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Abstract: The proliferation of applications across mobile devices coupled with fast mobile broadband have led to ex-
pectations of better application performance, user experiences, and extended device battery life. To address
this, we propose a dynamic computational offloading solution that migrates critical application tasks to re-
mote compute sites within mobile networks. Offloading is particularly advantageous for lightweight devices,
as it enables access to more capable processing hardware. Application developers can also leverage the of-
floading service to customize features, address privacy concerns, and optimize performance based on user
requirements. Moreover, the solution facilitates local synchronization among collaborating users. Our so-
lution focuses on ad-hoc deployment and dynamic scheduling of fine-grained application tasks triggered by
changes in device metrics, without extensive development efforts. It extends application functionality from
mobile devices to remote compute environments, complementing the cloud-to-edge paradigm. We introduce
a distributed execution framework based on portable, lightweight, and secure WebAssembly runtimes. Ad-
ditionally, we present a programming model to simplify ad-hoc deployment and dynamic invocation of task
modules during runtime. We demonstrate the benefits of our solution, showing significant performance im-
provements of the application, and reduced energy consumption and heat generation on the mobile device.

1 INTRODUCTION

With the advent of a global app economy, most users
have a large variety of applications running on mo-
bile phones and increasingly also on other types of
user equipment like XR headsets, cars, or drones, all
connected via cellular networks. Many of these con-
nected, mobile devices offer limited computational
capabilities and/or energy capacity to run certain ap-
plications with high quality of experience for more
than a limited time. Computational Offloading is
a subset of the distributed computing paradigm that
concerns the ability to migrate a component of a run-
ning application from a mobile User-Equipment (UE)
to a remote offloading site. The end-user of an ap-
plication would benefit from the service’s automated
capabilities to balance compute and energy tradeoffs
between the UE and the offloading site. Executing

∗has been with Ericsson when writing this paper.

certain critical parts of an application in an external
compute infrastructure can increase the application’s
quality of experience by giving offloaded tasks remote
access to domain specific hardware accelerators such
as GPUs. At the same time, offloading can prolong
battery life by decreasing the UE’s power utilization
and device heat. For very lightweight devices (e.g.,
head-mounted devices, IoT sensors), this might ac-
tually be the only option to offer richer application
experience. Application developers can also leverage
an offloading service to customize features, address
privacy concerns, and optimize performance based on
user requirements and contextual factors.

The core idea behind the dynamic computational
offloading solution described in this paper is to ex-
pand application functionality from connected user
equipment to a remote compute environment, e.g., lo-
cated within the cellular network. This differs from
typical edge computing solutions, which target the
edge from the opposite direction, i.e., moving applica-
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tion functionality traditionally running in the cloud to
edge or on-premises compute facilities using largely
static, pre-deployed application servers targeting ver-
tical use-cases with big groups of users. In contrast,
our solution aims at dynamic offload and deploy-
ment of highly granular application tasks, triggered
by the application based on situational changes such
as changes in the device (e.g., battery levels), network
(e.g. radio quality) or application needs. This implies
that this solution is use-case agnostic, offering sand-
boxed remote computational resources to any applica-
tion on an UE, able to execute ad-hoc deployed appli-
cation tasks, invoked dynamically essentially anytime
and anywhere. We believe that such a solution has
the potential to target even the long tail of regional
enterprises and developers that usually would not en-
gage in the heavy burdens of deployment, manage-
ment, and contract handling related to edge solutions
like MEC (ESTI, 2023). In this paper we evaluate
such a solution based upon two novel features:

• A distributed execution framework that takes ad-
vantage of the light weight and portability of stan-
dalone WebAssembly (Wasm) runtimes

• A programming model and associated develop-
ment toolchain that abstracts away the complex-
ities of communication between a device applica-
tion and an offloaded component

This paper is structured as follows: Section 2 de-
scribes the requirements and design of our proposed
offloading solution. Section 3 describes the demo
setup and proof-of-concept (PoC) implementation of
the solution concept. In Section 4 we present and dis-
cuss our measurement results, showing when offload-
ing is beneficial for the application or the mobile de-
vice. Section 5 summarizes and relates current state
of the art. Finally, Section 6 concludes the paper and
points out next steps towards our vision of dynamic
computational offloading as a network service.

2 SYSTEM DESIGN

This section describes details about the design of our
proposed offloading framework, including require-
ments, the basic system architecture, the proposed
programming model and development toolchain for
optimal usage of the offloading framework, as well as
crucial security considerations.

