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Abstract: In recent years, the industry's interest in improving its production efficiency with AI algorithms has grown 
rapidly. Especially advancement in computer vision seem promising for visual quality inspection. However. 
the proper classification or detection of defects in manufactured parts based on images or recordings requires 
large amounts of annotated data, ideally containing every possible occurring defect of the manufactured part. 
Since some defects only appear rarely in production, sufficient data collection takes a lot of time and may 
lead to a waste of resources. In this work we introduce a configurable, reusable, and scalable 3D rendering 
pipeline based on a digital reality concept for generating highly realistic annotated image data. We combine 
various modelling concepts and rendering techniques and evaluate their use and practicability for industrial 
purposes by customizing our pipeline for a real-world industrial use case. The generated synthetic data is used 
in different combinations with real images to train a deep learning model for defect prediction. The results 
show that using synthetic data is a promising approach for AI-based automated quality control. 

1 INTRODUCTION 

Recent advancements in visual computing have 
revolutionized how deep learning algorithms can be 
used for industrial purposes. Especially automating 
tasks like quality control can drastically improve the 
efficacy and speed of production (J. Li et al., 2018; S. 
Li & Wang, 2022; Wang et al., 2021). However, 
introducing these kinds of models into active 
production environments comes with its own set of 
challenges.  

One of the biggest issues of deep learning for 
quality inspection in industrial environments is the 
availability of annotated training data. There are 
many different types of defects that can occur on 
machine manufactured parts that need to be classified 
to ensure proper quality of the produced good. While 
some of these defects will occur more regularly in the 
production environment, there are many others that 
will only appear on rare occasions. It is almost 
impossible to gather sufficient training data for every 
possible defect shape, without spending a 
considerable amount of time collecting and 

annotating or wasting resources by recreating known 
malformations on actual production parts.  

Another aspect is the extensive annotation 
process that is necessary to generate training datasets 
containing similar amounts of data for each defect to 
ensure class balance. Overall: the creation of a good 
training dataset, which produces satisfactory results 
when used for training deep learning algorithms, is a 
costly and time-consuming undertaking. 

A promising approach to eliminate these 
obstacles is the generation of synthetic image data 
using a digital reality concept (Dahmen et al., 2019). 
Some common methods for the creation of synthetic 
image data include generative adversarial networks 
(Goodfellow et al., 2014) or using 3D models and 
rendering techniques. Rendered annotated synthetic 
images of production parts have already been used to 
improve the performance of an algorithm for the 
semantic segmentation of defects on a gear fork 
(Gutierrez et al., 2021).  

In this paper we will further elaborate on the 
process of generating 3D rendered image data and 
develop a generalizable and scalable pipeline to 
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simplify the process. This will be demonstrated by 
using the specific use case of a diaphragm spring 
provided by the automotive supplier ZF 
Friedrichshafen AG. 

2 STATE OF THE ART 

The automatization of quality inspection tasks during 
the manufacturing process is typically done by 
analysing images of the product using computer 
vision and deep learning algorithms (Bhatt et al., 
2021). Common techniques include classification or 
localisation of defects on images from the production 
environment. This can be achieved, among other 
methods, by training Convolutional Neural Networks 
for object detection like YOLO (Redmon et al., 2016) 
or R-CNN (Ren et al., 2017) but also segmentation 
approaches such as U-NET (Ronneberger et al., 2015) 
or Mask-R-CNN (He et al., 2020). However, deep 
learning algorithms also face some major problems, 
such as lack of sufficient and diverse data and 
adaption to new and unseen environments, affecting 
the generalization performance of the model 
(Mazzetto et al., 2020). Due to the low probability of 
occurrence for some anomalies, generating a 
balanced dataset containing vast amounts of image 
data for each defect is nearly impossible (Jain et al., 
2022).  

