gustavsson,
2020).

This also leads to a so-called ”technical debt”. It is
a situation when developers ignore patch updates that
provide new functionalities that the project misses
(Kaplan and Qian, 2021). Also, according to (Kabir
et al., 2022), dependencies are being updated in their
study weeks or months after the new release, and ac-
cording to (Prana et al., 2021), one of the factors that
affect the persistence of dependency vulnerabilities is

A Literature Survey on Pitfalls of Open-Source Dependency Management in Enterprise

17

Table 2: Possible pitfalls in open-source dependency management.

Possible Pitfalls
Breaking or Unmaintained packages (Zimmermann et al., 2019; Gustavsson, 2020; Miller et al., 2023)
Delayed dependencies update (Decan et al., 2018; Gustavsson, 2020);

(Prana et al., 2021; Kaplan and Qian, 2021; Kabir et al., 2022)
Interoperability problems (Gustavsson, 2020; Wang et al., 2023)
License noncompliance (Bauer et al., 2020; Xu et al., 2023)
Security vulnerabilities (Pashchenko et al., 2018; Gustavsson, 2020; Kluban et al., 2022)
Phantom artifacts (Imtiaz and Williams, 2023)
Supply chain attack (SCA) (Zimmermann et al., 2019; Kaplan and Qian, 2021);

(Scalco et al., 2022; Alfadel et al., 2023);
(Guo et al., 2023)

Strongly connected components (SCC) (Kaplan and Qian, 2021; Setó-Rey et al., 2023)
Trivial packages (Garrett et al., 2019; Kaplan and Qian, 2021)

how fast the vulnerable package is updated to a non-
vulnerable version.

3.1.3 Interoperability Problems

Modern software systems might consist of a
number of components that are developed semi-
independently. These components might rely on the
same dependency packages but different versions of
them. Such problems might arise indirectly through
sub-dependencies (Wang et al., 2023).

This situation might cause issues during the de-
ployment stage of the project (Gustavsson, 2020)
when all of the components are finally brought to-
gether into the same environment.

3.1.4 License Noncompliance

License noncompliance (Bauer et al., 2020), where
developers in an enterprise environment use a pack-
age they are not entitled to use, can cause legal
and other risks of using open-source dependencies in
commercial software.

Furthermore, it’s important to remember that
open-source dependencies might depend on other
open-source projects themselves. These other
projects have their own licensing limitations. There is
no guarantee that the maintainers of an open-source
project meticulously monitor the composition and li-
censing of the packages they use in their own work.
This might lead to unintended licensing violation (Xu
et al., 2023) in the final software product.

3.1.5 Security Vulnerabilities

According to (Kluban et al., 2022), the most common
vulnerabilities in Github projects npm packages are,
Cross-Site Scripting, code injection, prototype pol-
lution, regular expression denial of service(ReDoS),
fuzzy hashing and cryptography. The scale of this

issue can not be underestimated, as it was shown
(Pashchenko et al., 2018) in many software open
source projects, a large number of dependencies may
contain vulnerabilities.

As mentioned further in subsubsection 3.1.7, se-
curity vulnerabilities might be direct and indirect
(Gustavsson, 2020). This means every dependency
is only as secure as its own sub-dependencies.

3.1.6 Supply Chain Attack

There are a few types of supply chain attacks (SCA),
all of which aim at the software developers inadver-
tently injecting malicious code into their own code-
base through the use of package management tools.
Alternatively, they expose their own environment to a
malicious routine (Scalco et al., 2022) during depen-
dency installation.

In literature, squatting attacks with two distinct
types are mentioned (Kaplan and Qian, 2021; Alfadel
et al., 2023; Scalco et al., 2022; Scalco et al., 2022):
typosquatting and combosquatting. The first is when
the attacker creates a malicious package with a typo
mistake in its name, which is similar to a popular
package name, assuming the developer might make
a typo mistake when installing the package. Com-
bosquatting is similar to typosquatting, but instead of
making a typo, it changes the order of words in the
package name.

However, SCAs aren’t limited to simply relying
on the chance that a developer makes a mistake while
installing the name of a package. Normally, se-
cure packages can be exposed to this type of attack
through malicious code injected into them (Zimmer-
mann et al., 2019).

It is shown in the literature that mirrors of the pop-
ular package management platforms might be more
susceptible to (Guo et al., 2023) presence of malicious
packages in the distribution.