2.1 Requirements

In order to design a dynamic computational offload-
ing solution according to our vision and idea, we state

Figure 1: System architecture with communication inter-
faces (control plane in solid, user-plane in dashed lines).

the following qualitative requirements:

• Platform independent, to allow an offloaded task
to execute on a variety of different hardware ar-
chitecture and operating system combinations.

• Lightweight so that the framework does not im-
pose an excessive overhead and negatively affect
offloaded component load time.

• Low footprint so that the framework size is mini-
mized compared to the offloaded component.

• Secure, providing isolation between tenants and
between tenants and infrastructure.

• Language independent and open, allowing devel-
oper flexibility and extensibility.

As a result of these requirements, we selected stan-
dalone WebAssembly (Wasm) runtimes as the basic
execution environment in our solution. While it is
relatively immature compared to more conventional
portable bytecode formats such as Java, or to more
heavyweight distributed computing runtime platforms
such as containers or virtual machines, we believe that
Wasm is a promising technology for scenarios that re-
quire portable and secure runtimes.

2.2 System Architecture

Based on our objectives and requirements, we derived
a system architecture for an offloading service frame-
work as depicted in Figure 1. It has two major com-
munication interfaces, one for the control plane and
one for the user plane of the offloading service.

The service control plane is split into two parts:
(i) User-Equipment (UE) side and (ii) remote offload-
ing cluster side. The latter consists of functionality to
manage offload requests and a collection of resources
handling and executing offloaded modules. For the
application developer and the application running in
the UE, the framework manifests as:
A Notifier is a local helper functionality which gath-
ers device metrics and exposes them via an API to the
running application.
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An Offload Handler is responsible for handling the
interaction with the application, discovering the clos-
est offloading cluster, requesting and negotiating an
offload of a specified application module1, assem-
bling and packaging all meta-data together with the
module itself necessary to offload to the cluster, and
handshaking the migration of the module with its cor-
responding part on an allocated host in an edge clus-
ter. It also maintains a list of all offloaded modules
and their corresponding applications as well as a ref-
erence to the offloading hosts. The application com-
municates with the UE Offload Handler using an API
which is implemented as a programming language
specific library and contains functions to request and
recall an offload, select an offloading host from an of-
fload resource offer, and synchronize the migration of
a module’s local state.

An offloading cluster instance handles and offers
remote compute to UEs and has two main functional
parts, depicted in Figure 1: (i) management of offload
requests, mapping them to hosts (workers) based on
resource requirements; and (ii) the set of hosts where
each host synchronizes the code migration as well as
executing the offloaded module. The remote compute
part of the control plane consists of the following:
An Offload Manager acts as the first remote point of
contact for the Offload Handler of an UE that wishes
to offload. It coordinates activities such as authenti-
cation, authorization, resource management, etc. for
each request.
A Resource Manager is responsible for the allocated
resources (i.e., hosts) assigned to the offloading clus-
ter. It selects a (virtual) host with capabilities that
match the requested requirements as specified in an
offload request for a module.
A Remote Offload Handler is responsible for syn-
chronizing an offloading event with its counterpart in
the UE, including replication of the runtime execu-
tion environment for the offloaded module as well as
re-establishing the internal and external flows. Each
(virtual) host will have its own Remote Offload Han-
dler instance.
An Execution handler is responsible to execute the
offloaded task. We base the execution of tasks on
Wasm2, an instruction format designed to be executed
on a memory safe and sandboxed stack-based vir-
tual machine (Haas et al., 2017). An application run-
ning on a host machine embeds a WebAssembly run-
time, allowing it to load Wasm modules and call ex-
ported functions contained within the module, known
as guest functions. Though sandboxed, the Wasm

1A module is part of the app possible to be offloaded,
including single functions, tasks, or the whole application

2https://webassembly.org

module can optionally access host machine function-
ality either through the standardized WASI system in-
terface3or through non-standard host function calls to
host resources like networking, databases, or access
to HW accelerators. The offloading framework ex-
ecution handler acts as the remote application and
is extendable through the use of both common and
developer-supplied host functions, which provides a
lightweight programmatic method of providing addi-
tional capabilities to the offloaded module. For com-
munication, the execution handler exposes a REST-
ful API to the Remote Offload Handler that allows
for the invocation of Wasm modules and the calling
of exposed Wasm functions. It also exposes an ab-
stracted interface to the Wasm runtime, allowing var-
ious implementations such as Wasmedge4 or Wasm-
time5 to be selected at runtime depending on appli-
cation requirements. Once instantiated, the offloaded
module communicates with the parent application di-
rectly rather than through the service framework.

