
CodeGrapher: An Image Representation Method to Enhance Software
Vulnerability Prediction

Ramin Fuladi1 a and Khadija Hanifi2 b

1Ericsson Research, Istanbul, Turkey
2Sabanci University, Istanbul, Turkey

fi

Keywords: Software Vulnerability Prediction, CodeGrapher, ML Algorithms, Semantic Relations, Source Code Analysis,
Similarity Distance Metrics, Image Generation.

Abstract: Contemporary software systems face a severe threat from vulnerabilities, prompting exploration of innovative
solutions. Machine Learning (ML) algorithms have emerged as promising tools for predicting software vulner-
abilities. However, the diverse sizes of source codes pose a significant obstacle, resulting in varied numerical
vector sizes. This diversity disrupts the uniformity needed for ML models, causing information loss, increased
false positives, and false negatives, diminishing vulnerability analysis accuracy. In response, we propose
CodeGrapher, preserving semantic relations within source code during vulnerability prediction. Our approach
involves converting numerical vector representations into image sets for ML input, incorporating similarity
distance metrics to maintain vital code relationships. Using Abstract Syntax Tree (AST) representation and
skip-gram embedding for numerical vector conversion, CodeGrapher demonstrates potential to significantly
enhance prediction accuracy. Leveraging image scalability and resizability addresses challenges from varying
numerical vector sizes in ML-based vulnerability prediction. By converting input vectors to images with a set
size, CodeGrapher preserves semantic relations, promising improved software security and resilient systems.

1 INTRODUCTION

Software vulnerabilities are inherent weaknesses in
code that arise during the development or commit-
ting process and can be exploited by malicious actors
to gain unauthorized access to a system and execute
harmful actions (Hanifi et al., 2023). To mitigate po-
tential risks, organizations employ various methods to
identify and predict these vulnerabilities. Two widely
adopted approaches are static and dynamic analysis
(Palit et al., 2021). Static analysis involves scruti-
nizing the source code or binary code without actu-
ally executing it. This method seeks to identify exist-
ing vulnerabilities by examining the code’s structure,
syntax, and potential logical flaws. It is particularly
useful during the early stages of development when
the codebase is accessible and can be analyzed thor-
oughly. Static analysis tools can quickly scan large
codebases, providing valuable insights into potential
vulnerabilities without the need for runtime execution
(Schiewe et al., 2022). On the other hand, dynamic

a https://orcid.org/0000-0003-4142-1293
b https://orcid.org/0000-0001-7044-3315

analysis involves running the code and analyzing its
behavior during runtime. By observing the code in
action, this method can detect vulnerabilities that may
not be apparent in the static analysis phase. Dynamic
analysis is advantageous when dealing with complex
and interactive applications, as it allows for a better
understanding of how the software responds to real-
world inputs and interactions (Lin et al., 2020). The
advantage of static analysis lies in its ability to de-
tect vulnerabilities before the code is executed, which
can potentially save significant time and resources in
the development process. It can catch issues early on,
reducing the chances of encountering critical vulnera-
bilities later in the software lifecycle. Moreover, static
analysis can be automated, making it scalable and ef-
ficient for large-scale projects (Halepmollası et al.,
2023). Despite its benefits, static analysis may pro-
duce false positives or false negatives, meaning that
it can flag non-existing vulnerabilities or miss ac-
tual flaws due to the inherent complexities of code
analysis. Additionally, static analysis tools may not
capture vulnerabilities arising from runtime-specific
conditions or interactions. Recently, Machine Learn-
ing (ML) and Artificial Intelligence (AI) techniques

666
Fuladi, R. and Hanifi, K.
CodeGrapher: An Image Representation Method to Enhance Software Vulnerability Prediction.
DOI: 10.5220/0012717100003687
Paper published under CC license (CC BY-NC-ND 4.0)
In Proceedings of the 19th International Conference on Evaluation of Novel Approaches to Software Engineering (ENASE 2024), pages 666-673
ISBN: 978-989-758-696-5; ISSN: 2184-4895
Proceedings Copyright © 2024 by SCITEPRESS – Science and Technology Publications, Lda.

have been integrated into static analysis tools to en-
hance vulnerability detection. By leveraging ML/AI,
these tools can adapt and improve their accuracy over
time. However, applying ML/AI to static code analy-
sis presents its own set of challenges. The structural
differences between code and traditional text data can
hinder the effectiveness of standard ML algorithms,
requiring specialized approaches and tailored models
for optimal results (Bilgin et al., 2020). In order to
leverage ML algorithms for predicting software vul-
nerabilities, it is essential to represent the source code
as numerical vectors. This process, commonly re-
ferred to as code embedding, aims to transform the
code into meaningful numerical representations. This
can be achieved either through manual extraction of
features such as lines of code or code complexity, or
by employing ML-based techniques to automatically
learn the vector representation of the code.