ICSOFT 2024 - 19th International Conference on Software Technologies

18

3.1.7 Strongly Connected Components

According to the analysis made by (Setó-Rey et al.,
2023), Strongly connected components (SCC) are
when packages are transitively dependent on others,
propagating code defects and vulnerabilities. The
larger the scale of the SCC, the effect of the vulnera-
bility is higher(Kaplan and Qian, 2021).

3.1.8 Trivial Packages

It is noted in the literature that it is not uncommon for
developers to favor small packages for even simple
tasks (Garrett et al., 2019). The so-called ”left-pad
incident” (Kaplan and Qian, 2021) that ”almost broke
the internet” in 2016 was caused by an 11-line pack-
age.

An earlier survey (Abdalkareem et al., 2017)
points, however, that most developers share the opin-
ion that trivial packages introduce unnecessary depen-
dency tree complexity. This complexity makes the
update of the packages unnecessarily time-consuming
and might, in fact, open opportunities for the intro-
duction of vulnerabilities or malicious code (Garrett
et al., 2019).

3.1.9 Phantom Artifacts

Authors of a recent study analyzed open-source de-
pendencies (Imtiaz and Williams, 2023) and, in more
than 20% of cases, discovered the distributed pack-
ages of these to contain files that are not present in
the repositories of these dependencies. These phan-
tom artifacts might be simply erroneous but might, in
fact, point to a compromised dependency in the pack-
age management system.

3.2 Mitigation Measures

While within our survey, we did not discover a spe-
cific all-encompassing methodology that would al-
ways ensure a safe and secure way to manage open-
source dependency, a number of measures that might
be employed to mitigate the challenges mentioned in
subsection 3.1 were discovered. These are summa-
rized in Table 3 and briefly elaborated upon in this
section.

3.2.1 Conscious Decision

As mentioned in subsubsection 3.1.8, trivial packages
are one of the common pitfalls in open-source de-
pendency management. In the literature, it is recom-
mended (Gustavsson, 2020) to limit the open-source
dependencies to deliberate decisions, as the cost of

maintaining this dependency might be higher than let-
ting the team write the required function themselves.

One of the important factors when choosing the
package is that the project is active, and there are of-
ten new releases when bugs are discovered. Three
processes were recommended when choosing a new
package, firstly is to create a group that decides on
using common packages among the different teams
and projects, second is to develop selection criteria to
help in choosing the right package, automate the pro-
cess of detecting open-source dependencies.

3.2.2 Contribute Upstream - Support
Open-Source Projects

When the use of an open-source dependency is
unavoidable, it’s recommended (Gustavsson, 2020;
Miller et al., 2023) to engage in the maintenance of
the dependency explicitly. Upstream contributions in-
clude bug reporting or fixes, feature requests or code,
support other users and participation in their com-
munity forum, and finally, documentation and trans-
lation. Sustainability is an important factor when
choosing a dependency, to improve the sustainability
of the open-source package, the company may sup-
port the maintainers of the package financially, sign a
maintenance contract, or sponsor the infrastructure.

3.2.3 Separate Dev and Prod Configurations

According to (Latendresse et al., 2022), dependencies
should be treated differently based on the deployment
configuration. Only the dependencies that are used
in the production code should be deployed with the
code, and the development dependencies should not
be installed in production, as the security vulnerabil-
ities in the production code dependencies should be
prioritized more than the development dependencies.

3.2.4 Following the Package Manager Best
Practices

According to (Kikas et al., 2017), experts suggest
best practices when using npm packages. Those best
practices are scanning and removing the vulnerabili-
ties and unused/duplicated packages using commands
provided by the package manager and enforcing the
lock file to pin the dependencies versions.

However, according to (Zimmermann et al.,
2019), this defense is not enough as those commands
do not take into consideration the transitive packages,
are limited to known vulnerabilities, and are insuffi-
cient against malware attacks.

A Literature Survey on Pitfalls of Open-Source Dependency Management in Enterprise

19

Table 3: Measures to mitigate the possible pitfalls in open-source dependency management.

