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This paper presents an innovative method for addressing the challenge of recognizing and responding to melt-

down crises in autistic children. It focuses on integrating information from emotional and physical modalities,
employing multimodal fusion with an emphasis on the early fusion technique. Existing literature outlines three
fusion techniques — early, late, and hybrid fusion, each with unique advantages. Due to the distinct nature of
datasets representing emotions and physical activities, late and hybrid fusion were considered impractical.
Therefore, the paper adopts the early fusion method and introduces a Multi-modal CNN model architecture
for efficient meltdown crisis recognition. The architecture comprises three Convolution layers, Max-pooling
Layers, a Fully Connected (FC) layer, and Softmax activation for classification. The decision to opt for early
fusion is driven by the inconsistent detection of children’s faces in all video frames, resulting in two different
output sizes for emotion and physical activity systems. The presented pseudo-code outlines the architecture
development steps. The proposed model’s efficiency is highlighted by its outstanding recognition rate and
speed, making it the preferred choice for the time-sensitive Smart-AMD (Smart-Autistic Meltdown Detector)
System. Beyond technical aspects, the model aims to enhance the well-being of autistic children by promptly
recognizing and alerting caregivers to abnormal behaviors during a meltdown crisis. This paper introduces a
comprehensive system that integrates advanced technology and a profound understanding of autism, offering

timely and effective support to those in need.

1 INTRODUCTION

The recognition of abnormal behaviors in autistic
children during a meltdown crisis is a crucial aspect
of developing effective support systems. This pa-
per introduces a novel approach to address this chal-
lenge through the utilization of multimodal fusion
techniques in the context of deep learning. Specifi-
cally, we focus on the early fusion method as an opti-
mal strategy for combining information from two dis-
tinct datasets representing emotional states and phys-
ical activities.

The process of multimodal fusion involves the
integration of information from various sources, a
concept well-defined in literature as demonstrated by
(Pandeya and Lee, 2021). Three primary fusion tech-
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niques, namely early fusion, late fusion, and hybrid
fusion, have been identified. Early fusion involves
the merging of low-level features from each modality
using correlations, enhancing task accomplishment.
However, it may face challenges related to tempo-
ral synchronization problems based on multiple input
sources. Late fusion, on the other hand, combines
unimodal decision values in the decision phase, al-
lowing flexibility and simplicity in predictions even
when certain modalities are missing. Hybrid fusion
attempts to combine the advantages of both early and
late fusion.

In our case, late and hybrid fusion techniques
are deemed unattainable due to distinct datasets and
the inability to detect children’s faces in all video
frames. This results in two different output sizes for
the systems focusing on emotions and physical activi-
ties. Consequently, we adopt the early fusion method,
utilizing a Multi-modal CNN model architecture for
meltdown crisis recognition.
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The proposed CNN model consists of three Con-
volution layers with ReLu function activation, fol-
lowed by two Max-pooling Layers for mapping ex-
tracted features. A Fully Connected (FC) layer with
ReLu function is employed, and the extracted features
are then concatenated and treated as input to a single
Fully Connected Layer. Finally, a Fully Connected
layer with Softmax function is utilized for classifying
children’s states based on two modalities: compound
emotions and abnormal-complex physical activities.

The presented pseudo-code outlines the develop-
ment steps of the architecture, emphasizing the details
of the early fusion approach. The efficiency of this
model is highlighted, as it not only provides the best
recognition rate but also proves to be the fastest. Con-
sidering the significance of time in the Smart-AMD
System, this efficiency becomes a strong point.

In conclusion, the proposed model represents a
comprehensive system designed to recognize abnor-
mal behaviors during a meltdown crisis in autistic
children. The goal is to assist caregivers in promptly
addressing and preventing harm to the children, em-
phasizing the role of efficient recognition in ensuring
the well-being of autistic individuals during crisis sit-
uations.

The remainder of this paper is structured as fol-
lows: Section 2 conducts a review of the litera-
ture covering emotion, physical activity, and human
behavior recognition using multimodal approaches.
Then, in Section 3, the "MELTDOWN-CRISIS
DATASET” is introduced, followed by a focus on
autistic child behavior analysis for crisis detection. In
Section 5, the experimental results showcase findings
from various experiments, including CNN-model ar-
chitecture applications and validation processes, en-
suring result reliability. Finally, the conclusion sum-
marizes key findings and their significance and sug-
gests future research directions.

