
DREAM-ON GYM: A Deep Reinforcement Learning Environment for
Next-Gen Optical Networks

Nicolás Jara1 a, Hermann Pempelfort1 b, Erick Viera1, Juan Pablo Sanchez1, Gabriel España2

and Danilo Borquez-Paredes2 c

1Department of Electronics Engineering, Universidad Tecnica Federico Santa Maria, Valparaı́so, Chile
2Faculty of Engineering and Sciences, Universidad Adolfo Ibáñez, Viña del Mar, Chile

Keywords: Optical Networks, Framework, Deep Reinforcement Learning, Simulation Technique.

Abstract: A novel open-source toolkit for a straightforward implementation of deep reinforcement learning (DRL) tech-
niques to address any resource allocation problem in current and future optical network architectures is pre-
sented. The tool follows OpenAI GYMNASIUM guidelines, presenting a versatile framework adaptable to
any optical network architecture. Our tool is compatible with the Stable Baseline library, allowing the use of
any agent available in the literature or created by the software user. For the training and testing process, we
adapted the Flex Net Sim Simulator to be compatible with our toolkit. Using three agents from the Stable
Baselines library, we exemplify our framework performance to demonstrate the tool’s overall architecture and
assess its functionality. Results demonstrate how easily and consistently our tool can solve optical network re-
source allocation challenges using just a few lines of code applying Deep Reinforcement Learning techniques
and ad-hoc heuristics algorithms.

1 INTRODUCTION

Deep Reinforcement learning (DRL) has recently
emerged as a powerful machine learning paradigm
that can be used in diverse real-world scenarios. Re-
cent studies suggest that reinforcement learning could
soon become an essential tool in various industries,
including manufacturing, energy, healthcare, and fi-
nance (Naeem et al., 2020). In particular, DRL has
been successfully applied to the field of telecommu-
nication architectures such as optical networks (ON),
where it can be used to build various solutions such
as classification techniques based on data gathering,
routing decision protocols, and traffic scheduling al-
gorithms, among others (Zhang et al., 2020). These
applications can help optical networks operate more
efficiently by improving the quality of their services
and reducing their overall deployment and operation
costs.

Optical networks handle massive data volumes,
and optimizing data routing is crucial (Klinkowski
et al., 2018). Reinforcement learning, a trial-and-

a https://orcid.org/0000-0003-2495-8929
b https://orcid.org/0000-0002-6896-5787
c https://orcid.org/0000-0001-6590-2329

error machine learning technique, offers a solu-
tion where traditional methods falter in finding effi-
cient routes. Traditional optimization struggles with
the complex constraints of optical networks (Naeem
et al., 2020), but reinforcement learning can discover
more effective and innovative solutions.

The main challenge facing the application of DRL
to optical networking is the complexity of the prob-
lem domain. Since optical networks consist of a com-
plex set of interconnected components, each with its
functions and limitations, it is difficult for the system
to make consistent decisions concerning traffic rout-
ing through the worldwide network. To overcome this
challenge, researchers have developed many models
that can be used to approximate the effects of differ-
ent network components and test various resource al-
location strategies (Chen et al., 2019; El Sheikh et al.,
2021; Morales et al., 2021). Using these models, it
is possible to identify possible bottlenecks in the net-
work and ways of improving network traffic perfor-
mance and quality.

In optical networks, reinforcement learning can
improve resource allocation for two main purposes.
The first is to design efficient routing strategies that
consider the current allocation of resources within
the network and the anticipated changes in demand

Jara, N., Pempelfort, H., Viera, E., Sanchez, J., España, G. and Borquez-Paredes, D.
DREAM-ON GYM: A Deep Reinforcement Learning Environment for Next-Gen Optical Networks.
DOI: 10.5220/0012715900003758
Paper published under CC license (CC BY-NC-ND 4.0)
In Proceedings of the 14th International Conference on Simulation and Modeling Methodologies, Technologies and Applications (SIMULTECH 2024), pages 215-222
ISBN: 978-989-758-708-5; ISSN: 2184-2841
Proceedings Copyright © 2024 by SCITEPRESS – Science and Technology Publications, Lda.

