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Abstract: This paper describes tools to detect and estimate demand shifts for platelet products, through inventory 
monitoring, following the implementation of pathogen reduction (PR) technology at a pilot site in the 
Canadian Blood Services (CBS) network. A Statistical Process Control (SPC) framework was constructed to 
detect change points in inventory signals. A discrete event simulation is used to generate synthetic data for 
the inventory monitoring process. Both traditional forecasting and machine learning techniques were used to 
increase sensitivity to change detection and reduce time to detection by supplying the SPC algorithm with 
projected data. Experiments were run on data representative of changes in demand experienced at the pilot 
production site. It was found that larger shifts in demand had a higher probability of detection and a lower 
time to detection. Changes in demand, with an effect on the system larger than 10%, were almost always 
detected. Detection time varies greatly depending on the level of the demand shift. Typically, shifts greater 
than 25% have an average detection time of just over a week while shifts of less than 5% have an average 
detection time of up to 25 weeks.  

1 INTRODUCTION 

In all Canadian provinces, excepting Quebec, 
Canadian Blood Services is the sole agency 
responsible for managing the blood supply chain. 
CBS collects, produces, and distributes blood 
products to over 400 hospitals. Before being released 
for transfusion, products must be tested for the 
presence of transmissible diseases and/or bacterial 
contamination.  

In this paper we consider two blood products, 
pooled and apheresis platelets, following the 
introduction of technology to reduce bacterial 
contamination. In Canada, a unit of pooled platelets 
is a combination of buffy coat platelets derived from 
five different donors, all of whom have the same 
blood type. Apheresis platelets are collected from a 
single donor. A single component is removed, while 
the remaining components are returned to the donor. 
Because platelets must be held at 37oC for maximum 
clinical efficacy, bacterial contamination, though 
rare, is possible.  Thus, all platelet products, in 
Canada and elsewhere, have a regulated shelf-life.  At 
the start of this study, platelets had a maximum shelf-
life of 7 days.  

At that time, platelet units in Canada were tested 
for bacterial contamination, using the BAC-T Alert® 
system, a non-destructive testing system that rapidly 
incubates an aliquot from production units. The risk 
of transfusing a bacterial contaminated unit was 
estimated at less than 1 in 1,000 with this technology. 
However, CBS introduced Pathogen Reduction 
Technology (PRT) for pooled platelet processing to 
reduce further the chance of transfusion related 
infections. PRT functions by combining a blood 
product with a light sensitive compound and exposing 
the mixture to ultraviolet light. The process causes 
mis-links in the DNA of pathogens in the blood 
product, preventing the organism from reproducing 
and effectively sterilizing the product (Estcourt et al., 
2018). 

While there are significant benefits to PRT 
treatment, it is known that treated units have a lower 
platelet count than untreated units (Estcourt, et al., 
2017). Thus, there was potential that an increased 
number of units used would be required to achieve the 
same dose-response in patients who might have 
otherwise been transfused with non-PRT platelets.  
Additionally, there was uncertainty regarding the 
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preference for a pathogen reduced platelet product 
amongst prescribing physicians. 
1.1 Objective 

This study provides a method for evaluating tools to 
detect and estimate demand shifts for platelet 
products following the implementation of PR 
technology at a pilot site in the CBS network.  

2 LITERATURE REVIEW 

Research on platelet management typically focuses 
on reducing waste and shortage. Often, this involves 
the selection of an appropriate platelet ordering policy 
and/or managing demand. Research in demand 
analysis can be categorized by method, including 
forecasting, simulation, and integrated Operations 
Research (OR) methods.  

2.1 Forecasting Research  

Forecasting methods improve inventory metrics by 
predicting demand. Forecasting methods have been 
used throughout the history of research on blood 
product inventory management, but recently there has 
been interest in forecasting as an application for 
machine learning methods. 

Silva Filho (2012) used an ARIMA model to 
forecast demand across regional supply chain. A tool 
was created that could be used by managers in 
different regional blood centres. Lestari  (Lestari, 
Anwar, Nugraha, & Azwar, 2017) used 
autoregressive methods to predict demand for 
different blood products, but found that a simple 
moving average performed best.   

Khaldi (2017) applied Artificial Neural Networks 
(ANN) to forecast demand for products at a regional 
blood centre level. ARIMA models were used as a 
benchmark. The performance of the ANN models 
was found to far exceed that of the ARIMA models. 
However, ARIMA models produced results that were 
more interpretable for managers. 