2 RELATED WORKS

Multimodal fusion is a prominent area in both mul-
timodal and artificial intelligence research, aiming to
leverage diverse data types for reliable model classifi-
cation. This process involves transforming data from
various single-mode representations into a compact
multimodal form (Zhu et al., 2020). Four distinct data
fusion techniques have been identified: data-level fu-
sion, early-level fusion, late fusion, and hybrid fu-
sion. Data fusion involves merging different datasets
into a unified database. Early fusion integrates low-
level features from each modality through correla-
tion, resulting in enhanced task performance. Late
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fusion combines unimodal decision values to derive
the final decision, while hybrid fusion seeks to com-
bine the strengths of both early and late fusion in a
unified framework (Pandeya and Lee, 2021). In the
context of emotion and activity recognition, various
works utilize multiple data modalities such as im-
ages, videos, audio, and information from wearable
sensors. These works explore different fusion lev-
els to enhance recognition accuracy. Despite numer-
ous studies addressing similar problems using data
from images and videos with handcrafted features,
few have attempted to fuse emotion and physical ac-
tivity modalities for human behavior recognition. To
address this gap and analyze autistic behaviors, es-
tablishing a foundation for multimodal approaches is
essential. These approaches combine facial expres-
sions and physical activities, with a focus on review-
ing relevant literature in this field. In the following
subsections, we will present state-of-the-art methods
that fuse modalities for recognizing emotions, ges-
tures, activities, and human behavior.

2.1 Emotion Recognition Based on
Multimodal Approaches

Emotion recognition, a prolific research area, spans
various fields and involves diverse data types such
as facial expressions from images, videos, trajecto-
ries, and speech. Robust frameworks have emerged
through the fusion of modalities, including combina-
tions of handcrafted features with deep features, au-
ditory and visual modalities, and various other mul-
timodal approaches. Both classical machine learning
and deep learning techniques are employed in these
endeavors.

In a study by (Busso et al., 2004), the strengths
and weaknesses of facial expression and acoustic
emotion classifiers were analyzed. Unimodal sys-
tems often encountered misclassifications for certain
emotion pairs, but these confusions were mitigated
by introducing another modality. Consequently, the
bimodal emotion classifier outperformed individual
unimodal systems. Two fusion approaches, namely
feature-level and decision-level fusion, were com-
pared, yielding similar overall performance. How-
ever, specific emotions exhibited notable variations.
The feature-level bimodal classifier excelled in rec-
ognizing anger and neutral states, while the decision-
level bimodal classifier achieved high accuracy in
classifying happiness and sadness. Additionally,
(Castellano et al., 2007)presented a multimodal ap-
proach for recognizing eight emotions. This approach
integrated information from facial expressions, body
movement, gestures, and speech, demonstrating the
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potential of combining multiple modalities for com-
prehensive emotion recognition. In analyzing a
Bayesian classifier model, the authors used a multi-
modal corpus comprising eight emotions and ten sub-
jects. Initially, individual classifiers were trained for
each modality, and subsequent fusion of data at both
feature and decision levels resulted in recognition rate
improvements exceeding 10% compared to unimodal
systems. Notably, feature-level fusion outperformed
decision-level fusion. (Kessous et al., 2010) proposed
a speech-based multimodal emotion recognition sys-
tem during interactions. Their dataset featured in-
dividuals pronouncing sentences with various emo-
tions during interactions with an agent. Combining
facial expressions, gestures, and acoustic speech anal-
ysis, a Bayesian classifier was employed for auto-
matic classification of unimodal, bimodal, and mul-
timodal data. Fusion at the feature and results lev-
els significantly enhanced recognition rates, surpass-
ing unimodal systems by over 10%. Investigation into
bimodal emotion recognition combinations revealed
’gesture-speech’ as the most effective pairing, with a
3.3% improvement over the best bimodal results.
(Psaltis et al., 2019) explored integrating emotion
recognition technology into gaming applications to
enhance interaction and the gaming experience. They
presented an emotion recognition methodology us-
ing multimodal fusion analysis to identify players’
emotional states during gameplay scenarios. In this
context, two mono-modal classifiers were devised for
extracting affective state information from facial ex-
pression and body motion analysis. To amalgamate
modalities, the authors introduced a deep model for
determining the player’s affective state. Evaluating
their approach involved collecting a bimodal dataset
using Microsoft’s Kinect sensor, incorporating feature
vectors from users’ facial expressions and body ges-
tures. This method outperformed mono-modal and
early-fusion algorithms, achieving a recognition rate
of 98.3%. Similarly, (Pandeya and Lee, 2021) pro-
posed a multimodal approach for comprehending hu-
man emotions. They constructed a balanced music
video emotion dataset, testing it over four unimodal
and four multimodal convolutional neural networks
(CNNs) for music and video. Evaluation results
demonstrated improved performance for multimodal
architectures compared to individual unimodal emo-
tion classifiers, with an accuracy of 88.56% achieved
by integrating all multimodal structures. In a parallel
vein, (Radoi et al., 2021) presented a robust end-to-
end architecture incorporating multimodal informa-
tion for emotion recognition. The Temporally Ag-
gregated Audio-Visual Network (TA-AVN) architec-
ture flexibly merges audio and video data at various