215



that may occur in the future. The second is to de-
velop and implement a dynamic resource allocation
scheme that can respond to real-time changes in the
network environment to maximize network perfor-
mance. For example, a reinforcement learning al-
gorithm could design new routing strategies for bet-
ter use of the link resources (e.g., wavelengths, fre-
quency spectrum, fiber cores, spectral bands), ensur-
ing a certain quality level and enabling available ca-
pacity to handle future increases in traffic demand. It
is also possible to implement dynamic resource allo-
cation schemes that adjust the allocation of resources
to different parts of the network based on real-time
measurements of traffic patterns and current resource
availability.

The main benefit of using reinforcement learning
in optical networks is that it allows these systems to
make optimal decisions based on current conditions
and predicted changes to the network environment.
An advantage of this approach is that it allows the
network to respond quickly and efficiently to new sit-
uations without reprogramming or re-configuring to
perform a new function. Another advantage of us-
ing reinforcement learning in optical networks is that
it enables these systems to make decisions based on
previous experiences rather than human input or in-
tervention. This advantage makes it highly resistant
to human error, making it much more reliable than a
human-operated system.

Using reinforcement learning in optical networks
presents a significant drawback: the high implemen-
tation and maintenance costs. Operators must in-
vest time and resources into training the system to
adapt to changing network conditions. This com-
plexity increases operational costs and the difficulty
of implementation. Setting up these models is time-
consuming, with a steep learning curve, often requir-
ing development from scratch. Moreover, numer-
ous parameters must be configured for training and
evaluation, varying depending on the problem con-
text, necessitating expertise in optical communica-
tions and machine learning techniques. To our knowl-
edge, one toolkit intends to accelerate the implemen-
tation of Deep Reinforcement Learning for Optical
Networks (Natalino and Monti, 2020), called Optical-
RL-GYM. This toolkit provides a hierarchical appli-
cation for static and elastic optical network resource
allocation problems. However, the same hierarchical
architecture makes adapting the software to new opti-
cal networks difficult and may be hard to learn due to
a lack of documentation.

For this reasons, we developed DREAM-ON
GYM, a Deep Reinforcement LEarning frAMework

for Optical Networks 1 . Following the principles
established by the OpenAI GYMNASIUM (Towers
et al., 2023), we propose a straightforward and ver-
satile framework for solving many current and future
optical network architecture resource allocation prob-
lems, such as routing, spectrum or wavelength allo-
cation, spectrum band or fiber core selection. Even
more, it can be adapted for any other optical architec-
ture context. This tool reduces the time and complex-
ity of using Deep Reinforcement Learning in Optical
Network architectures, providing easy-to-use func-
tions and modules. The framework is compatible with
the Stable Baselines library (Hill et al., 2018), allow-
ing the use of any agents available in the literature,
even though any operator can create their agents or
include any ad-hoc heuristic algorithm solutions if
needed. Finally, for the training and testing evalua-
tions, we adapted the Flex Net Sim Simulator (Falcón
et al., 2021) to perform with our tool appropriately,
harvesting its straightforward and fast performance
for simulating optical communications infrastructure.

The remainder of the paper is as follows: the soft-
ware architecture of our tool is presented in Section 2.
The Flex Net Sim simulator is succinctly explained in
Section 3. In Section 4, we exemplify the use, sim-
pleness, and versatility of our tool. Finally, Section 5
presents further conclusions and final comments.

2 DREAM-ON GYM TOOLKIT

Deep Reinforcement learning is an area of artifi-
cial intelligence concerned with developing computer
programs that can learn to perform tasks without be-
ing explicitly programmed to do so. The ultimate
goal of reinforcement learning is to help machines be-
come more intelligent and learn to do things indepen-
dently without having to be instructed or programmed
by humans. Although reinforcement learning is still
in its infancy, it is beginning to gain significant trac-
tion in the computer engineering and computer sci-
ence fields.