2.3 Programming Model

One of the ambitions of this service is to hide the
distributed nature of an application with offloadable
components from the developer. The programming
models for offloading should therefore guide a de-
veloper in the task of dividing the application func-
tionality in a simple way. They should feel intuitive
and as natural as possible for the developer, that is,
they should preferably be modifications or extensions
to well-known existing models. We have focused on
two models to realize the dynamic offloading solu-
tion, namely channels and functions. Below, one can
find brief descriptions of both.

Firstly, we developed a point-to-point communi-
cation method, known as elastic channel. Normally,
channel endpoints are created and connected at the lo-
cation of the threads or processes and exist through-
out their lifetime. An elastic channel is an extension
of the channel model where endpoints can transpar-
ently change location during their lifetime. In the
proposed offloading service framework, elastic chan-
nels are asynchronous and bidirectional supporting
both one-to-one and one-to-many communication. In
the current implementation, one endpoint remains sta-
tionary and fixed in the UE device, while the other
endpoint is flexible, implying that its location can
freely move around, e.g., the closest offloading clus-
ter at the time. This flexibility and static nature of
endpoints are explicitly declared by the developer, en-

3https://github.com/WebAssembly/WASI/
4https://wasmedge.org/
5https://wasmtime.dev/
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abling elastic channels to be constructed as a library
without the need for external resources.

Secondly, a form of Remote Procedure Call (RPC)
API known as elastic functions was developed, based
upon elastic channel network functionality. Functions
and procedures are the fundamental way to abstract
an expression or a set of statements in most program-
ming languages. As functions and procedures are so
fundamental, it would be good if they could be made
elastic in a similar way as the elastic channels. That
is, a call (invocation) should look the same both when
a module containing the implementation of the func-
tion or procedure is residing in the same execution
runtime as when the it has been moved to an exe-
cution runtime at a different location. In contrast to
RPC, here the remote end is not fixed and can be ex-
ecuted locally or remotely (offloaded). To do that, we
must be able to identify the functions and procedures
that could be moved during an offload and transform
them to functions and procedures with the same inter-
face and behaviour but are movable in a transparent
way. We realize this via an extra pre-processing step
in the compiler toolchain that permits the developer
to tag functions as offloadable. Functions with such a
tag have their interfaces rewritten prior to compilation
as elastic channel functions. In this case two versions
of the function are built, one that will be natively run
on the device, and another compiled to WebAssembly
format that can be readily run remotely, independent
of the exact hardware and software platform choices
at the offloading cluster.

2.4 Offload Sequence

We assume the following pre-conditions when oper-
ating this service: the UE and Offload Manager are
aware of each other; there is pre-established commu-
nication link between the UE Offload Handler and the
Offload Manager; and the application is monitoring
offload triggers. The former two of these conditions
could, e.g, be established by adaptations to existing
control plane functions of existing or future cellular
networks (i.e., 5G/6G).

Given these pre-conditions, a module offload se-
quence (using the control plane in Fig. 1) includes
the following steps:

1. Information from the notifier results in an offload-
ing trigger threshold being reached.

2. The application, via the offload handler, informs
the remote offload manager that there is a pending
offload request.

3. The offload manager responds with a set of offers
of resources obtained from the resource manager.

4. The application selects one of the offers and in-
forms the offload manager, which instructs the rel-
evant remote offload handler to assign resources.

5. The local and remote offload handlers communi-
cate directly to transfer the module.

6. The execution handler initializes the module, and
communication with the local application com-
mences using elastic channels or functions.

2.5 Security Considerations

We identified an important requirement in security
and isolation, especially for a solution that executes
code imported from untrusted sources (i.e., the UEs
and their users) in a remote compute environment.
Here we consider security in the dynamic offloading
architecture from the point of view of the users and
applications on one hand, and the system itself on the
other. We outline a few key technologies we see as
building blocks for securing our solution.

In addition to utilizing WebAssembly-based sand-
boxing, we support offloading modules into Trusted
Execution Environments (TEEs), such as Confiden-
tial Virtual Machines (Guanciale et al., 2022), in cases
where offloaded modules and data need to be pro-
tected also from the offloading host. The UE side at-
tests these TEEs (Ménétrey et al., 2022) before mod-
ules are migrated to them.