Several methods have been proposed for code em-
bedding (Hanifi et al., 2023; Bilgin et al., 2020; Şahin
et al., 2022; Duan et al., 2019; Halepmollası et al.,
2023), but they all encounter a common challenge:
the variability in the length of the source code, which
results in varying sizes of the output vectors. More-
over, in source code, multiple lines can be intercon-
nected, meaning that one line of code may be depen-
dent on or related to another line within the code. This
interrelation and semantic code relationship are also
relevant when dealing with vulnerabilities. However,
ML models often require fixed input sizes, necessitat-
ing the vector representation of source codes to be ad-
justed to match the model’s input size. Consequently,
some vectors need to be truncated, while others must
be padded with zeros to achieve uniformity in input
size (Telang and Wattal, 2007). The process of modi-
fying vector sizes through truncation or padding leads
to information loss, adversely impacting the accuracy
of vulnerability analysis. As a result, the occurrence
of false negatives and false positives increases, under-
mining the overall effectiveness of the analysis. Ad-
dressing this challenge is crucial for enhancing the
accuracy and reliability of software vulnerability pre-
diction using ML algorithms.

In this study, we introduce a novel approach called
CodeGrapher, which aims to convert the numerical
vector representation of source code into one or more
images. Due to the different size of the source codes,
the size of the resulted images vary. By re-sizing
the size of the images to a global and constant value
(i.e. nxn), they can be utilized by ML methods to pre-
dict vulnerabilities in the source code. CodeGrapher
addresses the challenge of varying numerical vector
sizes resulting from differences in the sizes of source
codes. By resolving this discrepancy in input sizes

for ML models during static analysis, our solution en-
sures that all relevant information within the source
code is retained.

The conversion of numerical vector representa-
tions into images is advantageous for resizing due
to the inherent adaptability of image variables. Im-
ages can be easily resized to a standardized nxn for-
mat without compromising the integrity of the infor-
mation they encapsulate. During the resizing pro-
cess, CodeGrapher ensures that relevant details within
the images are preserved, maintaining the essential
characteristics of the source code representations.
This adaptability and preservation of information con-
tribute to the effectiveness of CodeGrapher in ad-
dressing the challenges posed by varying source code
sizes in the context of static analysis for machine
learning models.

To achieve this, we employ similarity distance
metrics on the numerical representation of the source
code, which allows us to generate an image based on
the vector input. Subsequently, the size of the im-
age is adjusted to a fixed value to align with the re-
quirements of ML models. In converting the source
code to the numerical representation, we utilize the
Abstract Syntax Tree (AST) representation along with
the skip-gram embedding algorithm, which is an ML-
based algorithm commonly used in Natural Language
Processing (NLP). This research makes significant
contributions to the field of software vulnerability
prediction and software security. The main contribu-
tions of this paper can be listed as follows:

• Innovative Numerical-to-Image Transforma-
tion: Our innovative solution converts numeri-
cal vectors of source code into images, enhanc-
ing ML model inputs. This unique transformation
preserves semantic relationships within code ele-
ments, bridging code analysis and image process-
ing for intuitive vulnerability prediction.

• Semantic Relationship Preservation: By inte-
grating similarity distance metrics into image gen-
eration, we improve the accuracy of vulnerability
prediction by preserving code element relations,
minimizing false results in software analysis.

• Uniform ML Model Input: Our solution suc-
cessfully preserves all source code information
while addressing varying numerical vector sizes,
ensuring uniformity in ML model input. This en-
hances accuracy in vulnerability prediction, con-
tributing to the development of resilient software
systems.

The remainder of this paper is structured as fol-
lows: In Section 2, we provide a comprehensive re-
view of relevant studies. Section 3 delves into a de-

CodeGrapher: An Image Representation Method to Enhance Software Vulnerability Prediction

667

tailed explanation of our proposed approach, while
Section 4 presents the implementation of CodeGra-
pher. Section 5 provides the threats to validity of our
findings. Finally, in Section 6, we draw our study to a
conclusion.