Proposed measures
Conscious decisions (Gustavsson, 2020)
Contribute upstream - Support open-source projects (Gustavsson, 2020; Miller et al., 2023)
Separate dev and prod configurations (Latendresse et al., 2022)
Following the package manager’s best practices (Kikas et al., 2017; Zimmermann et al., 2019)
Localize dependency use (Miller et al., 2023)
Document and maintain a dependency list (Gustavsson, 2020; Miller et al., 2023)
Use of scanning tools (Carlson et al., 2019; Gustavsson, 2020);

(Kaplan and Qian, 2021; Zerouali et al., 2022);
(Liu et al., 2022)

Update dependencies continuously (Gustavsson, 2020; Prana et al., 2021)
Verify integrity (Gustavsson, 2020; Imtiaz and Williams, 2023)

3.2.5 Document and Maintain a Dependency
List

According to (Gustavsson, 2020), maintaining a de-
pendency list has many advantages, like ensuring li-
cense compliance, helping in maintaining the techni-
cal dependency, and understanding the functionality
of each dependency.

The dependency list should have pointers to the
original sources, and organizations should also con-
sider maintaining the dependency list part of the bill
of materials over open-source components (Gustavs-
son, 2020). Furthermore, this practice can also facil-
itate the monitoring (Miller et al., 2023) of the devel-
opment or lack thereof for all of the used dependen-
cies. This, in turn, might allow for a faster reaction to
breaking changes or abandonment of the dependen-
cies.

Having a properly documented list of dependen-
cies also contributes to the retention of knowledge
on the project code base. Extensive documentation
removes the risk of potential loss of knowledge on
which dependency is used and why.

3.2.6 Use of Scanning Tools

There are tools (Gustavsson, 2020) that scan the de-
pendencies for known vulnerabilities, which helps in
managing the risks when it is included in the devel-
opment process. In the work done by (Carlson et al.,
2019), they used the scanning tool Snyk 1, in order to
analyze 600 GitHub projects searching for vulnerable
dependencies in these projects. Furthermore, (Garrett
et al., 2019) developed a machine learning-based tool
that has an anomaly detection approach to detect ma-
licious dependency updates that contain vulnerabili-
ties. It is noted in the literature, however, that tools

1Snyk’s website: https://snyk.io [Last Visited:
27.04.2024]

used for scanning code for the presence of malicious
logic might be susceptible to an excessive number of
false-positive detections (Guo et al., 2023). There-
fore, these tools should be used with care.

3.2.7 Update Dependencies Continuously

According to (Gustavsson, 2020; Prana et al., 2021),
dependencies should be updated regularly to avoid the
most common pitfalls. The automated test should also
be performed after each update as part of a continu-
ous integration pipeline. In addition to that, a process
to verify that system functionalities are still work-
ing. However, the scale of the benefit from maintain-
ing updated dependencies may vary depending on the
programming language (Prana et al., 2021).

3.2.8 Verify Integrity

As obvious from Table 2, supply chain attacks are one
of the most common pitfalls. Avoiding these can be
done by verifying the integrity of the package, there
are two recommended ways, first is to verify a hash
of the downloaded software with the has in the source
and the second is verify the digital signature of the
downloaded package (Gustavsson, 2020).

The importance of making sure that a depen-
dency distributed from a package management plat-
form does not contain any files or additions that are
not intended or present in the code of the dependency.
In the literature (Imtiaz and Williams, 2023), simi-
larly to what was already mentioned in subsubsec-
tion 3.2.6, it is proposed to use automated solutions
for validating dependencies to mitigate such potential
issues.

3.2.9 Localize Dependency Use

It is noted in the literature (Miller et al., 2023) that one
of the preventative strategies for issues like unmain-

ICSOFT 2024 - 19th International Conference on Software Technologies

20

tained or abandoned dependencies or other problems
is an attempt to localize the use of open-source depen-
dencies.

This means that an abstraction layer can be added
in the program using such a dependency so that in
case of issues, the dependency might be replaced with
as little effort as possible. A situation where a single
open-source package is linked throughout the entire
application must be avoided.

4 FUTURE WORK

The use of scanning tools to ensure the integrity and
security of open-source dependencies is a promis-
ing area of investigation. Specifically, it catalogs
the existing approaches, commercial and algorithmic,
while comparing capabilities. As noted in subsubsec-
tion 3.2.6, it is a suggested strategy for mitigating var-
ious issues associated with reliance on open-source
dependencies but not without challenges itself.

Furthermore, we believe it is a promising area of
research to investigate the effects on software engi-
neering processes and its costs arising from the vary-
ing quality of overall program code, not just security
vulnerabilities, in open-source dependencies (Imtiaz
and Williams, 2023; Go et al., 2023).

Additionally, extending this survey to include the
possible pitfalls of relying on publicly available con-
tainer images is another topic that we plan to tackle in
the future.