To address these issues simulated data has been 
studied for the use of pedestrian detection (Fabbri et 
al., 2021), general object detection (Tremblay et al., 
2018), pose estimation (Chen et al., 2016) and many 
other use cases, see (Schraml, 2019) and (Mumuni et 
al., 2024) for further examples. Synthesizing image 
data with 3D modelling tools enables the creation of 
precisely controlled datasets with automatically 
generated error-free annotations (de Melo et al., 
2022). The use of photorealistic synthetic images to 
train semantic segmentation algorithms has also been 
successfully applied to the visual inspection of 
production parts (Gutierrez et al., 2021). Increased 
realism of the synthetic training images has been 
shown to have a significant impact on the 
performance of Convolutional Neural Networks, 
especially in combination with domain 
randomization. 

Domain randomization (Tobin et al., 2017) is a 
technique that randomizes specific conditions inside 
the simulation by randomizing the parameters, such 
as colour, texture, position, and orientation, during 
the data generation process. Borrego et al achieved 
significant performance improvements applying this 
technique by finetuning a model with synthetic image 

data for multi-category object detection (Borrego et 
al., 2018). 

By exposing the model to a wide variation of data 
and scenarios we aim to improve the domain adaption 
of the deep learning model and prepare it for 
unexpected situations in the manufacturing 
environment. 

The goal of domain adaption (Lee et al., 2020) is 
to reduce the gap between real and synthetic data. 
This is especially important when using different 
domains for creating the model, such as using a 
synthetic dataset for the training process and 
generalizing the model on a real dataset. The 
generation of a highly realistic synthetic dataset can 
be achieved with 3D modelling software or rendering 
solutions using physically accurate and GPU-
accelerated rendering solutions, such as Maxwell 
Render 5, which is built on the Nvidia CUDA 
computing platform (Maxwell Documentation, 2024). 

The generation of the synthetic data itself follows 
the concept of generative partial modelling, a 
technique that simplifies the analysis of complex 
systems by focusing on a specific set of features from 
the real world. In our case this set of features consists 
of the shape of the manufactured part, its location and 
rotation in the production environment, the textures 
including potential defects, as well as environmental 
properties that affect the object, like lighting or the 
camera setup. 

3 MATERIALS AND METHODS 

3.1 Digital Reality Concept 

We base our simulation pipeline on the digital reality 
concept (Dahmen et al., 2019). The idea behind this 
concept is to build parametrizable partial models 
governing geometry, textures, lighting, camera 
settings and defects among others, which can be 
combined in a modular way into a generative scenario 
describing all aspects of the object and its 
environment we want to simulate (figure 1). This 
scenario model acts as a digital twin that can be 
sampled using different parametrizations of the 
partial models to obtain an arbitrary amount of 
rendered training images with the desired properties 
for subsequent AI model training. Partial models we 
want to describe in greater detail in this section are 
the geometric model of the object's shape (section 
3.2), its surface texture model (section 3.3) and the 
defect model of possible manufacturing faults 
(section 3.4). 
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Figure 1: Digital reality concept diaphragm spring. 

For the digital twin we use techniques like texture 
and geometry parameterisation, procedural texture 
synthesis, parametric damage modelling and 
characterization, as well as deep learning for defect 
detection to evaluate the quality of the synthesised 
dataset. The following sections describe the 
development and implementation of these techniques 
based on creating a digital twin of a diaphragm spring 
provided by ZF Friedrichshafen AG. With the help of 
this production part, we design our synthetic data 
creation pipeline to be scalable and usable for 
different real-world production scenarios. 

3.2 Geometry Modelling 

The 3D model of the digital twin of the production 
environment is realized in Maxon Cinema 4D R21. 
The simulation environment is created based on 
images and information about the size and position of 
the object it contains. The position of the lighting and 
other influences that affect the component to be 
simulated are particularly important to be able to 
recreate a representation as physically accurate as 
possible. The object itself is then placed in this digital 
twin of the production environment and is properly 
 

 
Figure 2: Cinema 4D scene and viewport rendering. 

aligned based on real images. Figure 2 shows an 
exemplary placement and rendering of the diaphragm 
spring inside the Cinema 4D viewport. 

We use the Cinema 4D dynamic simulation 
feature for the correct positioning of the object to 
avoid polygon overlapping. For the simulation and 
modelling of realistic surfaces for the diaphragm 
spring, we use various texture mapping techniques as 
part of the automation process to represent complex 
and customisable materials in the synthetic 
environment. To compute these textures in a 
reproducible and automatable process, we use tools 
and algorithms available in the software Substance 
Designer 3D from Adobe. 