We also need to ensure that users are authenticated
and authorized to perform offloading and use remote
resources. In a scenario where the offloading system
is deployed as a service in a mobile network, the Au-
thentication and Key Management for Applications
(AKMA) (Huang et al., 2021) mechanism can per-
form authentication and authorization of the UE side
based on network subscription credentials, as well as
distribute shared symmetric keys to the UE and the
remote offloading system. These keys can be used
within Transport Layer Security (TLS) handshakes, in
which we also perform TEE attestation when needed.

3 DEMO PoC AND
EXPERIMENTAL SETUP

In order to validate the functionality of the described
offloading solution and assess the resulting perfor-
mance, we developed an experiment setup based on
a search and rescue scenario involving hazardous en-
vironment exploration.
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3.1 Use-Case Scenario

We assume a scenario in which a rescue team arrives
at a disaster site to explore the potentially dangerous
unknown environment using battery-driven robot ve-
hicles or drones. The goal is to discover the location
of specific objects such as human survivors or haz-
ardous materials. In such a critical situation it would
be advantageous to use more than one robot to simul-
taneously scout the area, each contributing to a full
picture of the search area by exploring a part of the
total environment. As such, this scenario requires col-
laboration between multiple robots on the same task.
To prolong the operation time of the battery-driven
robots and potentially even increase their scouting
performance, each robot can choose to offload some
of its functions to a remote offloading site.

As the disaster site was a priori unknown, this sce-
nario takes advantage of ad-hoc deployment of spe-
cific application tasks at exactly the place and time
when needed. These tasks - here either computa-
tional heavy functions or collaborative tasks - can
then be scheduled dynamically based on situational
changes, seamlessly during the applications initially
run on each robot into distributed application.

3.2 Demo Application

The application written to support the proposed sce-
nario consists of three main tasks:

• The Navigation function, which was designed to
capture a video stream from a vehicle’s onboard
camera and forward it to the object detection.

• The Object Detection function, which receives
video frames and uses a trained image detection
library to identify objects within a scene.

• The Map Server function, which acts as a com-
munication hub between vehicles, constructing a
common view of the region and objects provided
by the partial views supplied by each vehicle.

The Navigation function runs permanently onboard
the device due to its dependency upon the onboard
camera. The Map Server is offloaded by the first ve-
hicle entering the scenario, with subsequent arrivals
connecting to it rather than offloading their own copy.
The resource heavy Object Detection task initially
executes onboard each robot device, but may be of-
floaded to a local edge site once certain trigger thresh-
olds are met. It is this latter task that we use to mea-
sure both the benefits and drawbacks in application
performance and resource utilization when migrating
a task between onboard and remote execution.

3.3 PoC Implementation

In our proof of concept (PoC) implementation, sev-
eral network-connected, battery-driven four-wheeled
robots6 were deployed on a flat area with opaque ob-
structions representing buildings or rocky landscape.
Scattered across the environment we placed a number
of hazardous objects that must be identified by the ve-
hicles. In this layout, a robot entering from one side
of the region could only see a limited number of these
objects. In order to detect all the objects, a vehicle
would need to roam in the area, or multiple vehicles
could collaborate by pooling their partial view of the
environment to create a complete picture in less time.

Figure 2 describes the deployment of the appli-
cation as a vehicle arrives on site. Initially the three
components of the application are running in natively
compiled binary format on the resource-constrained
UE robot hardware under the supervision of the of-
floading framework. In this scenario, the first robot
arriving on site triggers an offload of the collaborative
Map Server in portable Wasm format to the offload-
ing cluster co-located with the network access point.
It then proceeds to attempt to identify objects through
the Object Detection function, which makes use of
the YoloV4 neural network software for object detec-
tion (Bochkovskiy et al., 2020) based upon OpenCV
4.5.47. Subsequent vehicles will attempt to deploy
their own Map Server, but are redirected to connect to
the existing server instead. This collaborative task is
being shared among all robot UEs. Under certain con-
ditions, e.g., a low battery level at a robot, offloading
of the computational heavy Object Detection function
is triggered as well. In this case, every robot will of-
fload its own individual instance of this function in
portable Wasm format, which can then be scheduled
dynamically during operations, depending on the cur-
rent situation. As shown in Figure 2, the computa-
tional offloading framework is deployed across both
the UEs and the offloading site, and allows communi-
cation between the UE device and the offloading site
through elastic functions as described in Section 2.3.