DRL systems are made of two main interacting
entities: agent and environment. The agent performs
a specific action following a strategy (or policy) that
modifies the environment’s state. In return, the envi-
ronment computes a goodness score, called a reward,
that assesses the selected action’s quality. Maximiz-
ing the cumulative reward, the agent learns the best
way to perform a particular task in the environment.

The framework consists of a customized gym en-
vironment compatible with elastic optical networks

1Code available at: https://gitlab.com/IRO-Team/
dream-on-gym-v2.0

SIMULTECH 2024 - 14th International Conference on Simulation and Modeling Methodologies, Technologies and Applications

216



Application DREAM- ON GYM

Agents

Model

Environment
Flex- Net Sim based

SimulatorSet 

parameters

Get model

Agents

Reward 

functions

Allocation 

Algorithm

Network

Take action

Send 

connection

request

Stable Baselines 

Library

OpenAI

Gymnasium

Self- made

Agents

Figure 1: DREAM-ON GYM architecture.

Optical Network

Optical Nodes

Optical Fiber Links

Network Connections 

(Users)

OXC

ROADM

MB- ROADM

Link Length (in km)

Wavelengths (OTN)

Frequency Slot Units (EON)

Frequency Bands (MB- EON)

Connections Traffic load (Erlangs)

Bitrate demands (Gbps)

Modulation Format (BPSK, QPSK,,,)

Quality of transmission (BER; OSNR)

Optical Paths

Network module Allocation Algorithm module

Routing Solutions

Modulation Format

Spectrum/Wavelength 

Assignment

Survivability

Figure 2: Networks and Allocation Algorithm modules on our DREAM-ON GYM Architecture.

(EON) and multiband elastic optical networks (MB-
EON), which can be used for different optical archi-
tectures. Figure 1 shows the architecture of the im-
plemented framework. The application created by
the user must select an agent and set the network pa-
rameters, such as topology, routes, and bitrates. Af-
ter that, the environment is initialized, and the agent
starts training. The simulation component of the
framework sends connection requests to the environ-
ment composed of the triplet (source, destination,
bitrate). In contrast, the environment decides where
to assign this request through the agent. After train-
ing, the framework returns a model to the application
that will be used to allocate resources in this network.

Within the framework are overwritten init ,
step, and reset methods, which are mandatory for
any gym environment.

• The init method is responsible for initializ-
ing the environment. To meet the dynamism re-
quired by the environment, a particular elastic or
multiband optical network simulation module in-
spired by Flex Net Sim (Falcón et al., 2021) was
created, which is initialized here. This module
works with three files: topology, routes, and bi-
trates. The topology file contains the connection
information of the network nodes and links. The

routes file contains the existing routes between
each pair of network nodes, which can be more
than one. The bitrate file contains information on
the bands, modulation formats, and bitrates that
the simulator can use. The module generates a
connection request between any network nodes,
using a uniform distribution, and with a bitrate ob-
tained from a JSON file associated with a modu-
lation format and the number of slots. The param-
eters normally set in this simulator are the number
of connections and arrival and departure rates. In
addition, a resource allocation function must be
set, coded, and passed as a parameter to the simu-
lator.

• The step method is responsible for processing the
connection requests one by one. In this way, each
connection is worked separately and sent to the
agent set before training.

• Finally, the reset method allows restarting the
episodes.

Figure 2 shows the structure of the Network and
Allocation Algorithm modules, reflecting optical net-
work architectures, their users (network connections),
and the standard problems to be solved with a network
operation perspective.

DREAM-ON GYM: A Deep Reinforcement Learning Environment for Next-Gen Optical Networks

217



1 env = gymnasium.make("rlonenv -v0")
2 obs, info = env.reset()
3

4 #set space
5 env.action_space = gymnasium.spaces.