3.3 Defect Modelling 

The creation of realistic surface defects requires a 
precise characterisation of all damage types that could 
occur in the production. Ideally, a material scientific 
model for the defect formation and shape is available. 
In real life, this is almost never the case, so we must 
manage with images of real defects only, which again 
are often only available in a very limited quantity. For 
our use case, we use a defect catalogue provided from 
ZF Friedrichshafen AG, containing images of real 
defects from the production line, as well as several 
physical diaphragm springs to gain an understanding 
of the different defect forms. These can range from 
scratches and small indents to material inclusions or 
broken-out material. To simulate the defects on the 
surface of the virtual object, we use the displacement 
mapping technique (Cook, 1984).
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Figure 3: Structure of the Substance Designer 3D defect creation workflow, resulting defect textures and rendered examples. 

In our case, this approach starts with the defect-
free surface of a three-dimensional object and 
modifies it to add defects. An 8-bit RGB texture 
called a displacement map or height map is used for 
this purpose, which contains information about the 
displacement of the polygon mesh at every point in 
the form of a grey value in each pixel. As the actual 
polygon mesh of the object is changed during 
displacement mapping, the number of polygons may 
have to be greatly increased to create a realistic and 
detailed surface.  

This technique improves reflection effects and 
ensure that the surface deviation of defects is always 
visible, even if they are viewed from a steep angle. 
For the generation of the displacement maps we 
utilize the software Substance Designer 3D from 
Adobe, which allows us to procedurally generate 
complex surfaces and materials through a node-based 
workflow (figure 3). The individual nodes consist of 
various mathematical image operations, which are 
connected in series to model the corresponding defect 
from a basic geometric shape. The nodes were 
selected in such a way that a change of individual 
values within the image processing operation has 
comprehensible effects on the displacement maps 
created to obtain an estimate of the extent to which 
these can be changed so that as many different 
realistic variants of the modelled defect as possible 
can be created. This automation technique is based 
entirely on the procedural modification of individual 
values within the nodes. 

To simplify the automation process, a Python 
plugin for Substance Designer was developed, which 
offers simple customisation options for adapting the 
generation process to new defects or other Substance 
Designer graphs. The plugin is configured via a JSON 
file that contains information or IDs of the individual 
mathematical operations, the corresponding 

variables, and a list of possible values. Within the 
automatic process, each node configured in the JSON 
file is iterated over and the graph is recalculated for 
each value used, thus generating an arbitrary number 
of output textures. The advantage of this procedural 
process is that the resulting displacement maps are 
precisely defined by a suitably selected graph, 
duplicates can be avoided, and the result is 
correspondingly predictable. 

The resulting displacement maps for the defects 
must now be applied to the texture corresponding to 
the correct location on the diaphragm spring. This 
requires mapping the 3D mesh of the object to a 2D 
texture, which we realized within Cinema 4D´s UV 
editor.  

For the placement of the defect, we developed a 
comprehensible python workflow, executable in 
Jupyter notebooks. For this, we first need to mark all 
polygons of the 3D object, where a defect can occur. 
The script can then be used to export this selection 
into a mask and automatically scale and place the 
defect texture within the exported mask on the final 
displacement texture for the object.  

3.4 Texture Modelling 

Besides the damage modelling, we also need textures 
to control the reflections and colouring of the 
simulated object and environment, to achieve a 
realistic result. For this reason, we expanded the 
functionality of our defect generation Python plugin 
to be able to automate all kinds of texture graphs. 
Substance Designer's extensive library makes it easy 
to find suitable textures, manipulate and randomize 
them in a targeted manner. 

In case of the simulation of the diaphragm spring, 
which is made of slightly reflective steel with some 
production induced discolorations, we need two 
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components - a colour map and a normal map. The 
colour map will be used to simulate blemishes on the 
surface that do not indent the diaphragm spring itself 
in a significant way. The normal map will simulate 
deeper indents and impurities that affect the depth of 
the surface but still are not classified as defect. 
Normal mapping is a texturing technique that 
simulates the appearance of dents and bumps without 
changing the actual polygon mesh (Cignoni et al., 
1998). It uses a normal map to change the way the 
surface reflects light by storing the alignment of the 
surface normal in each pixel as a RGB value that 
corresponds directly to the x, y, and z coordinates of 
the 3D environment.  