2 RELATED WORK

The use of numerical vector representation is crucial
for harnessing ML algorithms in predicting software
vulnerabilities. This technique, referred to as code
embedding (Kanade et al., 2020), revolves around
converting the source code into numerical vectors.
This transformation can be accomplished either man-
ually, where features such as line of code and code
complexity are extracted, or automatically through
ML-based techniques that learn vector representa-
tions (Alon et al., 2019).

Several techniques have been proposed for code
embedding. Alon et al. (Alon et al., 2019) introduced
code2vec, a neural network-based model that repre-
sents source code as a continuous distributed vector.
They break down the Abstract Syntax Tree (AST) of
the code into paths and learn the atomic representa-
tion of each path, aggregating them as a set. Lozoya
et al. (Lozoya et al., 2021) built upon code2vec and
developed comit2vec, which focuses on embedding
representations of code changes. They utilized the
obtained representations for vulnerability fixing com-
mit prediction. Furthermore, word embedding tech-
niques, like word2vec (Alon et al., 2019), have been
used to convert source code into numerical vectors.
Hare et al. (Harer et al., 2018) applied word2vec
on C/C++ tokens to generate word embedding rep-
resentations for ML-based software vulnerability pre-
diction. Henkel et al. (Henkel et al., 2018) utilized
the GloVe model to extract word embedding repre-
sentations from the AST of C source code. Fang et
al. (Fang et al., 2020) introduced FastEmbed, em-
ploying the FastText technique (Feutrill et al., 2018),
and achieved an F1-score of 0.586. Sahin et al.
(Şahin et al., 2022) proposed a vulnerability predic-
tion model using different source code representa-
tions. They explored whether a function at a spe-
cific code change is vulnerability-inducing or not by
representing function versions as node embeddings
learned from their AST. They built models using
Graph Neural Networks (GNNs) with node embed-
dings, Convolutional Neural Networks (CNNs), and
Support Vector Machines (SVMs) with token repre-
sentations. Their experimental analysis on the Wire-
shark project showed that the GraphSAGE model
achieved the highest AUC rate with 96%, while the

CNN model achieved the highest recall and precision
rates with 77% and 82%, respectively. In study by
Bilgin et al. (Bilgin et al., 2020), the authors intro-
duced a technique for software vulnerability predic-
tion at the function level in C code. They achieve
this by converting the Abstract Syntax Tree (AST)
of the source code into a numerical vector. Subse-
quently, they utilize a 1D Convolutional Neural Net-
work (CNN) for software vulnerability prediction.
Similarly, in another study by Duan et al. (Duan et al.,
2019), the authors utilized the Control Flow Graph
(CFG) and AST as graph representations to predict
vulnerabilities. By employing soft attention, they ex-
tract high-level features crucial for vulnerability pre-
diction from the graphs. Moreover, Zhou et al. (Zhou
et al., 2019) proposed a function-level software vul-
nerability prediction method based on a graph repre-
sentation. Their approach incorporates not only the
AST but also dependency and natural code sequence
information to enhance the prediction process.

Previous studies utilize embedding techniques for
software vulnerability prediction, facing challenges
with ML algorithms requiring uniform vector lengths,
often resulting in truncation or zero-padding. These
studies often overlook semantic relations between
code components. In our research, we introduce a
novel approach converting code vectors into images,
preserving semantic relations and resolving variable-
sized outputs. Utilizing images captures intricate
code relationships, maintaining fixed output size, and
improving vulnerability prediction accuracy and ef-
fectiveness.

3 PROPOSED APPROACH

Figure 1 serves as a visual representation of the so-
lution devised to standardize the input dimensions for
ML-based static analysis tools. The primary goal is to
ensure uniformity in the input data size. The process
commences by acquiring a numerical vector represen-
tation of the source code. This vector, along with one
or more similarity distance functions like cosine sim-
ilarity or dot product, is then input into the CodeGra-
pher module. The application of these distance func-
tions serves a dual purpose: first, to identify similari-
ties among elements within the vector, and second, to
retain the underlying semantic information associated
with the source code. The pivotal role of the CodeG-
rapher module is to convert the numerical vector into
one or more images, either in RGB or gray-scale for-
mat, adhering to predetermined dimensions. These
resultant images constitute the module’s outputs. This
transformation is facilitated by the utilization of the