3.4 Experiment Setup

We conducted a number of experiments to examine
the performance characteristics of offloading a partic-
ular function, Object Detection, using the described
offloading framework. To collect relevant measure-
ments from the devices, we developed a telemetry
service. It permitted the gathering of metrics such

6Robots built from a Freenove 4WD Smart Car Kit
7https://opencv.org
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Figure 2: Application configuration showing tasks running both on the UE (left) and the edge cluster (right) within the
computational offloading framework. Offloaded tasks communicate with parent application using elastic channels.

as CPU/GPU utilization, CPU/GPU temperature, net-
work utilization, and power consumption from both
the UE device and the host at the offloading site.

In order to reflect different UE capabilities in our
experiments, we employed two different types of de-
vices as base platform for the robot vehicle kits. The
first one is a Raspberry Pi 3, which is an example
of a device with limited computational capabilities.
The second device is a Nvidia Jetson Nano, which is
more powerful and comes with a 128-core Maxwell
GPU. Wireless network connectivity was provided by
a third party 5G adapter compatible with both the
Nvidia Jetson and the Raspberry Pi, which connected
to a private 5G base station and a 5G standalone (SA)
core network with access to a lab environment act-
ing as edge site. As a reference, we also performed
offloading via wired LAN connected directly to the
same edge site. Note that, compared to the LAN, the
5G connection included an experimental core network
and three additional IP hops to reach the edge site. We
list detailed specifications of the hardware and oper-
ating systems for both devices in Table 1. The table
also includes information about the offloading cluster.

We have given several live demos of the search &
rescue scenario with multiple robots serving as suc-
cessful functional validation of the framework. For
the follow measurements, however, we constrained
the operation to provide a higher level of consistency.
Specifically, the car-kit was removed not to interfere
with the energy readings, and we used a recorded im-
age stream taken from the camera whilst under test-
ing. Furthermore, only one UE was used at a time
during the measurement campaigns in order to avoid
network and processor congestion.

Once all application components on the UE were
started, a spin-up time of 150 sec was allowed for the
system to reach a stable state. Subsequently, the ob-
ject detection module was locally executed for 150
sec before being offloaded to the offloading cluster.
Remote execution of the object detection task was
then performed for 150 sec. This local and remote
execution was repeated three times for each device.

Table 1: Experiment equipment.
Mobile devices

Raspberry Pi 3B Nvidia Jetson Nano

CPU Quad Core
1.2GHz Broadcom
BCM2837 64bit
CPU

Quad-core ARM A57 @ 1.43 GHz

GPU 128-core Maxwell

RAM 1 GB 4 GB

5G
Adapter

Waveshare 500Q-GL 5G HAT

OS Ubuntu 22.04
server

Ubuntu 20.04 Desktop

Offloading Cluster

CPU Intel(R) Xeon(R) Silver 4210R CPU @ 2.40GHz 40 Core

RAM 62 GB

GPU 2560-core NVIDIA Tesla T4

OS Ubuntu 22.04 server

4 RESULTS AND DISCUSSIONS

In our experiments, we focused on the measurable
advantages of offloading compute-intensive tasks on
two examples of mobile devices: the Raspberry Pi and
Nvidia Jetson Nano. These measurements encompass
various aspects and performance metrics of the de-
vices, shedding light on the efficiency and behavior of
the Object Detection module and the offloading solu-
tion throughout the experimentation process.

4.1 Raspberry Pi

Figure 3 presents the measurements of CPU, tempera-
ture, network and power usage of a Raspberry Pi dur-
ing local and remote execution of the object detection
module, represented as graphs of resource usage ver-
sus time. We have conducted a cycle of three local and
three remote executions of this module, each of 150
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sec duration. Those regions of the graphs are shaded
dark (local) and light grey (remote execution), respec-
tively. During the first instance of offloading, the ob-
ject detection module is transferred from the device
to the remote host and instantiated, thus imposing an
additional resource burden equivalent to a cold start.
Subsequent offload events simply activate the already
transferred but dormant module code, more closely
resembling a warm start event.

It can be observed from the Figure 3[a] that CPU
utilization rises from idle to around 90% during local
execution and returns to on average below 10% during
offload execution of the computationally heavy mod-
ule. When executed locally, the object detection task
constitutes the bulk of CPU usage. On the other hand,
when offloaded the application handles data transmis-
sion and reception over the network, along with asso-
ciated serialization and de-serialization of this infor-
mation. During the initial idle period, two spikes in
CPU utilization are observed. These spikes occur as a
result of the messaging involved in the initial setup of
the offloading procedure and loading the application
into memory. We conclude that for compute-intensive
AI tasks like object detection, the offloading to a re-
mote site significantly decreases CPU utilization of a
resource constrained device, clearly outweighing the
additional networking burden.