sampling rates across modalities. This approach ac-
commodates an asynchronous combination of tempo-
ral multimodal information, achieving competitive re-
sults on challenging datasets, with overall accuracies
of 84.0% for CREMA-D and 78.7% for RAVDESS.

2.2 Physical Activity Recognition Based
on Multimodal Approaches

Motion recognition, advancing with diverse sen-
sor applications like wearables, vision-based, and
speech sensors, benefits from the integration of mul-
tiple modalities for robust performance. In a mul-
timodal approach by (Masurelle et al., 2013), iso-
lated complex human body movements, specifically
Salsa dance steps, were recognized. The system
utilized motion features from 3D sub-trajectories of
dancers’ body-joints (extracted from Kinect depth
map sequences) through Principal Component Analy-
sis (PCA). Sub-trajectories were obtained from a foot-
step impact detection module, utilizing piezoelectric
sensors on the dance floor. Two classifiers, Gaussian
mixture models and hidden Markov models (HMM),
tested on a multimodal Salsa Dataset using HMM
classifiers, achieved a 74% F-measure in recognizing
gestures among six classes.

(Li et al., 2017) highlighted the performance limi-
tations of individual sensors, especially for categoriz-
ing similar activities. They addressed this by fusing
information from experimental data collected using
different sensors, including a tri-axial accelerometer,
a micro-Doppler radar, and a depth camera. The fu-
sion of heterogeneous information improved the over-
all system performance, leading to a global classifica-
tion rate increase up to 91.3% based on the combi-
nation of accelerometer, radar, and RGB-Depth data.
In their work, (Tian et al., 2020) introduced a sample
database of RGB-D gesture images, preprocessed the
samples, and devised a multimodal, multilevel fusion
gesture recognition framework. They designed a con-
volutional neural network structure with two modes,
extracting features at different abstract levels for each
mode. To address the challenge of varying feature
dimensions in different modes, they proposed a fea-
ture mapping model to align features into a common
space, creating a unified feature set. (Lin et al., 2020)
proposed a data fusion framework to merge data from
Microsoft Kinect and wearable sensors, aiming to en-
hance Human Action Recognition (HAR) accuracy.
While Kinect captures body motion characteristics for
various activities, its accuracy depends on the viewing
angle. The integration of Kinect and wearable sensors
compensates for each other’s limitations. The authors
introduced a novel system utilizing incremental learn-
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ing, a decision table, and swarm-based feature selec-
tion for quick and accurate HAR based on both sen-
sor data. Experimental results demonstrated a signif-
icant improvement in HAR accuracy (from 23.51%
to 68.35%) when combining Kinect sensors viewed
at a ninety-degree angle with wearable sensors. Hu-
man action recognition is pivotal for developing in-
telligent solutions in home environments, especially
in ambient assisted living applications. According to
(Franco et al., 2020), automated systems, leveraging
the capabilities of Kinect sensors, can significantly
enhance human quality of life. By interpreting user
needs, recognizing unusual behaviors, and preventing
potential hazards, these systems contribute to a safer
and more efficient living environment. This study ex-
ploits the full potential of the Kinect sensor, combin-
ing Skeleton and RGB data streams for a robust ac-
tivity recognition method. The Skeleton representa-
tion tracks body postures, while the RGB images cap-
ture the temporal evolution of actions. In the work of
(Yu et al., 2020), the authors introduced D3D-LSTM,
featuring real-time feature fusion for enhanced dis-
crimination of similar actions. The model includes a
high-attention mechanism assigning different weights
to frames in real-time. An alternating optimization
strategy further refines the model. Evaluating D3D-
LSTM on Realset, SBU-Kinect, and MSR-action-3D
datasets demonstrated its effectiveness, pushing the
average rate of SBU-Kinect to 92.40% and MSR-
action-3D to 95.40%.