5 LIMITATIONS

It is worth noting that the basis of this work is the
systematic literature review of the published scien-
tific literature on the common challenges of relying
on open-source dependencies in enterprise software
projects. Therefore, this work is not focused on spe-
cific technical solutions proposed by the industry.

It is, nevertheless, important to mention that var-
ious projects and tools exist to support developers in
the mitigation of risks mentioned in section 3. For
example, various projects exist (Williams, 2022) to
mitigate supply chain attacks mentioned in subsub-
section 3.1.6. Another example is a project (Nocera
et al., 2023) that proposes a standardized software bill
of materials to assist developers in transparently doc-
umenting the list of dependencies, as mentioned in
subsubsection 3.2.5. However, a recent study (No-
cera et al., 2023) suggests a currently low degree of
adoption of this standard but with a positive increas-
ing trend.

6 CONCLUSION

In this literature survey, we investigate the common
pitfalls in open-source dependency management and
solutions to avoid them. The most frequently men-
tioned potential issues in the literature are outdated
dependencies and supply chain attacks on depen-
dency management platforms.

The most mentioned mitigation strategies involve
the use of a scanning tool to help in finding vulner-
abilities. In addition to that, other solutions like up-
dating dependencies continuously and following the
best practices provided by the package manager were
recommended by more than one publication.

It is noted that every dependency should be added
to the software project consciously, with a specific
reason, and it must be documented.

REFERENCES

Abdalkareem, R., Nourry, O., Wehaibi, S., Mujahid, S.,
and Shihab, E. (2017). Why do developers use trivial
packages? an empirical case study on npm. In Pro-
ceedings of the 2017 11th Joint Meeting on Founda-
tions of Software Engineering, ESEC/FSE 2017, page
385–395, New York, NY, USA. Association for Com-
puting Machinery.

Alfadel, M., Costa, D. E., and Shihab, E. (2023). Empiri-
cal analysis of security vulnerabilities in python pack-
ages. Empirical Software Engineering, 28(3):59.

Bauer, A., Harutyunyan, N., Riehle, D., and Schwarz, G.-
D. (2020). Challenges of tracking and documenting
open source dependencies in products: A case study.
In Open Source Systems: 16th IFIP WG 2.13 Interna-
tional Conference, OSS 2020, Innopolis, Russia, May
12–14, 2020, Proceedings 16, pages 25–35. Springer.

Carlson, B., Leach, K., Marinov, D., Nagappan, M., and
Prakash, A. (2019). Open source vulnerability notifi-
cation. In Open Source Systems: 15th IFIP WG 2.13
International Conference, OSS 2019, Montreal, QC,
Canada, May 26–27, 2019, Proceedings 15, pages
12–23. Springer.

Decan, A., Mens, T., and Constantinou, E. (2018). On the
impact of security vulnerabilities in the npm package
dependency network. In Proceedings of the 15th inter-
national conference on mining software repositories,
pages 181–191.

Fitzgerald, B. (2006). The transformation of open source
software. MIS quarterly, pages 587–598.

Garrett, K., Ferreira, G., Jia, L., Sunshine, J., and Kästner,
C. (2019). Detecting suspicious package updates.
In 2019 IEEE/ACM 41st International Conference on
Software Engineering: New Ideas and Emerging Re-
sults (ICSE-NIER), pages 13–16. IEEE.

Go, K. R., Soundarapandian, S., Mitra, A., Vidoni, M., and
Ferreyra, N. E. D. (2023). Simple stupid insecure

A Literature Survey on Pitfalls of Open-Source Dependency Management in Enterprise

21

practices and github’s code search: A looming threat?
Journal of Systems and Software, 202:111698.

Guo, W., Xu, Z., Liu, C., Huang, C., Fang, Y., and Liu,
Y. (2023). An empirical study of malicious code in
pypi ecosystem. In 2023 38th IEEE/ACM Interna-
tional Conference on Automated Software Engineer-
ing (ASE), pages 166–177.

Gustavsson, T. (2020). Managing the open source depen-
dency. Computer, 53(2):83–87.

Haff, G. (2022). The State of Enterprise Open Source: A
Red Hat report. White paper, Red Hat.

Imtiaz, N. and Williams, L. (2023). Are your dependencies
code reviewed?: Measuring code review coverage in
dependency updates. IEEE Transactions on Software
Engineering, 49(11):4932–4945.

Kabir, M. M. A., Wang, Y., Yao, D., and Meng, N. (2022).
How do developers follow security-relevant best prac-
tices when using npm packages? In 2022 IEEE Se-
cure Development Conference (SecDev), pages 77–83.
IEEE.