Realistic normal maps play a key role for the 
variety of the synthetic dataset, since we use them to 
simulate imperfections on the surface which are not 
classified as a defect and should not be identified as 
such by our deep learning model. A multitude of 
different normal maps should therefore reduce the 
number of false positives detected by the model. For 
the basis of the normal map, we characterized the 
surface of numerous real diaphragm springs, as well 
as the images from the real dataset from the 
production line. This resulted in multiple different 
Substance Designer 3D graphs, each highlighting 
distinct aspects of the surface for more individual 
control. For example, small scratches that can occur 
during machining were simulated by generating 
random splines on the surface, specks of dirt by 
overlaying randomly generated grunge maps, or the 
surface composition itself by choosing different 
combinations of noise generators. 

Each of these workflows is then automated with 
the help of our Substance Designer plugin, for which 
we specify the values that can occur within individual 
nodes in a configuration file for each graph. 

For the stamped part number on the diaphragm 
spring, we utilized Cinema 4D´s bump mapping 
feature, which uses a technique similar to normal 
mapping, but is configured via grayscale values 
instead of RGB information and is available inside a 
different material channel. The bump maps were 
generated by placing random numbers along a spline 
corresponding to the location, where the stamp can 
occur on the diaphragm spring´s texture.  

Afterwards we selected some generated textures 
from each automated texture graph and inserted them 
into the Cinema 4D material for the diaphragm 
spring, to ensure that they achieve the desired effect.  

 

 
1  Maxon Cinema 4D R23 Handbook: Material Editor: 

Reflectance 

 
Figure 4: Rendered image/defect mask/object mask. 

This also helps finding the right configuration for 
the material settings, so we can finetune different 
materials for specific visual effects for later 
automation purposes. For the reflection layer of the 
material, the GGX reflection model is used together 
with the metal absorption presetting. This model is 
particularly suitable for simulating metallic surfaces1.  

3.5 Rendering Pipeline  

Finally, the components created from the previously 
developed methods are combined and assembled in 
an automatic pipeline to generate the desired 
synthetic image data of the diaphragm spring.  

We developed two approaches to automate this 
process with either Cinema 4D´s internal render 
solutions or Maxwell Render 5´s engine. Although 
these two methods overlap in their basic 
functionality, they offer different advantages and 
disadvantages when customised more precisely for 
different production parts or processes. 

Our first approach utilizes the Python API of 
Maxwell Render 5 in combination with the digital 
twin exported from Cinema4D. It is parametrized via 
a configuration file, from where all elementary 
functions of the Python automation script can be 
accessed. We chose this variable configuration 
concept for better scalability, so that new functions or 
scenarios can be implemented into our automation 
script with little effort. Furthermore, this concept 
allows us to easily run the automation script on a 
separate rendering server and profit from the GPU 
Render Engine from Maxwell Render to minimize the 
required runtime.  

The current configuration file can be divided into 
the following broad parent categories for configuring 
and randomising the simulation. It contains the paths 
to all the folder and files necessary for the simulation, 
such as texture and output directories, settings to 
configure which textures should be randomized and 
the range within the texture parameters can be 
changed, dynamic simulation parameters that affect 
the physical environment, such as object rotation and 
placement, configuration options for automatically  
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Figure 5: Flowchart of the rendering pipeline. 

generated annotations, including options for multiple 
object and defects and settings that affect the 
rendering process, such as number of renderings, 
render quality settings and additional command line 
arguments for the render engine.  

To improve the physical accuracy of the rendered 
images, the basis for a simple simulation of the 
physical properties of the environment was created. 
This means that basic rules for placing the objects in 
the scene can be defined in the configuration file in 
such a way that overlapping polygon meshes of the 
objects can be minimised or completely excluded. 
This also makes it possible to create simulations with 
multiple objects in which the objects can be randomly 
distributed in the scene.  