2.3 Human-Behavior Recognition
Based on Multimodal Approaches

According to (Ambady and Rosenthal, 1992), hu-
mans assess expressive behaviors through both ver-
bal and non-verbal channels. Verbal channels involve
speech, while non-verbal channels encompass eye
gaze, blink, facial and body expressions, and speech
prosody. Various approaches have been proposed to
fuse multiple modalities for recognizing human be-
haviors. (Pimpalkar et al., 2014) explored human-
computer interaction to enhance computer awareness
of user behaviors, particularly for assisting disabled
individuals in expressing themselves. They intro-
duced a multimodal approach for behavior recogni-
tion, exemplified by a gesture recognition system us-
ing a webcam. The model incorporated facial ex-
pression and hand gesture recognition, utilizing the
”FABO bimodal database” (Metri et al., 2011) that
recorded combined face and body expressions simul-
taneously. To assess their software, the authors em-
ployed the Principle Component Analysis algorithm
(PCA) for face recognition and the Cam Shift algo-
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rithm for tracking hands and predicting their locations
in images.

(Lin et al., 2020) proposed a computational frame-
work for modeling vocal behaviors and body gestures
during Autism Diagnostic Observation Schedule in-
terviews. The learnable Interlocutor-Modulated (IM)
attention mechanism categorized ASD subgroups
considering the subtle and challenging nature of
ASD behaviors. The multimodal network comprised
speech-IM-aBLSTM and motion-IM-aBLSTM net-
works, fused to differentiate Autistic Disorder (AD),
High-Functioning Autism (HFA), and Asperger Syn-
drome (AS). The IM attention mechanism tracked
non-linear behavioral dependencies between inter-
locutors, achieving a UAR of 66.8% on a large ADOS
collection. (Alban et al., 2021) emphasized tech-
nology’s utility in detecting and improving therapy
for challenging behaviors in autistic children. They
explored detecting behaviors using a wearable sen-
sor (Empatica E4 wristband) and machine learning.
The annotation approach recorded instances of chal-
lenging behaviors and stimuli group interactions with
social robots. Features were analyzed using Sup-
port Vector Machine (SVM), Multi-Layer Perceptron
(MLP), and Decesion Tree (DT) techniques. The
model achieved promising results (97% accuracy),
suggesting potential efficiency in addressing chal-
lenging behaviors. A detection system with wear-
able sensors could notify parents or caregivers for
timely intervention, while social companion robots
could mediate and react to alleviate challenging be-
haviors.

2.4 Discussion

All the aforementioned works proposed efficient
frameworks for emotion, activity and behavior recog-
nition based on multimodal approaches. These works
suggested several types of fusion methods such as
data-fusion, feature-level fusion, decision-fusion or
hybrid-fusion. Moreover, all these studies have shown
that the fusion of several modalities (two or more
modalities) increased the performance and robustness
of the proposed systems. In addition, in these ap-
proaches, authors used either machine learning tech-
niques (SVM, k-Nearest Neighbors (KNN), Naive
Bayes, Hidden Markov Model (HMM)), etc.) or deep
learning techniques (Convolutional Neural Network
or CNN (CNN), Long Short Term Memory (LSTM))
to classify emotions, activities, or behaviors. Mod-
els with high accuracy levels are implemented using
deep learning techniques. However, none of these
works collected multimodal data for autistic children
in an uncontrolled environment and during a Melt-
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down crisis by using Kinect sensors. Moreover, no
work processed facial and body data during a syn-
chronized period to recognize the behaviors of autis-
tic people in normal states or during crises. In our
work, we suggest to use the early fusion to merge
two different modalities, namely compound emotions
and abnormal-complex physical activities, to recog-
nize behaviors and detect meltdown crises. To this en-
deavor, we tested custom architectures of deep learn-
ing to determine the most suitable and efficient model
for our case (See Table 1).