MultiDiscrete(np.array([4]))
6 env.observation_space = gymnasium.

spaces.MultiDiscrete ([100] *
2720)

7

8 #Set reward function and states
9 env.setRewardFunc(reward)

10 env.setStateFunc(state)
11

12 #Set topology and connection routes
13 env.initEnviroment(NETWORK ,PATHS)
14

15 #Connections settings and warm -up
time

16 env.getSimulator().goalConnections =
100

17 env.getSimulator().setMu(1)
18 env.getSimulator().setLambda (1000)
19 env.getSimulator().setLambda(FF)
20 env.getSimulator().init()
21

22 #Train process
23 env.start()
24 env.getSimulator().setAllocator(

agent_algorithm)
25

26 policy_args = dict(net_arch=5*[128],
activation_fn=th.nn.ReLU)

27 model = TRPO(MLP_TRPO , env, verbose
=0, tensorboard_log , policy ,
gamma)

28 model.learn(timesteps , log)
29

30 #Save trained model
31 model.save(’MODEL’)

Listing 1: DREAM-ON GYM code example.

The Network module holds the network archi-
tecture, considering the optical nodes, optical fiber
links, and network connections. These components
must reflect the optical architecture considered in the
study. We included three possible architectures: Op-
tical Transport Networks (OTN), Elastic Optical Net-
works (EON), and Multiband Elastic Optical Net-
works (MB-EON). In considering Optical Transport
Networks (OTN), the nodes perform as OXC (Optical
Cross Connect), and each link capacity is composed
of 80 wavelengths of 50 GHz each wavelength, cor-
responding to the standard communications on the C
frequency band. The Elastic Optical Networks con-
sider nodes with ROADM (Reconfigurable Optical
Add-Drop Multiplexing) and Wavelength Selective
Switches (WSS), including optical fiber links with

344 frequency slot units (FSU) of 12,5 GHz each for
the C-Band. Last, we consider the MB-EON architec-
ture, with MB-compatible optical nodes such as MB-
ROADM (Multiband-ROADM), and the capacity of
the links is composed of several frequency bands cor-
responding to the C, L, S, and E Bands with 344, 480,
760, and 1136 FSU each.

The Allocation Algorithm module comprises the
algorithms to solve the standard problems to be found
in optical communications, such as the routes to be
selected by each network connection (Routing), the
appropriate modulation format for each network con-
nection considering the Quality of Transmissions and
their path distances (Modulation Format), a piece of
frequency spectrum on each link belonging to each
path (Wavelength/Spectrum Assignment), or includ-
ing fault tolerance capabilities to the network (Sur-
vivability). This module connects with the Controller
module on the Simulator, which will be explained in
the following section. Remark that, in this module,
the solutions can be obtained by the DRL agents or
any ad-hoc heuristic procedure in the literature.

Listing 1 exemplifies the few lines of code re-
quired to execute our tool. We will refrain from show-
ing Python dependencies and some functions needed,
such as reward and state functions, but they can be
found in the available Gitlab code.

The OpenAI gymnasium framework is called in
the first two lines, and the environment is reset. From
lines 5 to 6, the environment action and observation
space is set. In lines 9 and 10, the reward and state
functions are chosen. Line 13 sets the network topolo-
gies and the possible paths to be chosen. From lines
16 to 20, the connection settings are configured, such
as the number of total connection arrivals, interarrival
(λ), and service rate (µ). We perform a warm-up time
execution on line 19 (Function called FF), executing
the common First-Fit algorithm. The warm-up time is
when the simulation will run before collecting results,
allowing the queues (and other aspects in the simula-
tion) to get into conditions typical of normal running
conditions in the system you are simulating.