ENASE 2024 - 19th International Conference on Evaluation of Novel Approaches to Software Engineering

668

Figure 1: An illustrative scheme outlining the key steps for
CodeGrapher implementation.

aforementioned distance function(s). To elaborate on
the image generation process, Figure 2 provides a
visual breakdown. The process involves selecting a
window of size w and systematically sliding this win-
dow across the numerical vector. With each window
position, corresponding matrices are generated. The
diagram showcases the resulting matrices for two in-
stances: w = 1 and w = k. These matrices are subse-
quently transformed by mapping their values to the
range of [0,255]. Furthermore, their format is al-
tered to uint8, effectively transitioning the matrices
into image format. Upon successful image genera-
tion, the images’ dimensions are adjusted to match
the required input dimensions of the machine learning
model. The generated images are then harnessed by

Figure 2: Visual Breakdown of Image Generation Process
for Different Window Sizes (w=1 and w=k).

the ML model to identify potential software vulnera-
bilities present in the source code. The process is de-
picted in Figure 2. Importantly, the number of outputs
from the CodeGrapher module is adaptable based on
the configuration settings. For instance, if there exists
only one distance function and one window, the out-
put will be a single image. Conversely, if D distinct
distance functions and L separate windows are em-
ployed, the number of generated images will amount
to D ×L . This level of flexibility allows for the pro-
duction of varying numbers of images, depending on
the specific demands of the analysis procedure. This
accommodates diverse analysis requirements and pro-
vides versatility in tailoring the solution to the specific
needs of software vulnerability prediction.

4 CodeGrapher
IMPLEMENTATION

For a comprehensive illustration of the process, we
conducted an experiment focused on predicting vul-
nerabilities within C-source code at the function level.
The schematic representation of the system employed
in this experiment is visualized in Figure 3. This
system leverages a Convolutional Neural Network
(CNN) and adopts an image-based representation of
the source code as input to successfully predict exist-
ing vulnerabilities in C-source code.

Figure 3: The main steps involved in implementing Code-
Grapher to construct a system for predicting source code
vulnerabilities.

To facilitate a step-by-step understanding of each
stage, an illustrative code segment is presented below.
This code snippet provides a simple way to check if
a given integer is even or odd by returning 1 for even
numbers and 0 for odd numbers.
i n t main () { / / t h i s t h e main f u n c t i o n

i n t a1 = 5 ; / / d e f i n e an i n t e g e r v a r i a b l e
p r i n t f (a1) ; / / p r i n t t h e v a r i a b l e t o t h e c o n s o l
}

Now, we will proceed to demonstrate each step
using the provided code sample:

4.1 Tokenization and AST
Representation

The initial step involves the application of lexical
analysis, whereby the source code is transformed into
a sequence of tokens. This transformation is evident
when examining the provided example source code,
which is altered as follows:

i n t (keyword) , i sE ve n (i d e n t i f i e r) , LPAREN (d e l i m i t e r) ,
i n t (keyword) , num (i d e n t i f i e r) , RPAREN (d e l i m i t e r) ,
= (o p e r a t o r) , 5 (c o n s t a n t) , ; (symbol)

Upon obtaining the token sequence from the
source code, the parsing process is initiated. Within
this parsing phase, the tokens generated during lexi-
cal analysis undergo a conversion process, typically
resulting in the creation of a data structure such as
a parse tree. This hierarchical structure offers a vi-
sual representation of the input code’s structure while
simultaneously validating its syntactical correctness
based on the rules defined by a context-free gram-
mar (CFG). The output of this step often manifests

CodeGrapher: An Image Representation Method to Enhance Software Vulnerability Prediction

669

as an Abstract Syntax Tree (AST) representation of
the original source code. The AST, which stems from
the tokens extracted during lexical analysis, encom-
passes both the structural layout and semantic insights
pertaining to the code. This convergence of struc-
tural and semantic information within the AST has
led to the development of a trend in source code anal-
ysis known as AST-based intelligent analysis (Chen
et al., 2019). Figure 4 illustrates the AST generated
to hierarchically represent the syntactic structure of
the isEven function.

Figure 4: AST of the isEven Function.