3 ”MELTDOWN-CRISIS
DATASET” DESCRIPTION

In this research project, we created a novel dataset
called Meltdown Crisis, which contains realistic sit-
uations of autistic children in daily activities as well
as during a meltdown crisis. This was necessary be-
cause there were no publicly available and/or realistic
datasets. Making videos is an extremely important,
delicate, and serious undertaking. Furthermore, it’s
crucial to take ethics into account when filming autis-
tic youngsters on camera. In fact, in any society, get-
ting permission to film young kids might be challeng-
ing. We were able to register 23 autistic children at the
healthcare center ?ASSAADA”’for autistic children,
whose ages range from 6 to 15 years old, because of
our extensive study in healthcare centers for autistic
children around the world and specifically in Tunisia.
Thirteen of the twenty-three autistic youngsters who
had the worst meltdown symptoms participated in our
study. They were between the ages of five and nine.
Using a Kinect V2 camera set to record at 30 frames
per second, we watched and documented the behavior
of the thirteen youngsters who were chosen over three
months in real-world settings. Three rooms are used
for video acquisition, with preset parameters and an
average video length of one hour. Further diagnosis
and description of our "Meltdown Crisis” Dataset can
be found in (Masmoudi et al., 2019).

4 AUTISTIC CHILD BEHAVIOR
ANALYSIS FOR MELTDOWN
CRISIS DETECTION

The process of combining information from numer-
ous sources for regression tasks is often defined as
multimodal fusion. Multimodal fusion introduces the
advantages of using a robust and complementary in-
formation gain model and the functional continuity

of the system even in case of failure of one or more
modalities ((Ouyang et al., 2017), (Ding et al., 2016),
(Zhang et al., 2016)). In other words, early fusion
merges low-level features from each modality using
correlations for a better task accomplishment. How-
ever, it is sometimes difficult to implement due to
same temporal synchronization problems based on
multiple input sources. The decision phase fusion,
however, gains unimodal decision values which are
combined to reach the final decision. Although late
fusion ignores a few low-level interactions, it permits
easy training with more flexibility and simplicity for
making predictions when one or more modalities are
missing. The hybrid fusion (mid-level) attempts to
exploit the advantages of both early and late fusion in
a common framework.

In our case, the aforementioned fusions (late and
hybrid) are unattainable because the suggested sys-
tems of emotions and physical activities were trained,
particularly on two distinct datasets. Children’s faces
cannot be detected at the present time in all video
frames. Hence, two different output sizes emerged
for both systems. Thus, we adopt the early fusion
method. Figure 1 shows the Multimodal CNN-model
architecture for meltdown crisis recognition. In this
CNN-model, we used three Convolution layers with
ReLu function activation. Two Max-pooling Layers
are also used for mapping extracted features from the
Convolution Layer. Then, a Fully Connected (FC)
layer with ReLu function is used. Once these fea-
tures are extracted, they are concatenated and consid-
ered as input to the single Fully Connected Layer. Af-
ter that, a Fully Connected layer with Softmax func-
tion is used to classify the children’s states (0 for
Normal state and 1 for Meltdown state) based on
two modalities, compound emotions, and abnormal-
complex physical activities. The pseudo-code pre-
sented subsequently, reports the details of the archi-
tecture development steps:

In this context, this model represents the most ef-
ficient model because it is the fastest model that pro-
vides us with the best recognition rate. Thus, this
is a strong point because time is a significant factor
for Smart-AMD System. Consequently, this step al-
lows us to propose a complete system that recognizes
abnormal behaviors during a meltdown crisis. Thus,
this model should help autistic children avoid harm-
ing themselves in case of a meltdown crisis by alerting
their caregivers.
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Table 1: Overview of emotion and physical activity recognition based on multimodal approaches.

Proposal Fusion Technique Key Findings Recognition Rate

(Busso et al., 2004) | Feature-level and | Bimodal emotion classifier outperformed uni- | 85.2%
Decision-level fusion modal systems, with feature-level fusion ex-

celling in anger and neutral states recognition.
(Castellano et al., | Feature-level Fusion Fusion of data at feature and decision levels | 91.6%
2007) significantly improved recognition rates, par-

ticularly for eight emotions.

(Kessous et al., | Feature and Decision- | Gesture-speech fusion showed the most effec- | 89.3%

2010) level Fusion tive improvement in emotion recognition.