Figure 3[b] illustrates the temperature of the CPU
during the experiments. During onboard execution
the processor temperature rises significantly before
dropping off sharply when offloading commences.
Local execution was limited in time in order to pre-
vent CPU throttling, which sets in at around 80 de-
grees Celcius on a Raspberry Pie, eventually render-
ing the device unresponsive.

Power usage is shown in Figure 3[c], clearly
showing the relation between CPU usage and power
consumption. When offloaded, power usage is
slightly elevated over the idle value of approximately
2 Watts due to the energy drain of the 5G adaptor,
but still significantly below the approximately 5 Watts
consumed during local execution.

Figures 3[d] and 3[e] demonstrate the increase in
data transmission between the application and the of-
floaded component as a consequence of remote exe-
cution of this task. During local execution the net-
work usage is negligible. A spike in resource usage
during initial local execution is visible, representing
the transfer of the code module.

Figure 4 shows the Object detection response time
when it is executed locally, remotely over 5G, and
LAN respectively. This consists of the total time
taken to detect an object on a supplied video frame,
including data transmission time when offloaded. The

Table 2: Power vs Performance for Raspberry Pi.

Energy (in mWh per frame)

Local Execution 2.02

Remote Execution - 5G 0.09

Remote Execution - LAN 0.06

observed variability can be partially attributed to the
fact that the time taken to perform the object detection
depends on parameters other than resource availabil-
ity, such as the complexity of the video frame in ques-
tion and the number of objects represented. The order
of magnitude performance improvement when exe-
cuted remotely, from almost 1300 ms locally on the
device to about 90 ms (5G) or 65 ms (LAN), signif-
icantly validates the performance benefits of offload-
ing from a resource constrained device.

To further analyze the UE energy consumption of
an Object Detection execution task, we calculated the
energy required to receive a reply from the object de-
tection task for each frame from the simulated video
stream, measured in Milliwatt-hours (mWh). This
metric, referred to as mWh per frame, provides a nor-
malized measure of the energy efficiency of the object
detection process from an UE point of view (i.e., high
CPU utilization when processing onboard, vs lower
CPU utilization but additional data transfer when of-
floaded). Table 2 presents the results, indicating that
the energy consumption per frame is over an order of
magnitude lower for remote execution compared to
local execution for this device. This suggests that of-
floading the object detection task to a remote host re-
sults in more energy-efficient execution. Note also the
slight difference when using 5G vs LAN connectivity.
This gives and indication of the additional energy us-
age of the 5G HAT, which is negligible compared to
the energy used to power the CPU on full capacity.

In summary, by offloading the object detection
module and executing it remotely, the CPU usage,
power consumption, and temperature of the Rasp-
berry Pi have notably decreased compared to lo-
cal execution. However, the network usage dur-
ing remote execution has correspondingly increased,
which, however, did not lead to a significant increase
in power consumption. We conclude that offload-
ing computational-heavy tasks is beneficial, reducing
CPU usage, heat, and power consumption, which ex-
tend the device’s longevity when running on batteries.

4.2 Nvidia Jetson Nano

Figure 5 illustrates the measurements of CPU/GPU
utilization, temperature, network utilization, and
power usage for the Nvidia Jetson Nano device, us-
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(a) CPU Usage. (b) CPU temperature.

(c) Power usage. (d) Network data transmission.

(e) Network data receiving.

Figure 3: Measurement results on a Raspberry Pi.

ing onboard and offloading periods of 150 seconds.
The CPU utilization of Jetson Nano is illustrated

in Figure 5[a]. During the local execution of the ob-
ject detection module, the relatively low CPU utiliza-
tion compared to the Raspberry Pi of less than 30%
can be attributed to the greater utilization of the in-

tegrated GPU, as evident from Figure 5[b]. A pro-
portion of the CPU utilization can be attributed to
data transmission from CPU memory to GPU mem-
ory. The same spikes due to messaging, setup and
module transfer as in the case of the Raspberry Pi can
be observed.
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Figure 4: Object detection response time for Raspberry Pi.

Figure 5[c] shows CPU/GPU temperature during
the experiments. The Jetson Nano utilizes a heat sink,
which effectively dissipates heat and prevents signif-
icant temperature increases. As a result, the temper-
atures remain relatively stable throughout the experi-
ments compared to the Raspberry Pi.