4.2 Utilizing Embedding for Code
Representation

Developing effective representations for source code
is a complex endeavor, largely due to the intricate
nature of programming languages, the incorporation
of libraries, and the diverse coding styles employed
by various developers. Leveraging established tech-
niques from the realm of Natural Language Process-
ing (NLP), we endeavor to extract embedding features
from source code. However, it’s important to note that
the structure of source code differs significantly from
that of regular textual content.

In light of these challenges, we opt for an ap-
proach that involves utilizing AST as the founda-
tion of our code representation technique. The con-
version of source code into its abstract structure al-
lows us to capture the inherent syntax and structure
of the code. To bridge the gap between AST and
textual representation while maintaining information
about each node’s location in the AST, we employ the
Breadth-First Search (BFS) technique. Subsequently,
we employ Skip-Gram, a word embedding technique,
to translate AST nodes into numerical vectors. The
comprehensive steps we follow to extract embedding
features are elaborated below:

1. Normalizing Identifier Names: While AST
predominantly captures structural and content-
related aspects, it omits certain details. For in-
stance, grouping parentheses are implicit within

the tree structure and are not represented as dis-
tinct nodes in the AST. However, structural nodes
such as function names are often irrelevant to our
purpose, lacking vulnerability-related informa-
tion. To mitigate this, prior to using AST nodes,
we initiate a normalization process. This pro-
cess replaces non-essential nodes with uniquely
predefined names. For example, both variable
and function names, being unimportant, are sub-
stituted with distinctive identifiers like VARI-
ABLE NAME and FUNCTION NAME. For in-
stance, in the examined example, isEven is re-
placed with FUNCTION NAME, and num is re-
placed with VARIABLE NAME.

2. Conversion to Word Vectors: To ensure the
normalized AST is transformed into a one-
dimensional array without sacrificing the relation-
ships among AST nodes, we adopt the BFS tech-
nique. However, leaf nodes remain attached to
their parent nodes, like the node BinaryOp and
the operator %, as they serve as features rather
than separate entities. The resulting array is then
fed into the embedding model to derive the feature
matrix. An equivalent word vector corresponding
to the normalized AST of the example code is pre-
sented below:

[FuncDef , Decl , Compound , FuncDecl , I f , Return ,
ParamLis t , TypeDecl , BinaryOp : == , Return ,
C o n s t a n t : i n t , Decl , Id Type : i n t , BinaryOp : %,
C o n s t a n t : i n t , C o n s t a n t : i n t , TypeDecl , ID : num ,
C o n s t a n t : i n t , Id Type : i n t]

3. Conversion to Numerical Vectors (Skip-Gram):
The Skip-Gram method is employed to transition
the aforementioned word vector into a numeri-
cal vector. Skip-Gram operates by extracting nu-
merical features based on the relationships among
neighboring nodes. This approach preserves con-
textual information, which is then mapped into the
resulting numerical vector (Bamler and Mandt,
2017). The process involves two distinct steps:

• Step 1: we generate a feature matrix or a
lookup dictionary using the SkipGram method,
trained with the VDISC dataset (Russell et al.,
2018). By the end of this pre-processing stage,
we obtain an embedding feature matrix, re-
ferred to as the ’Dictionary’. This matrix rep-
resents each word as a numerical vector within
R 20×1, considering its location within the code.
As an example, the associative numerical repre-
sentation of ’FuncDef’ node is as below:

FuncDef : [−2 .5182416 , 3 .1283994 , 2 .2 289238 ,
0 .7242722 , 1 .4296024 , 1 .5872365 , 2 .0136333 ,
0 .49053535 , −0.82888806 , −3.0382762 ,
2 .8487883 , 1 .5573912 , −0.26117662 , 1 .3050934 ,
−1.3061347 , −0.31573528 , −3.5838423 ,
1 .6379417 , 4 .9378858 , 0 . 0 4 9 2 4 7 7 4]

ENASE 2024 - 19th International Conference on Evaluation of Novel Approaches to Software Engineering

670

• Step 2: we use the acquired ’Dictionary’ to
transform the word vector into a numerical one.
This involves substituting each node with its
corresponding numerical representation from
the Dictionary. Consequently, each function is
depicted by a single numerical vector, with a
length of 20×nodes#. This length varies based
on the function’s size and the number of nodes
in the AST.