For each object and defect in the scene, a mask 
with the respective segmented defect or object is 
output for each rendered image (figure 4), as well as 
a text file containing information about the 
corresponding bounding box in YOLO PyTorch TXT 
format.  

The second automation approach we created 
relies purely on Cinema 4D and its internal render 
solutions. This development was initiated in order to 
have more direct customizations of the Cinema 4D 
scene or simulation itself available, as the Python 

interface of Cinema 4D offers a few more 
configuration options than that of the Maxwell 
Render engine.  

In addition, one of the Cinema 4D internal render 
engines can be used for certain components, which 
reduces the required runtime of the automatic 
rendering process in some cases. The use of the 
dynamic simulation engine opens further possibilities 
for the physically accurate placement of objects 
within a scene and can also be used in conjunction 
with the Maxwell render script, for more realistic 
lighting conditions in the final rendering. Cinema 4D 
offers far more configuration options for materials, 
making it possible to customise the finer details of the 
materials and surfaces and add specific markings or 
effects to the rendered industrial component. It is also 
possible to use other functions of Cinema 4D, such as 
the creation of animation videos or the use of various 
generators for modelling objects/scenes during the 
rendering process. The basic concept of the Cinema 
4D automation script is still very similar to the 
Maxwell script and offers, among other things, the 
same functions. The configuration is carried out via a 
config file, the Cinema 4D scene itself and the 
textures required for randomisation.  
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Figure 6: Synthetic images with different defects and 
normal maps generated by the rendering pipeline. 

As output, we receive the rendered image, a 
binary mask for each object and defect in the scene 
and a JSON file for each image. The mask(s) for the 
defect(s) are created by automatically going through 
an additional rendering pass, where all textures, 
except for the displacement map are removed, leading 
to a rendering where only the defects are illuminated. 
The mask(s) for the object(s) are generated by using 
Cinema 4D´s own multiple-render-pass function, 
which will create a mask for each specified object. 
The JSON file, contains information about rendering 
parameters, including textures used, strength of 
normal map and bump mapping, as well as the 
strength of the defect.  

For the synthetic dataset, which is used for 
supplementing the real dataset, we generated images 
with the same configuration, but a different lighting 
environment and processed them with the help of 
another script to simulate the image process that is 
already used in the real production. Figure 6 
showcases some rendered image examples of the 
diaphragm spring with different automatically 
generated defects and normal maps from the resulting 
synthetic dataset.  

3.6 Automated Defect Detection 

There are many deep learning architectures suitable 
for detecting defects. Due to the precise information 
on the position of the defects, which is simulated and 
annotated with the help of the synthetic data, it was 
decided to localise the defects to simplify subsequent 
manual quality checks of the predictions.  
Object detection algorithms such as YOLO (Redmon 
et al., 2016) or R-CNN (Ren et al., 2017), but also 
segmentation approaches such as U-NET 
(Ronneberger et al., 2015) or Mask-R-CNN (He et al., 
2020) are suitable for such purposes. 

With respect to the fact that the synthetic data can 
later be used to supplement real data from the 
production, the creation of the model for the pipeline 
was based on the conditions of the production 
environment and existing real image data from this 
environment. For this purpose, we were provided a 
real image data set with images from the current 
production as well as a defect catalogue containing 
information on which surface anomalies have already 
been classified as defects on the diaphragm springs. 

The real images were manually annotated using 
the defect catalogues by marking each defect with a 
bounding box, so that the resulting real dataset can be 
used to train deep learning models for object 
detection. This dataset is used to train a baseline 
model, which was exclusively trained with real data 
from the production, as well as to evaluate the models 
that were trained with the synthetic dataset and to 
create a supplemented dataset containing real-world 
and synthetic data.  

To conduct initial tests, the deep learning model 
"YOLOv8" from Ultralytics (Jocher et al., 2023) was 
used. We chose this model for its low hardware 
resource consumption for inference, its fast inference 
rate and easy-to-use configuration options. We expect 
that Mask-R-CNN or U-NET models will perform 
comparably on the data set. Note that the focus of this 
paper is the simulation pipeline and not an optimized 
defect detection model, therefore we show only first 
results on the impact of adding synthetic data.  
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Figure 7: Defect detection Real + Synthetic V2: Ground Truth (left) / Prediction with Confidence (right). 