Figure 5[d] illustrates the power utilization of the
Jetson Nano device. Onboard and offloaded power
consumption follow the same patterns as on the Rasp-
berry Pi despite the increased local performance, in
this case approximately 6 and 2 Watts respectively.
Also here the results show significant reduction in de-
vice power consumption as a benefit of offloading. As
expected, Figures 5[d] and 5[e] confirm the signifi-
cant increase in network traffic caused by offloading.

Figure 6 illustrates the results of the object de-
tection response times for local and remote execu-
tion, using the same setup as in the earlier measure-
ments. The average local execution time for object
detection on the Jetson Nano device is measured at
60.01 milliseconds (ms), which is comparable to the
average execution times for remote execution over 5G
and LAN, which are 84.40 ms and 63.01 ms, respec-
tively. This is due to the more capable hardware on
the Nvidia Jetson, including a GPU. Also the extra
delay of the experimental 5G network compared to
the direct LAN connectivity is more relevant on these
timescales.

We note that energy efficiency of remote execu-
tion from a UE device perspective is still significantly
improved when the object detection task is offloaded,
see Table 3. These results indicate that computational
offloading of compute-intensive tasks may not result
in meaningful performance improvements when the
UE has similar compute capabilities than the remote
site. However, the reduced power drain and heat dis-
sipation on the UE may prove to be a decisive factor
when choosing whether to offload or not.

Table 3: Power vs Performance for Jetson Nano.

Energy (in mWh per frame)

Local Execution 0.101

Remote Execution - 5G 0.058

Remote Execution - LAN 0.050

5 RELATED WORK

Concepts related to computational offloading have
been significant subject of research in the last decade.
An early survey on mobile edge computing (Mach
and Becvar, 2017) (MEC, later re-labelled multi-
access edge computing), analyzed more than 100 pa-
pers, focusing on the decision mechanisms for com-
putational offloading as well as the allocation of com-
puting resources. The assumed virtualization technol-
ogy and granularity in these papers has been VMs,
which does not meet our requirements of lightweight-
ness and portability. However, a few general lessons
learned from this paper are relevant also for our pro-
posed solution, e.g., that VM migration is impractical
if a sufficiently large amount of data needs to be trans-
mitted, and partial offloading can save significantly
more energy at the UE compared to full offloading.

The survey by Lin et al. (Lin et al., 2019) re-
views research on computation offloading, and identi-
fied three main groups of challenges: application par-
titioning; task allocation and resource management;
and distributed task execution. In terms of application
partitioning, challenges related to lightweight pro-
gramming models as well as the partitioning granu-
larity are pointed out. In our solution, we address this
challenges with a novel programming model in Sec-
tion 2.3, and the flexibility to offload arbitrary code
granularity, including both whole tasks or compo-
nents down to the level of methods/functions. Task al-
location and resource management with optimal strat-
egy are not part of the present paper, but we are work-
ing on a related publication. With respect to dis-
tributed task execution, our solution deviates from the
VM and container based solution discussed in this
survey by building our solution based on portable,
lightweight and secure Wasm runtimes.

Another survey focused on service migration
strategies in the context of MEC (Wang et al., 2018).
As part of this survey, execution environments to host
MEC applications are compared. The conclusions are
that VMs have good isolation properties but are large
in terms of footprint and slow to boot and run. Con-
tainers, on the other hand, have a smaller footprint and
faster startup times, but perform sub-optimally across
operating systems and hardware platforms. Finally,
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(a) CPU Usage. (b) GPU Usage.

(c) CPU and GPU temperature (d) Power usage.

(e) Network data transmission. (f) Network data receiving.

Figure 5: Measurement results on a Nvidia Jetson Nano.

agent-based systems have very small footprint and
rapid boot and runtime performance with the promise
of convenient administration. However, these sys-
tems are still of experimental nature without contem-
porary stable existing frameworks. Together with our
review of several concepts related to VMs or con-

tainer migration (Junior et al., 2020)(Machen et al.,
2018)(Benjaponpitak et al., 2020), we conclude that
literature confirms our our choice of Wasm a promis-
ing execution environment.

While the above surveys focus on mobile edge
computing based on classical Cloud technologies
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Figure 6: Object detection response time for Jetson Nano.

such as VMs and containers, there is more recent
work applying lightweight, portable runtimes such as
Wasm for computational offloading. The authors of
(Hoque and Harras, 2022) argue along these lines,
whereas (Ménétrey et al., 2022) point out benefits of
Wasm for faster migration time due to smaller mem-
ory footprint, and (Long et al., 2021) show better per-
formance of Wasm runtimes than OS containers.