Shih (2019) compared time-series methods to 
machine learning. ARIMA, Exponential Smoothing 
Models, and Holt-Winters were compared with 
ANNs and Multiple Regression. Shih found that the 
time-series methods performed similarly, while 
Multiple Regression outperformed the Artificial 
Neural Network. When the time-series methods were 
compared to machine learning, the results were 
inconclusive, with different time series models and 
regressions performing better on some data sets.  

2.2 Simulation Methods 

Simulation is amongst the most popular technique for 
modelling and evaluating blood product inventory.   

Atkinson (2012) used a hospital simulation to 
determine trade offs between cost and transfusion 
efficacy when demand is close to, or greater than, 
supply.  

Asllani (2014) designed a decision support system 
which simulated the collections and demand for 
apheresis platelets in a regional blood centre. It was 
found that collecting fewer A+ apheresis platelets, 
and not collecting on weekends reduced waste by 7%.  

Blake (2017) examined the inventory impact of 
increasing the shelf-life of platelets. Different 
ordering polices were required to reduce waste for 
each of the values of shelf-life, but significant 
improvements were found for all cases.   

2.3 OR Methods 

In addition to forecasting and simulation, several 
works related to platelet inventory management using 
techniques such as stochastic dynamic programming 
(SDP), approximate dynamic programming (ADP), 
and integer stochastic programming (ISP) can be 
found in the literature. 

Haijema (2007) created a Markov decision 
process formulation for platelet ordering policies at 
the regional level. A simulation approach was used to 
search for the single best ordering policy. It was 
found that the simulation provided near optimal 
results in both the downsized and full-scale problems. 
Civelek (2015) follows much the same structure as 
Haijema (2007) and Van Dijk (2009) with the 
addition of a critical level protection policy. 

Abdulwahab (2014) used both linear 
programming and approximate dynamic 
programming to develop a model of a single hospital 
and blood bank. The approach was able to find an 
optimal solution without downsizing. Similarly, 
Gunpinar (2015) used a stochastic integer 
programming model to model hospital level 
inventory to find an optimal solution.   

Guan (2017) analyzed factors in platelet usage at 
the hospital level to determine factors influencing 
demand. These included units transfused in the 
previous days/weeks, census data, and complete 
blood count for inpatients.  

2.4 Research Summary  

Previous work on blood product inventory 
management has focussed on decision support with 
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the goal of reducing waste and shortage. Inventory 
monitoring is an important component of these 
models. However, it is performed with the 
assumption that the properties of demand do not have 
change points. Thus, there is a significant gap in the 
research on inventory monitoring itself, and the 
transient component of changes in the blood supply 
chain. 

3 METHOD 

In this study we employ Statistical Process Control 
(SPC) to monitor inventory at a CBS production 
centre following a change in product. A discrete event 
simulation is used to generate synthetic data for the 
inventory monitoring process, since data 
representative of possible demand changes did not 
exist. Forecasting methods, using both traditional and 
machine learning techniques, are employed to 
increase sensitivity to change detection and reduce 
time to detection by supplying expected future data 
points. 

3.1 Control Charts  

Standard control charting, was used to compare the 
values of points in a series, ordered by time, against 
established process properties.  

In the problem case, both pooled and apheresis 
platelets are available to satisfy patient requirements.  
Apheresis units, which are more expensive than 
pooled platelets, are reserved for 
immunocompromised patients.  Apheresis platelets 
may be substituted for pooled platelets, but pooled 
platelets are not substituted for apheresis demand.  
This complicates the problem, since pooled and 
apheresis platelets may be affected differently by 
changes in demand, and some changes will present 
more in one product than the other. To account for 
this, both the pooled and apheresis inventory streams 
were monitored in this project.  

3.2 Data Generation 

Since PRT platelets are a new product, no suitable 
data existed to evaluate change point detection 
methods.  Thus, a discrete-event simulation was built 
to create inventory data representative of changes in 
demand. The simulation is comprised of three top-
level components: collections, inventory, and 
demand. The relationships between the system 
elements are illustrated in Figure 1. Collections are 
created daily, according to a Poisson distribution, and 

placed in inventory. The shelf-life of collected units 
on arrival to inventory is decreased by some number 
of days to simulate the time required for production 
and testing processes. Demand is created daily, and 
inventory is allocated to fill it. Remaining inventory 
is aged one day or, if it has no remaining shelf-life, 
outdated. The process then repeats for some number 
of days. 

 
Figure 1: Inventory simulation framework.  The simulation 
generates artificial data for the change point detection 
algorithm. 