The training process is executed from lines 23 to
27, in which the environment is started, and the search
for network resources such as paths, wavelengths,
and slot units is done using the agentalgorithm (see
GitLab code example) using one of the Stable base-
line agents (in this case using TRPO). Based on Q-
learning or policy learning, the agents are responsi-
ble for observing the environment and taking action to
improve the cumulative reward. These agents can be
obtained using the Stable Baseline library2 or created
by the developer if needed. All the learning processes

2https://stable-baselines.readthedocs.io/en/master/

SIMULTECH 2024 - 14th International Conference on Simulation and Modeling Methodologies, Technologies and Applications

218



Simulator Controller Network

Allocator

Figure 3: Flex Net Sim Simulator.

are saved on line 28.
Finally, the trained model can be stored on line 31

for further use.
In summary, the user must create the re-

source allocation function (in the example called
agent algorithm, choose the agent, and load the pre-
viously mentioned JSON files to use the framework.
The user must also code the state and the reward func-
tion, yet we provide a standard example on the Git-
lab code. The environment is trained using the opti-
cal networks environments provided and the agents of
choice, and finally, the model can be saved for further
evaluation.

3 SIMULATION TOOL

The tool presented in this article uses the core of
the Flex Net Sim simulator (Zitkovich et al., 2023)
through its flexible optical networks option. This core
is in charge of generating the connection and discon-
nection requests that will be processed by the agent
and will finally end up in an assignment or a blocking
to the network. As presented in Figure 3, Flex Net
Sim is a very versatile simulator whose architecture is
composed of four components: Network, Controller,
Simulator, and Allocator, shown in Figure 3.

The Network component configures all the net-
work resources and comprises three Classes: Link,
Node, and Network. The Link class contains the sta-
tus of each link, including slot occupancy. The Node
class is a glue between the links that form the net-
work. Finally, the Network class manages the net-
work resources, generating the optical network graph.
In this way, the Network component contains the state
of the simulated network.

The Controller component is in charge of manag-
ing the allocation of resources over the network. The
purpose of this component is to allocate or de-allocate
network resources. It comprises a class with the same
name as the component (Controller), which contains
two essential methods: Allocate and Unallocate re-
sources. These methods call for the different methods
of the Network component to carry out the connec-
tions. In turn, this component maintains the status of
the active network connections. The main difference
between this component and the Network component

is that the Network component manages the state of
the network links. Still, these states are not associated
with a connection. On the other hand, the Controller
component maintains the identifier of each connec-
tion, associating it with a network state. In this way,
when it is necessary to release a connection, the Con-
troller component gives the order in which network
slots must be released.

The Simulator component contains all the random
and event-driven logic. Here are initialized random
variables related to the arrival and departure of con-
nections and the choice of the bitrate of each incom-
ing connection. At the same time, this component
stores a list of events that are updated with each new
connection arrival. These events can be one of the
two types: Arrival and Departure. Arrival events cor-
respond to the arrival of a connection request to the
network, while departure events correspond to the re-
lease of network resources by a connection. The sim-
ulator component communicates with the Controller
component, sending it a triplet (src,dst,b) with the
information of a new connection, where src corre-
sponds to the source node, dst is the destination node,
and b is the bitrate required by this connection. The
Controller component is in charge of asking the Allo-
cator component how to allocate these resources.

Thus, in general terms, the simulation works as
follows: The Simulator component generates a new
connection request and sends it to the Controller com-
ponent so that it is in charge of assigning it. The Con-
troller component takes the request and sends it to the
Allocator component, which checks where this con-
nection can be allocated in the network. The Alloca-
tor component communicates with the agent, which
processes the request and responds to the Alloca-
tor component, indicating the links and slots where
this connection should be allocated. The Allocator
component takes the information and passes it to the
Controller component, which sends it to the Network
component (saving the connection information). The
Network component assigns the slots in their respec-
tive links, delivering a confirmation code to the Con-
troller component, which sends this information to the
Simulator component, which follows with the next
event.