4.3 Code to Image Representation

After transforming the source code into vector form,
the vector is fed into the CodeGrapher module to gen-
erate an image-based representation. For optimal uti-
lization of the CodeGrapher module, an additional in-
put in the form of a distance function is required. In
this specific study, we’ve selected cosine similarity as
our distance function. Cosine similarity is a math-
ematical metric utilized to evaluate the likeness be-
tween two vectors by computing the cosine of the an-
gle formed between them. This metric finds applica-
tions across diverse domains such as natural language
processing, recommendation systems, and image pro-
cessing. One of its notable features is its disregard for
vector magnitude, instead concentrating solely on di-
rectional alignment within a multidimensional space.
This characteristic proves valuable when comparing
documents, images, or other data where the mag-
nitude may not offer as much meaningful informa-
tion as the relative orientation of vectors. It’s impor-
tant to note that in this study, we empirically set the
value of W to 10. As an illustrative example, Fig-
ure 5 provides visual representations of two distinct
source codes. One of these codes contains vulnera-
bilities related to buffer overflow (CWE120), while
the other code is devoid of such vulnerabilities. CWE
(Common Weakness Enumeration) is a comprehen-
sive catalog of software and hardware vulnerabilities,
and CWE120 is a specific category pinpointing the
weakness associated with buffer overflow vulnerabil-
ities (Sane, 2020). Buffer overflow, as described in
CWE120, is a critical software vulnerability where
a program writes more data into a buffer (temporary
data storage) than it can accommodate (Sane, 2020).
This overflow can overwrite adjacent memory, poten-
tially causing crashes, unauthorized access, or even
remote code execution.

4.4 Dataset

In this study, we employed the publicly available
Draper VDISC Dataset, as described in (Russell et al.,
2018), to conduct our experiments. This dataset

(a) Non-vulnerable
code snippet

(b) Vulnerable code
snippet (CWE120)

Figure 5: Images representing two distinct source codes: (a)
non-vulnerable source code, (b) vulnerable code containing
CWE120.

comprises an extensive collection of function-level
source code samples gathered from various sources,
including open-source projects such as the Debian
Linux distribution (unk, 2023a), public git reposi-
tories on GitHub (unk, 2023b), and the synthetic
SATE IV Juilet Test Suite (Black and Black, 2018)
from NIST’s Samate project. While the SATE IV
Juilet Test Suite contains synthetic code, it constitutes
only a small portion (approximately 1%) of the entire
dataset. The authors of the dataset meticulously la-
beled the function-level codes based on findings from
three different static analyzers, categorizing them into
five distinct groups of Common Weakness Enumera-
tion (CWE) vulnerabilities(Russell et al., 2018).

This categorization involved labeling functions
flagged by static code analyzers as ”vulnerable” for
the respective CWE category, while labeling oth-
ers as ”non-vulnerable” functions. The dataset was
thoughtfully partitioned into training (80%), valida-
tion (10%), and test (10%) sets to ensure the indepen-
dence of these subsets, with strict avoidance of dupli-
cate samples between training and test sets. Further-
more, we constructed balanced subsets in select ex-
periments to gauge the detectability of different vul-
nerability categories on an equal footing. It’s worth
mentioning that the referenced dataset primarily con-
tains functions written in C and C++ languages. For
our specific implementation, we focused on functions
written in the C language and ensured their parseabil-
ity using the Pycparser (Bendersky, 2019) parser, re-
sulting in several subsets derived from the original
training, validation, and test datasets.

4.5 Vulnerability Prediction Results
Based on CNN Model

After the transformation of source code into image
representations, these visual depictions become the
input data for our machine learning models. In this
study, we employ a Convolutional Neural Network
(CNN) as our chosen model for predicting vulner-

CodeGrapher: An Image Representation Method to Enhance Software Vulnerability Prediction

671

Table 1: Vulnerability prediction results.

CWE Method in (Bilgin et al., 2020) Our proposed solution

Precsion Recall F1 Precsion Recall F1

CWE119 0.504 0.515 0.509 0.813 0.841 0.824
CWE120 0.415 0.440 0.427 0.764 0.782 0.773
CWE469 0.060 0.187 0.090 0.460 0.552 0.502
CWE476 0.701 0.521 0.598 0.932 0.910 0.921
Other 0.218 0.353 0.270 0.624 0.652 0.640

abilities at the function-level within C source code.
We select parameters such as the number of layers,
the quantity of filters, and the dimensions of the fil-
ters empirically. Each filter within the neural network
is defined as a 3× 3 kernel. Collectively, the CNN
classifier encompasses an impressive 33,573,505 pa-
rameters, all of which are learned during the training
phase. For activation functions, all layers, except the
final one which employs the Softmax activation func-
tion, utilize Rectified Linear Unit (ReLU) functions.