The real image dataset from production used for 
training consisted of a total of 231 images, 105 of 
which were used for validation. A total of 300 images 
were generated for the basic synthetic dataset, of 
which 100 were without defects, 75 with multiple 
defects and 125 with single defects. The second 
version of the synthetic dataset was further 
supplemented with 100 more single defect images 
and 100 more images with multiple defects. 

To assess the quality of the synthetic data in 
comparison to the real-world data, the models were 
trained with different datasets, and each evaluated 
with the same validation data set consisting of 105 
real-world images. The first model "Real" was trained 
exclusively with real images from production, 
"Synthetic v2" only with synthetic image data and for 
the model "Real + Synthetic v1" and "Real + 
Synthetic v2" these two training data sets were 
combined.  

All models were trained for 200 epochs, with an 
image size of 1408x1408 pixels, a batch size of 32 
and the SGD Optimiser (learning rate initial: 0.1, 
learning rate final: 0.01). Since the defects were quite 
small on the real production images, it was necessary 
to use such a high image resolution for the training 
process. For the evaluation of the resulting models, 
we used the metrics Mean Average Precision at an 
Intersection of Union threshold of 0.5, Precision and 
Recall.  

Based on the results in Table 1 it can be observed 
that supplementing the real data set with the synthetic 
image data in the "Real + Synthetic v1" model 
improves the precision, while in "Real + Synthetic 
v2" all of the three evaluation metrics improved 
compared to the "Real" model. This improvement is 
important when it comes to real production use of 
such a model.  

 

Table 1: Evaluation metrics of the training. 

Dataset mAP Precision Recall 

Real 0.672 0.703 0.655 

Synthetic v1 0.207 0.268 0.306 

Synthetic v2 0.343 0.428 0.575 

Real + 
Synthetic v1 0.751 0.885 0.616 

Real + 
Synthetic v2 0.785 0.911 0.658 

To properly implement the model in an active 
environment, we will still need to evaluate on more 
real-world data and generate suitable and especially 
more synthetic image data. Although the mAP of the 
“Synthetic v2” model which was exclusively trained 
on synthetic data is significantly lower, when 
compared to the “Real” model, it also shows that the 
synthetic data is quite close to the real data, since the 
model can detect defects on the real data to some 
degree. This also indicates that we can use synthetic 
data to train a model to recognize defects it has never 
seen before on real data. Note that these tests were 
performed with the goal of assessing the impact of 
using synthetic data and not of fine-tuning the model 
for peak performance. Additional hyperparameter 
optimization is expected to improve the metrics 
further. Increasing the amount of synthetic data 
further will also bring additional improvements. 

4 CONCLUSION & OUTLOOK 

In this work we presented a digital reality pipeline to 
create synthetic image data that can be applied to 
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visual quality inspection. We demonstrated that our 
approach can be used to train deep learning models 
and improve the performance of models when used in 
combination with real data.  

The digital reality pipeline is designed for low 
manual configuration effort allowing for a quick, 
affordable, and thus broad use in industry. We have 
analysed numerous processes and previous 
developments in this area, adapted and improved 
them, and combined these methods in a toolbox to 
enable easy implementation for different production 
parts. The main advantage of our approach compared 
to other simulation tools lies in the implementation of 
the modular digital reality concept. The next step is to 
conduct a comprehensive study with different types 
of objects and more synthetic data in combination 
with fine-tuning the object detection models to 
elaborate on the preliminary results described in 
section 3.6. Furthermore, the processes for synthetic 
data generation and defect detection described in the 
previous sections are suitable for integration as an 
automated visual quality control system into an active 
production environment. This requires a continuous 
process to allow the defect detection model to be 
improved or enriched with new data. An example of 
this would be training with a new defect type that only 
occurred on the object after the model has been 
deployed. The digital reality concept of using partial 
models reduces the workload of integrating this new 
defect type to parameterising the defect model 
accordingly and finetuning the deep learning model 
with the newly generated data. In the future, we aim 
to further evaluate the pipeline with additional use 
cases and an integration study in a real production 
environment.  
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