4 EXAMPLES AND
APPLICATIONS

This section illustrates our framework’s straightfor-
ward usage and versatility for creating DRL models
for Optical Networks by comparing several agent de-
cisions on dynamic elastic optical networks. This

DREAM-ON GYM: A Deep Reinforcement Learning Environment for Next-Gen Optical Networks

219



Table 1: Simulation parameters.

Parameter Value
Network Topology UKNet

Network connections 420
Candidate routes 5
Bit rate (Gbps) 10, 40, 100, 400, 1000

Number of episodes 200
Training Steps 1000 per episode

Agents PP0, A2C and DQN
Neural Network Layers 2
Neural Network neurons 64

Learning rate 3 ·10−4

Reward function 1, -1

0

1

2

18

19

4

3 5

6 7

8
9

10 13

11 12

14

20

15
16

17

Figure 4: UKNet Network Topology, with 21 nodes, 78
links, and 420 node pair source-destination.

example focuses on the Routing, Modulation for-
mat, and Spectrum Assignment problem (RMSA).
The agents choose a path among five precomputed
shortest paths and choose a modulation format ac-
cording to the bitrate demanded (10, 40, 100, 400,
or 1000 Gbps). The bitrate is set to the connections
randomly with a uniform distribution (using the same
seed for replicability of the different exercises). On
the other hand, the search for a portion of a contigu-
ous frequency spectrum on the chosen path (spectrum
assignment) is performed by using the First-Fit algo-
rithm. In this example, the environment is set as a list
of arrays, each representing an optical network fiber
link. The components of each array represent a fre-
quency slot unit available (or not) to be used by the
network connections. In this sense, the agents will
choose for each connection requesting transmission a
subset of links composing the source-destination path
and a portion of the FSUs within the link arrays. Re-
mark that this is just an example, and the operator ad-
justs the environment to represent optical network op-
eration.

Table 1 presents the main parameters set on the
framework in this example. We train three differ-
ent agents, PPO (Schulman et al., 2017), A2C (Mnih

et al., 2016) and DQN (Fan et al., 2020) provided
by the Stable Baseline library on the UKNet net-
work topology (21 nodes, 78 links, and 420 node
pair source-destination). The learning rate was set
to 3 · 10−4, using the standard configuration of the
agents with two layers with 64 neurons each. We per-
form 105 training steps, comprising 200 episodes with
1000 training steps each.

The reward function was set using the standard
values in the literature (Morales et al., 2021), return-
ing a value equal to 1 when the action is success-
ful and −1 when rejected. Figure 5 illustrates the
cumulative reward obtained by the PP0, A2C, and
DQN agents solving the routing, modulation format,
and spectrum assignment problem on the UKNet net-
work topology. In the figure, we can see that DQN
starts with a slow learning curve. However, after 50
episodes, it improves, reaching results similar to those
of A2C and PPO agents. On the other hand, A2C
reaches a steady cumulative reward of around 250
within a few episodes.

Figure 6 complements the episode blocking prob-
ability performed by the PP0, A2C, and DQN agents,
solving the routing, modulation format and spectrum
assignment problem on the UKNet network topol-
ogy. Similarly, we can see that A2C quickly obtains
a steady value episode blocking probability. Mean-
while, DQN takes more training to obtain results sim-
ilar to those of A2C and PPO agents.

Figure 7 presents in-depth charts showing the
routes the same three agents decide during the train-
ing process in percentage. Figure 7a shows the path
usage distribution when 10.000 training steps are per-
formed, and Figure 7b shows the same path usage dis-
tribution for 100.000 training steps. The training de-
cisions changing over time can be seen in these two
figures. PP0 and DQN choose a path that is more dis-
tributed at the beginning. Meanwhile, A2C prioritizes
its decision on the shortest path (Path 1). In the end, at
100.000 training steps, the three agents prioritize the
shortest path.