To evaluate our proposed method and compare its
results with previous studies, we train the CNN model
separately for the mentioned five different CWEs. We
compare the performance results with those provided
in (Bilgin et al., 2020). Our evaluation is based on
standard metrics such as precision, recall, and F1-
score. The tabulated results summarized in Table 1
present a comparative analysis of vulnerabilities be-
tween the method in (Bilgin et al., 2020) and our pro-
posed image-based solution: This comparison under-
scores the improved performance of our image-based
solution across various CWEs, with enhanced preci-
sion, recall, and F1-scores. It suggests the poten-
tial effectiveness of our approach in accurately detect-
ing vulnerabilities, highlighting its promise for robust
vulnerability analysis in software systems.

5 THREATS TO VALIDITY

It is important to acknowledge and address potential
threats to the validity of our research. We recognize
several key threats to the validity of our findings.

5.1 External Validity

Our evaluation centered on C, providing a detailed
examination of the CodeGrapher approach in a con-
trolled setting. However, this may limit the gener-
alizability of our findings to other programming lan-
guages. Future work will broaden comparisons across
multiple languages to enhance generalizability.

5.2 Scalability and Granularity

Our experiments primarily focused on predicting vul-
nerabilities within individual functions using Code-
Grapher. However, software development occurs at
multiple levels, posing a threat to external validity and
generalizability. Future research will explore Code-
Grapher’s scalability and versatility across different
levels of analysis, ensuring a comprehensive evalua-
tion of its applicability.

5.3 Vulnerability Type Coverage

In this study, we aimed to cover various vulnerabil-
ity types, including buffer overflows, NULL pointer
dereference, and pointer subtraction. However, the
software vulnerability landscape is vast and evolving,
potentially omitting certain types. This could impact
construct validity, as our findings may not represent
the full spectrum of vulnerabilities. Future research
will address this by evaluating additional vulnerabil-
ity types, enhancing the comprehensiveness of the
CodeGrapher approach.

By recognizing and addressing these threats to va-
lidity, we aim to provide a more robust and compre-
hensive foundation for the application of CodeGra-
pher in software vulnerability prediction, extending
its relevance to a wider array of programming lan-
guages, levels of analysis, and vulnerability types.

6 CONCLUSION

Software vulnerabilities pose significant threats to
system security, motivating the development of effec-
tive detection methods. ML algorithms hold promise,
yet varying source code lengths challenge accuracy,
leading to false results. To overcome this, we intro-
duce CodeGrapher, preserving semantic relations by
converting numerical vectors into image sets for ML
input. Image size adjustability ensures consistency,
while similarity distance metrics maintain code ele-
ment relationships. Experimental validation demon-
strates superior performance. Future enhancements
include adjusting window size and CNN parameters
to improve accuracy, advancing software security.

ACKNOWLEDGEMENTS

This work was funded by The Scientific and Techno-
logical Research Council of Turkey, under 1515 Fron-
tier R&D Laboratories Support Program with project
no: 5169902.

ENASE 2024 - 19th International Conference on Evaluation of Novel Approaches to Software Engineering

672

REFERENCES

(2023a). Debian – The Universal Operating System.
(2023b). GitHub: Let’s build from here.
Alon, U., Zilberstein, M., Levy, O., and Yahav, E. (2019).

code2vec:learning distributed representations of code.
Proc. ACM Program. Lang., 3(POPL):40:1–40:29.

Bamler, R. and Mandt, S. (2017). Dynamic word embed-
dings. In ICML, pages 380–389. PMLR.

Bendersky, E. (2019). Github–eliben/pycparser: Complete
c99 parser in pure python.

Bilgin, Z., Ersoy, M. A., Soykan, E. U., Tomur, E., Çomak,
P., and Karaçay, L. (2020). Vulnerability prediction
from source code using machine learning. IEEE Ac-
cess, 8:150672–150684.

Black, P. E. and Black, P. E. (2018). Juliet 1.3 test suite:
Changes from 1.2. US Department of Commerce, Na-
tional Institute of Standards and Technology.