Authors of (Tachibana et al., 2022) suggested
application-driven dynamic task offloading by task
classification on real-time basis. Application-driven
offloading allows the application developers to decide
when and where to offload, but this might not always
be optimal. The network or computation provider has
to be able to offer only edge hosts or nodes which are
capable to execute the offloaded task and the develop-
ers and/or users should be able to choose the node.
The ability to choose arbitrary nodes would be es-
pecially needed in multi-provider environment where
providers might compete for users.

Host to host Wasm based modules migration has
been proposed in (Nieke et al., 2021), where authors
migrate mobile agents - application server instance.
Host to host migration is very important for load bal-
ancing or compliance with QoS of the application-
module communication during user mobility, but the
task has to be already represented as a Wasm module
in order to migrate it which is not optimal for UE to
host migration. In this case, it is a natural choice for
the task is to be executed in the original device in na-
tive code. In Section 2.3 we proposed a UE to host
migration method addressing this issue.

As mentioned, Wasm modules have benefits for
compute migration, but are not fully protected from
threats from other malicious tenants or the service
provider. Security measures like utilizing Trusted
Execution Environments and Wasm enclaves are ad-
dressed in (Ménétrey et al., 2021)(Pop et al., 2022).

6 CONCLUSION AND NEXT
STEPS

We presented a solution that enables an application
running on a mobile device to dynamically offload
critical parts of its functionality, as identified by the
developer, to a remote site, seamlessly during appli-
cation runtime. We identified a number of require-
ments, designed, built, and verified an according so-
lution. Our solution consists of a novel programming
model and associated toolchain, with particular focus
on developer ease of use, as well as a distributed ex-
ecution framework based on portable and lightweight
standalone Wasm runtimes.

We demonstrated and evaluated the viability of the
presented solution, providing a compelling case for
performance improvements through ad-hoc computa-
tional offloading in resource-constrained devices and
reduced power consumption in general, despite the in-
creased network usage. We realized and demonstrated
the presented solution using two examples of UE de-
vices with varying computational capacities (Rasp-
berry Pi and Nvidia Jetson Nano). We also applied
two different categories of connection between the de-
vice and the edge servers - wired LAN as the baseline
reference, as well as standalone (SA) 5G wireless as
a realistic, futureproof wide-area wireless connectiv-
ity example. For both devices, module offloading re-
duces device power usage. The Raspberry Pi extends
its compute capability for computation heavy tasks,
whereas the Jetson Nano does not see this benefit due
to its onboard GPU. However, in both cases, device
energy efficiency is improved.

We assert that this type of use-case agnostic so-
lution - offering sandboxed remote computational re-
sources to any application on a mobile device basi-
cally anytime and anywhere - has the potential to tar-
get even the long tail of regional enterprises and de-
velopers that usually would not engage in the heavy
burdens of deployment, management, and contract
handling related to edge solutions. We are aware that
there are still numerous open issues to reach this vi-
sion, and we conclude this article by pointing out a
few open research questions we plan to address as
next steps. For instance, an important building block
to make this solution viable is a comprehensive cost
function service which can intelligently decide when
and where to offload in order to provide the best over-
all performance for the application, device and user.
As security and isolation are of utmost importance in
remote computation scenarios, we also work on ex-
tending our solution with a more comprehensive se-
curity architecture based on an detailed analysis of
security and privacy threats. Moreover, we plan to
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further explore specific features in the areas described
in this work, such as granular isolation of Wasm mod-
ules into TEEs similar to (Nieke et al., 2021). While
we had very positive experiences of using Wasm run-
times when building our prototype, there are still is-
sues with proprietary system interfaces to host func-
tion related to efficient realization of the execution
handler. We thus encourage the networking commu-
nity to engage in consortia like the W3C WASI work-
ing group to make sure that future Wasm related stan-
dards meet the requirements of advanced use-cases
like proposed in this paper. Finally, we are exploring
alternatives to offering computational offloading as a
service via cellular mobile broadband networks,e.g.,
5G advanced or 6G (Wikstrom et al., 2022). This in-
cludes integration points like service registration and
discovery, management of the offloading service user
plans and associated mobility support, control plane
handling of offload triggers, as well as crucial authen-
tication and billing mechanisms.
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