The previous exercise shows merely a simple ex-
ample of all the possible studies that can be done
within our tool. For example, the previous example
demands hyperparameter tunning to be competitive
with the best-performing solutions in the literature.
Our toolkit is compatible with all optimization pro-
cesses and hyperparameter tuning available for Deep
Reinforcement Learning, such as setting different hy-
perparameters such as neurons, layers, learning rates,
or any other hyperparameter needed. Our framework
is compatible with hyperparameter tuning software
such as Optuna software (Akiba et al., 2019). The op-
erator can perform many different agents, create their

SIMULTECH 2024 - 14th International Conference on Simulation and Modeling Methodologies, Technologies and Applications

220



0 25 50 75 100 125 150 175 200
Episodes

0

50

100

150

200

250

300
Cu

m
ul

at
iv

e 
re

wa
rd

PPO
A2C
DQN

Figure 5: Training results showing cumulative reward for PP0, A2C, and DQN agents for the routing problem on the UKNet
network topology using 200 episodes of 1000 training steps each.

0 20 40 60 80 100
Episodes

0.35

0.40

0.45

0.50

0.55

0.60

Ep
iso

de
 b

lo
ck

in
g 

pr
ob

ab
ilit

y

PPO
A2C
DQN

Figure 6: Training results the episode blocking probability for PP0, A2C, and DQN agents for the routing problem on the
UKNet network topology using 100 episodes of 1000 training steps each.

Path 1 Path 2 Path 3 Path 4 Path 5
Action

0.0

0.2

0.4

0.6

0.8

Pr
ob

ab
ilit

y

PPO
A2C
DQN

(a) Path usage distribution for 10.000 training steps

Path 1 Path 2 Path 3 Path 4 Path 5
Action

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ob

ab
ilit

y

PPO
A2C
DQN

(b) Path usage distribution for 100.000 training steps

Figure 7: Path usage distribution obtained by training PP0, A2C and DQN Agents for the routing problem on the UKNet
network topology for (a) 10.000 training steps and (b) 100.000 training steps.

own reward functions, and reduce action space tech-
niques and invalid action masking, among other opti-
mization processes for DRL.

In addition, our tool can perform Interpretable
and Explainable (XAI) artificial intelligence methods,

such as applying highly interpretable agents based on
Linear Regression, Decision Tree, Logistic regres-
sion, or Random Forest methods or applying Imi-
tation Learning to best-performing neural networks
techniques. This may allow understanding of the

DREAM-ON GYM: A Deep Reinforcement Learning Environment for Next-Gen Optical Networks

221



agent’s decision to create new and non-trivial routing
and spectrum assignment protocols for optical net-
works.

5 CONCLUSIONS AND FINAL
REMARKS

We present a new Deep Reinforcement Learning
Framework for Optical Networks called DREAM-ON
GYM. The framework allows the implementation of
deep reinforcement learning in a straightforward and
versatile manner to solve resource allocation prob-
lems in optical network architectures, such as routing,
spectrum or wavelength allocation, and band or core
selection in multiband or multicore architectures. To
this end, we provide a set of functions and modules al-
lowing agents and environments to interact to train the
models. The application relies on adapting the Flex
Net Sim Simulator to train and evaluate the agents.
This way, we reduce the time and complexity of im-
plementing and evaluating DRL for Optical Network
problems.

We exemplify the usability of our framework by
choosing a path with three different agents in an elas-
tic optical network. With this example, we demon-
strated the easy-to-use tool showing the difference in
the performance of the three agents. In addition, by
creating an app, we can make an application for a sim-
ple evaluation and training for a given optical network
context.

In future works, we will use the framework to
allow interpretability and generalization of the mod-
els while training and evaluating DRL in optical net-
works and adding new capabilities to the framework,
such as compatibility for survivability problems.

ACKNOWLEDGEMENTS

Financial support from FONDECYT Iniciación
11220650 is gratefully acknowledged.

REFERENCES

Akiba, T., Sano, S., Yanase, T., Ohta, T., and Koyama, M.
(2019). Optuna: A next-generation hyperparameter
optimization framework. In Proceedings of the 25th
ACM SIGKDD international conference on knowl-
edge discovery & data mining, pages 2623–2631.