Chen, L., Ye, W., and Zhang, S. (2019). Capturing source
code semantics via tree-based convolution over api-
enhanced ast. In Proceedings of the 16th ACM Inter-
national Conference on Computing Frontiers, pages
174–182.

Duan, X., Wu, J., Ji, S., Rui, Z., Luo, T., Yang, M., and Wu,
Y. (2019). Vulsniper: Focus your attention to shoot
fine-grained vulnerabilities. In IJCAI, pages 4665–
4671.

Fang, Y., Liu, Y., Huang, C., and Liu, L. (2020). Fastembed:
Predicting vulnerability exploitation possibility based
on ensemble machine learning algorithm. Plos one,
15(2):e0228439.

Feutrill, A., Ranathunga, D., Yarom, Y., and Roughan, M.
(2018). The effect of common vulnerability scoring
system metrics on vulnerability exploit delay. In CAN-
DAR, pages 1–10. IEEE.

Halepmollası, R., Hanifi, K., Fouladi, R. F., and Tosun,
A. (2023). A comparison of source code represen-
tation methods to predict vulnerability inducing code
changes.

Hanifi, K., Fouladi, R. F., Unsalver, B. G., and Karadag, G.
(2023). Software vulnerability prediction knowledge
transferring between programming languages. arXiv
preprint arXiv:2303.06177.

Harer, J. A., Kim, L. Y., Russell, R. L., Ozdemir, O., Kosta,
L. R., Rangamani, A., Hamilton, L. H., Centeno, G. I.,
Key, J. R., Ellingwood, P. M., McConley, M. W., Op-
per, J. M., Chin, P., and Lazovich, T. (2018). Auto-
mated software vulnerability detection with machine
learning. CoRR, abs/1803.04497.

Henkel, J., Lahiri, S. K., Liblit, B., and Reps, T. W. (2018).
Code vectors: understanding programs through em-
bedded abstracted symbolic traces. In ACM Joint
Meeting on, ESEC/SIGSOFT FSE, pages 163–174.

Kanade, A., Maniatis, P., Balakrishnan, G., and Shi, K.
(2020). Learning and evaluating contextual embed-
ding of source code. In ICML, pages 5110–5121.
PMLR.

Lin, G., Wen, S., Han, Q.-L., Zhang, J., and Xiang, Y.
(2020). Software vulnerability detection using deep

neural networks: a survey. Proceedings of the IEEE,
108(10):1825–1848.

Lozoya, R. C., Baumann, A., Sabetta, A., and Bezzi, M.
(2021). Commit2vec: Learning distributed represen-
tations of code changes. SN Comput. Sci., 2(3):150.

Palit, T., Moon, J. F., Monrose, F., and Polychronakis, M.
(2021). Dynpta: Combining static and dynamic anal-
ysis for practical selective data protection. In 2021
IEEE Symposium on Security and Privacy (SP), pages
1919–1937. IEEE.

Russell, R., Kim, L., Hamilton, L., Lazovich, T., Harer,
J., Ozdemir, O., Ellingwood, P., and McConley, M.
(2018). Automated vulnerability detection in source
code using deep representation learning. In 2018 17th
IEEE international conference on machine learning
and applications (ICMLA), pages 757–762. IEEE.

Şahin, S. E., Özyedierler, E. M., and Tosun, A. (2022). Pre-
dicting vulnerability inducing function versions using
node embeddings and graph neural networks. Infor-
mation and Software Technology, page 106822.

Sane, P. (2020). Is the owasp top 10 list comprehensive
enough for writing secure code? In Proceedings of the
2020 International Conference on Big Data in Man-
agement, pages 58–61.

Schiewe, M., Curtis, J., Bushong, V., and Cerny, T.
(2022). Advancing static code analysis with language-
agnostic component identification. IEEE Access,
10:30743–30761.

Telang, R. and Wattal, S. (2007). An empirical analysis of
the impact of software vulnerability announcements
on firm stock price. IEEE Transactions on Software
engineering, 33(8):544–557.

Zhou, Y., Liu, S., Siow, J., Du, X., and Liu, Y. (2019). De-
vign: Effective vulnerability identification by learn-
ing comprehensive program semantics via graph neu-
ral networks. Advances in neural information process-
ing systems, 32.

CodeGrapher: An Image Representation Method to Enhance Software Vulnerability Prediction

673