Kaplan, B. and Qian, J. (2021). A survey on common
threats in npm and pypi registries. In Deployable Ma-
chine Learning for Security Defense: Second Interna-
tional Workshop, MLHat 2021, Virtual Event, August
15, 2021, Proceedings 2, pages 132–156. Springer.

Kikas, R., Gousios, G., Dumas, M., and Pfahl, D. (2017).
Structure and evolution of package dependency net-
works. In 2017 IEEE/ACM 14th International Confer-
ence on Mining Software Repositories (MSR), pages
102–112. IEEE.

Kluban, M., Mannan, M., and Youssef, A. (2022). On mea-
suring vulnerable javascript functions in the wild. In
Proceedings of the 2022 ACM on Asia Conference on
Computer and Communications Security, pages 917–
930.

Lakhan, S. E. and Jhunjhunwala, K. (2008). Open source
software in education. Educause Quarterly, 31(2):32.

Latendresse, J., Mujahid, S., Costa, D. E., and Shihab, E.
(2022). Not all dependencies are equal: An empirical
study on production dependencies in npm. In 37th
IEEE/ACM International Conference on Automated
Software Engineering, pages 1–12.

Liu, C., Chen, S., Fan, L., Chen, B., Liu, Y., and Peng,
X. (2022). Demystifying the vulnerability propaga-
tion and its evolution via dependency trees in the npm
ecosystem. In Proceedings of the 44th International
Conference on Software Engineering, pages 672–684.

Miller, C., Kästner, C., and Vasilescu, B. (2023). ”we feel
like we’re winging it:” a study on navigating open-
source dependency abandonment. page 1281 – 1293.
Cited by: 2; All Open Access, Hybrid Gold Open Ac-
cess.

Nocera, S., Romano, S., Penta, M. D., Francese, R., and
Scanniello, G. (2023). Software bill of materials adop-
tion: A mining study from github. In 2023 IEEE In-
ternational Conference on Software Maintenance and
Evolution (ICSME), pages 39–49.

Pashchenko, I., Plate, H., Ponta, S. E., Sabetta, A., and Mas-
sacci, F. (2018). Vulnerable open source dependen-
cies: counting those that matter. In Proceedings of the

12th ACM/IEEE International Symposium on Empir-
ical Software Engineering and Measurement, ESEM
’18, New York, NY, USA. Association for Computing
Machinery.

Prana, G. A. A., Sharma, A., Shar, L. K., Foo, D., San-
tosa, A. E., Sharma, A., and Lo, D. (2021). Out of
sight, out of mind? how vulnerable dependencies af-
fect open-source projects. Empirical Software Engi-
neering, 26:1–34.

Scalco, S., Paramitha, R., Vu, D.-L., and Massacci, F.
(2022). On the feasibility of detecting injections in
malicious npm packages. In Proceedings of the 17th
International Conference on Availability, Reliability
and Security, pages 1–8.

Setó-Rey, D., Santos-Martı́n, J. I., and López-Nozal, C.
(2023). Vulnerability of package dependency net-
works. IEEE Transactions on Network Science and
Engineering.

Simon, K. D. (2005). The value of open standards and open-
source software in government environments. IBM
Systems Journal, 44(2):227–238.

Wang, C., Wu, R., Song, H., Shu, J., and Li, G. (2023).
smartpip: A smart approach to resolving python de-
pendency conflict issues. In Proceedings of the 37th
IEEE/ACM International Conference on Automated
Software Engineering, ASE ’22, New York, NY, USA.
Association for Computing Machinery.

Williams, L. (2022). Trusting trust: Humans in the software
supply chain loop. IEEE Security & Privacy, 20(5):7–
10.

Xu, W., He, H., Gao, K., and Zhou, M. (2023). Un-
derstanding and remediating open-source license in-
compatibilities in the pypi ecosystem. In 2023 38th
IEEE/ACM International Conference on Automated
Software Engineering (ASE), pages 178–190.

Zerouali, A., Mens, T., Decan, A., and De Roover, C.
(2022). On the impact of security vulnerabilities in
the npm and rubygems dependency networks. Empir-
ical Software Engineering, 27(5):107.

Zimmermann, M., Staicu, C.-A., Tenny, C., and Pradel, M.
(2019). Small world with high risks: A study of secu-
rity threats in the npm ecosystem. In USENIX security
symposium, volume 17.

ICSOFT 2024 - 19th International Conference on Software Technologies

22