The simulation allocates inventory to fill demand 
using a matching heuristic based on the steps taken by 
CBS decision-makers when filling orders: 

1. Exactly match apheresis inventory with 
apheresis demand, with priority given to units 
with lowest remaining shelf-life. 

2. If there is unsatisfied demand for a specific 
apheresis unit, substitute a compatible apheresis 
unit, with priority given to units with the lowest 
remaining shelf-life. 

3. Check the shelf-life of apheresis inventory.  If 
there are any with a remaining shelf-life of 0 
days, use them to fill compatible orders for 
pooled platelets. 

4. Exactly match pooled inventory with pooled 
demand, with priority given to units with lowest 
remaining shelf-life. 

5. If there is unsatisfied demand for pooled 
platelets which cannot be exactly matched, 
substitute a compatible pooled unit with priority 
given to units with the least remaining shelf-life. 

Inventory is monitored continuously in the simulation 
and a feedback controller is included to maintain a 
stable inventory level. The controller reviews recent 
collections, including those in inventory, but not 
released for shipment, and determines the probability 
they will meet demand over a short planning horizon. 
If the probability is sufficiently low, collections are 
increased in the following weeks. There is, however, 
a limit to the effort the controller can exert, 
representing the level of adaptability of the system.  
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3.3 Enhancing Change Point Detection 
with Local Forecasting 

The time required to detect changes in a time series is 
constrained by the rate of acquisition of new data. In 
this study, data is collected daily, but analyzed 
weekly to reduce noise due to day-to-day variation. 
To increase the speed and quality of detection, 
forecasting was used to supply the change point 
detection algorithm with additional (anticipated) data 
points. Linear Regression, ARIMA, Local 
Regression, Generalized Additive Models (GAM), 
and Random Forest methods were all evaluated. 

4 DATA 

The data used to populate the simulation comes from 
a sample from a CBS production site for the 2019 
calendar year. Summary statistics for platelet 
inventory are shown below in Table 1.  

Table 1: Daily inventory summary for the study region. 

Blood 
Type 

Product 
Type 

Mean Daily 
Inventory, 

units 

Daily 
Inventory 

Stand. Dev, 
units 

A+ Pooled 56.99 16.02 
A- Pooled 4.98 3.28 
B+ Pooled 11.14 4.80 
B- Pooled 0.28 0.55 

AB+ Pooled 0.64 1.37 
AB- Pooled 0.00 0.00 
O+ Pooled 60.63 20.10 
O- Pooled 13.11 7.19 
A+ Apheresis 13.00 5.51 
A- Apheresis 2.88 2.31 
B+ Apheresis 3.64 2.57 
B- Apheresis 0.189 0.56 

AB+ Apheresis 1.82 1.67 
AB- Apheresis 0.14 0.49 
O+ Apheresis 15.00 6.32 
O- Apheresis 1.03 1.08 

 
Table 2 below displays the inventory summary for 
pooled and apheresis platelets. 

Table 2: Daily inventory distribution. 

Property Pooled 
Inventory 

Apheresis 
Inventory 

Mean 147.8 37.7 
Standard Deviation 28.4 9.2 

5 EXPERIMENTS 

5.1 Validation 

The simulation model was validated by comparing 
simulation output to the parameters of the input data. 
The daily inventory was extracted from the input data. 
Daily inventory data was collected from the 
simulation by using a long-term run of 10,000 days. 
Results suggested that the simulation was able to 
represent, adequately, the system under study. 
(Results excluded for brevity.) 

5.2 Synthetic Data 

Two sets of data are generated by the simulation in 
this study. The first evaluates the false positive 
component of the detection accuracy metric, by 
creating data with the same statistical properties as 
the 2019 data.  

The second set of evaluation data assesses the 
false negative component of the detection accuracy 
metric and the time to detection metric.  

Changes in demand can be described by level, 
type of function, and the probability they will assume 
a value at a given time. See Table 3.  

Table 3: Demand shift parameters.  

F(t) Magnitude 
step deterministic 

linear stochastic 
 

Example changes in demand are depicted below 
in Figure 2. Note that linear changes in demand are 
implemented as a regular increase across a time 
period of four weeks. 

 
Figure 2: Examples of different possible changes in 
demand. 

There are several ways in which demand may be 
affected by the introduction of PRT platelets, and 
while not all of them are necessarily equally likely, 
access to simulation makes testing worthwhile. As a 
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result of PRT platelets replacing BAC-T bacterial 
contamination detection there may be: 

• An increase in pooled demand 
• An increase in apheresis demand 
• A transition of demand from pooled to 

apheresis 

5.3 Evaluation of Forecasting Methods 

As noted, local forecasting was used to improve the 
time to detection of a change by supplying the 
detection algorithm with assumed future data points.  
Forecasting methods, listed below, were tested on the 
base model data to determine their effect of the 
change point detection.  