Chen, X., Li, B., Proietti, R., Lu, H., Zhu, Z., and Yoo, S. B.
(2019). Deeprmsa: A deep reinforcement learning

framework for routing, modulation and spectrum as-
signment in elastic optical networks. Journal of Light-
wave Technology, 37(16):4155–4163.

El Sheikh, N. E. D., Paz, E., Pinto, J., and Beghelli, A.
(2021). Multi-band provisioning in dynamic elastic
optical networks: a comparative study of a heuristic
and a deep reinforcement learning approach. In 2021
International Conference on Optical Network Design
and Modeling (ONDM), pages 1–3. IEEE.

Falcón, F., España, G., and Bórquez-Paredes, D. (2021).
Flex net sim: A lightly manual.

Fan, J., Wang, Z., Xie, Y., and Yang, Z. (2020). A the-
oretical analysis of deep q-learning. In Learning for
Dynamics and Control, pages 486–489. PMLR.

Hill, A., Raffin, A., Ernestus, M., Gleave, A., Kanervisto,
A., Traore, R., Dhariwal, P., Hesse, C., Klimov, O.,
Nichol, A., Plappert, M., Radford, A., Schulman,
J., Sidor, S., and Wu, Y. (2018). Stable baselines.
https://github.com/hill-a/stable-baselines.

Klinkowski, M., Lechowicz, P., and Walkowiak, K. (2018).
Survey of resource allocation schemes and algo-
rithms in spectrally-spatially flexible optical network-
ing. Optical Switching and Networking, 27(September
2017):58–78.

Mnih, V., Badia, A. P., Mirza, M., Graves, A., Lillicrap, T.,
Harley, T., Silver, D., and Kavukcuoglu, K. (2016).
Asynchronous methods for deep reinforcement learn-
ing. In International conference on machine learning,
pages 1928–1937. PMLR.

Morales, P., Franco, P., Lozada, A., Jara, N., Calderón,
F., Pinto-Rı́os, J., and Leiva, A. (2021). Multi-band
environments for optical reinforcement learning gym
for resource allocation in elastic optical networks. In
2021 International Conference on Optical Network
Design and Modeling (ONDM), pages 1–6. IEEE.

Naeem, M., Rizvi, S. T. H., and Coronato, A. (2020). A gen-
tle introduction to reinforcement learning and its ap-
plication in different fields. IEEE Access, 8:209320–
209344.

Natalino, C. and Monti, P. (2020). The optical rl-gym:
An open-source toolkit for applying reinforcement
learning in optical networksf. In 2020 22nd Interna-
tional Conference on Transparent Optical Networks
(ICTON), pages 1–5. IEEE.

Schulman, J., Wolski, F., Dhariwal, P., Radford, A., and
Klimov, O. (2017). Proximal policy optimization al-
gorithms. arXiv preprint arXiv:1707.06347.

Towers, M., Terry, J. K., Kwiatkowski, A., Balis, J. U.,
Cola, G. d., Deleu, T., Goulão, M., Kallinteris, A.,
KG, A., Krimmel, M., Perez-Vicente, R., Pierré, A.,
Schulhoff, S., Tai, J. J., Shen, A. T. J., and Younis,
O. G. (2023). Gymnasium.

Zhang, Y., Xin, J., Li, X., and Huang, S. (2020). Overview
on routing and resource allocation based machine
learning in optical networks. Optical Fiber Technol-
ogy, 60:102355.

Zitkovich, M., Saavedra, G., and Bórquez-Paredes, D.
(2023). Event-oriented simulation module for dy-
namic elastic optical networks with space division
multiplexing. In Proceedings of the 13th International
Conference on Simulation and Modeling Methodolo-
gies, Technologies and Applications (SIMULTECH),
volume 1, pages 295–302.

SIMULTECH 2024 - 14th International Conference on Simulation and Modeling Methodologies, Technologies and Applications

222