Table 4: Forecasting method performance and impact on 
false detection rate. 

Method Base Case 
MAPE, % 

RMSE, units 
of platelets 

Base Case 
False 

Detection 
Rate, % 

No Forecasting -- -- 3.20 

ARIMA 13.14 16.85 3.50 

Linear Regression 15.45 20.00 6.50 

GAM – Local 
Regression 16.64 21.90 31.50 

GAM - Splines 14.35 18.57 4.90 

Two forecasting accuracy metrics were used to 
evaluate forecasting accuracy, along with false 
detection rate: Mean Absolute Percentage Error 
(MAPE) and Root Mean Squared Error (RMSE). 

As can be seen in Table 4 the ARIMA model was 
found to perform best according to the forecasting 
accuracy metrics. Accordingly, for the case study, 
ARIMA methods were used to supply the change 
detection algorithm with additional data points. 

5.4 Changes in Shelf-Life 

After the implementation of PRT platelets, the 
regulatory shelf-life of pooled platelets was reduced 
from 7 days to 5 days for the period of time 
considered in the case study.  To account for the 
change in approved shelf-life of PRT platelets the 
shelf-life of pooled platelets was decreased by two 
days in the simulation; apheresis platelets, which 
were not pathogen reduced, continued to have a 7-day 
shelf-life.  Readers should note that subsequent to this 
study, the regulatory shelf-life of PRT platelets in 
Canada was extended to 7 days. 

5.5 Overview of Experiments 

Change point detection experiments in this study 
were divided into 3 categories: single factor, two 
factor, and 2k factorial. The first category, single 
factor experiments, were used to investigate the effect 
of a single type of demand change on inventory. Two 
factor experiments follow the same structure but with 
two types of demand change present. Finally, the 2k 

factorial experiments examine interaction among 
demand change factors.  

6 RESULTS 

6.1 Single Factor Experiments 

To evaluate the performance of detection methods 
experiments were conducted on data with only a 
single factor change. An example is shown below in 
Figure 3 and Figure 4. 

 

 
Figure 3: Change in demand and its effect on likelihood of 
detection. 

Figure 3 depicts the percentage of detections 
when the level of increase in pooled demand is 
changed in a deterministic step. These results indicate 
that the chance of signal detection converges to 100% 
when demand increases exceed 10%. The grey 
shadow in the figure represents the confidence 
interval for detection. 

Figure 4 shows the mean time to detection for the 
same single factor experiment. The mean time to 
detection decreases as the level of increase in pooled 
demand increases. The mean time to detection for a 
2% increase is 23 weeks, while the mean time to 
detection for a 20% increase is 6 weeks.  
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Figure 4: Change in demand and its effect on the time 
required to detect the change. 

Two Factor Experiments: 
A concern for the blood supplier was that an increase 
in the demand for pathogen-reduced pooled platelets, 
to make up for the lower per unit yield, might be 
accompanied by a migration of demand to apheresis 
platelets. Thus, a set of experiments was performed to 
examine the performance of detection methods to 
demand changes exhibiting these patterns.   

The detection rates for these experiments are 
found in Figure 5. These results represent a step 
change in both pooled demand and shift to apheresis 
units. The contours indicate that the detection rate 
converges to 100% for demand shifts between 10% 
and 15%. It can also be observed that the effect of a 
migration from pooled to apheresis is detected, at 
lower levels, more often than the effect of an increase 
in demand for pooled platelets is detected.  

 
Figure 5: Contour plot of detection rate for change in pooled 
demand accompanied by a shift from pooled to apheresis 
units. 

The mean time to detection for the multiple 
demand shift experiment is displayed in Figure 6. 
While there are anomalies, the mean time to detection 
generally decreases as the magnitude of the demand 
shift increases. These results are similar to, but less 
favourable than, those detected during the single 
factor experiments.  

 
Figure 6: Contour plot of detection time for Contour plot of 
detection rate for change in pooled demand accompanied 
by a shift from pooled to apheresis units. 

6.2 Multifactor Experiments 

To ascertain the effect of different demand shift 
parameters on performance, and the interaction of 
factors, the change point detection algorithm was 
applied to data with multiple demand factors under 
the assumption of a 25-factorial experiment. See 
Table 5.  

Table 5: Factor descriptions for 2k experiments. 

Factor 
1 2 3 4 5 

An 
increase 

in 
pooled 
demand 

An 
increase 

in 
apheresis 
demand 

Transfer 
of pooled 
demand 

to 
apheresis 

Step 
increase 
or linear 
increase 

Deterministic 
or stochastic 

 
The results of these experiments are displayed in 

Figure 7 and Figure 8. Patterns are evident when 
evaluating interactions of Factors 1-3 with Factors 4 
(step vs. linear increase) and 5 (deterministic vs. 
stochastic step). In Figure 7, the red line indicates the 
mean percentage detections across experiments in 
that group. The chart shows that a linear change, as 
opposed to a step change, has a small negative effect 
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on both the probability of detection and time to 
detection. Interestingly, a stochastic change in 
demand is both more likely to be detected and is 
detected more quickly than a deterministic change. 
This may be because variance in an increasing 
demand trend leads to more extreme values in 
inventory that trigger detection rules in the SPC 
method. 

 

 
Figure 7: Detection rate for experiments factors 4 & 5: Step 
vs. linear change and stochastic vs. deterministic change. 

 
Figure 8: Mean time to detection for factorial level 
experiments grouped using factors 4 & 5 Step vs. linear 
change and stochastic vs. deterministic change. 

The effect of a change in each factor on the results 
of the 25 factorial experiments are shown in Table 6. 
These indicate that the presence of all factors, except 
a linear change in demand (Factor 4), increase the 
detection rate and decrease time to detection. Factor 
3, a shift of pooled demand to apheresis, has a 
significantly larger effect on detection time than the 
other factors. Since apheresis platelets make up only 

32% of inventory, a small shift of demand from 
pooled has a large effect on apheresis inventory.  

Table 6: The effect of 2k experiment factors on detection 
rate and time to detection. 

Factor Effect on 
Detection 
Rate, % 

Effect on 
Detection 

Time, Weeks 
1 - Pooled 
demand 
increase 

10.25 -3.54 

2 – Apheresis 
demand 
increase 

12.13 -4.80 

3 – Pooled 
demand to 
apheresis 

12.625 -8.19 

4 – Step vs. 
linear change 

-0.625 1.19 

5 – Stochastic 
vs. deterministic 

4.375 -1.64 

 
Evaluation of interaction effects proved that 

presence of more than one type of increase generally 
increases detection metrics. However, the presence of 
a transfer of demand from pooled platelets to 
apheresis platelets was found to have a small negative 
impact on detection performance. Interaction terms 
above 2nd order were found to be insignificant.   

6.3 Summary 

Simulation results, shown in Table 7 give an 
overview of estimated performance at different 
demand shift levels. 

Table 7: Summary of detection performance. 

Change to 
System, % 

Mean 
Detection 
Rate, % 

Mean 
Detection 

Time, Weeks 

Detection 
Time CI, 
Weeks 

1 to 5 72.8 25.12 14.43, 35.81 
6 to 10 91.3 15.20 9.86, 20.54 
11 to 15 98.4 8.83 5.19, 12.47 
16 to 20 100.0 4.25 3.34, 5.16 
21 to 25 100.0 1.38 1.26, 1.50 
26 to 30 100.0 1.05 1.00, 1.10 

 
Changes up to 5% change have a mean time to 

detection of 25 weeks, while changes above 25% 
have a mean time to detection of just over 1 week. 
The overall detection rate converges to 100% when 
the magnitude of change exceeds 10%.  
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7 CONCLUSION 

Standard SPC is effective in detecting shifts in 
platelet demand. Results show that the key 
performance metrics of detection rate and detection 
time improve as the magnitude of the shift increases. 

Forecast models were developed from established 
families of forecasting methods to supplement the 
SPC method. The models were evaluated using 
historical data, base case runs of the inventory 
simulation, as well as data representative of demand 
shifts. The best performing method, ARIMA, was 
incorporated into the SPC analysis to increase the 
speed of data acquisition by providing additional data 
points for the algorithm. Our model did not suggest 
better performance using machine learning for 
forecasting. 

Changes in demand, with an effect on the system 
larger than 10%, were always detected in our study. 
Detection time varies greatly depending on the level 
of the demand shift. Typically, shifts greater than 
25% have an average detection time of just over a 
week while shifts of less than 5% have an average 
detection time of 25 weeks. 

The results of this paper were used by the blood 
agency to set parameters for monitoring the roll out 
of PRT platelets in Canada, supplementing their 
existing SPC methods. 
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