(Psaltis et al., | Early Fusion Deep model for emotion recognition achieved | 92.1%

2019) higher accuracy compared to mono-modal and

early-fusion algorithms.
(Pandeya and Lee, | Hybrid Fusion Multimodal CNNs outperformed unimodal | 88.56%
2021) classifiers, achieving 88.56% accuracy in
emotion recognition.

(Radoi et al., 2021) | Late Fusion Temporally Aggregated Audio-Visual Net- | 84.0%
work (TA-AVN) achieved competitive results,
with accuracies of 84.0% and 78.7%.

(Masurelle et al., | Utilized Gaussian mix- | Multimodal approach achieved 74% F- | 74.0%

2013) ture models and HMM | measure in recognizing Salsa dance steps.
classifiers

(Lietal., 2017) Utilized fusion of ac- | heterogeneous fusion improved overall system | 91.3%
celerometer, radar, and | performance, leading to a global classification
RGB-Depth data rate increase.

(Tian et al., 2020) Multilevel Fusion Proposed framework aligned features from | 92.5%

different modes into a common space, improv-
ing gesture recognition accuracy.

(Lin et al., 2020) Data Fusion Integration of Kinect and wearable sensors | 68.35%

significantly improved Human Action Recog-
nition accuracy.

(Franco et al., | Utilized Skeleton and | Fusion of Skeleton and RGB data streams en-

2020) RGB data fusion hanced activity recognition in home environ-

ments.

(Yu et al., 2020) Utilized real-time fea- | D3D-LSTM model achieved high accuracy in | 95.40%
ture fusion discriminating similar actions.

(Pimpalkar et al., | Utilized gesture and fa- | Gesture recognition system using webcam

2014) cial expression recog- | showed potential in enhancing computer
nition awareness of user behaviors.

(Lin et al., 2020) Utilized speech and | IM attention mechanism differentiated Autis- | 66.8%
motion-IM-aBLSTM tic Disorder (AD), High-Functioning Autism
networks) (HFA), and Asperger Syndrome (AS).

(Albanetal., 2021) | Utilized Empatica E4 | Detection system with wearable sensors | 97.0%
wristband and machine | achieved promising results in addressing chal-
learning lenging behaviors in autistic children.

S EXPERIMENTAL RESULTS OF

5.1 Experimental Results

MELTDOWN CRISIS
DETECTION BASED ON
AUTISTIC CHILDREN’S
BEHAVIOR ANALYSIS

To evaluate and validate our multimodal approach, we
carried out a set of experiments by using the proposed
deep model architecture with different settings and
parameters.
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In this section, an evaluation step is carried out to se-
lect the best model that allows to detect a Meltdown
crisis state. To this endeavor, we tested three architec-
tures that will be described subsequently.
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Figure 1: Multi-modal CNN model architecture for meltdown crisis recognition based on compound emotions and abnormal-

complex physical activities.

Table 2: Architecture development steps of our Multimodal
CNN model.

INPUTS

-Input 1: Dy as the labeled data
for emotions

-Input 2: D, as the labeled data for
activities.

- The layers of the second modality
are renamed to remove ambiguity
(see Algorithm 1).

- Features extracted from the emo-
tion modality are defined as the set
of (X!, X, X oo X!}

- Features extracted from the activ-
ity modality are defined as the set
of {XP, Xb x2,......... X0}

- ¥/ ™ = 0 for Normal state

¥/™ = 1 for Meltdown Crisis
state

PROCESSING

OUTPUT

5.1.1 Experiment 1: CNN-Model Architecture
Based on Inception-Resnet-V2 Features

In this experiment, we suggested to concatenate fea-
tures extracted from the pre-trained InceptionRes-
netV2 model. The latter is considered as the best
model that achieved the best results for compound
emotion and the abnormal-complex physical activity
systems (cf. Figure 2). Then we applied the Principal
Component Analysis (PCA) method to select relevant
features (2286 features). Once these features were se-
lected, they were concatenated and presented as in-
put for machine learning algorithms such as DT, MLP,
KNN, NB and SVM. The best results were recorded

(86.9% of Accuracy rate) using DT classifier with
Bayesian optimization (See Table 3).

The core of this approach that combine fea-
tures extracted from each modality generate decisions
about the tackle based on multimodal analysis. Based
on the experiments, we have obtained a performance
about 86.9%. Of course this rate is acceptable because
first it is based on multimodal approach. Second, it is
considered as the first work analyzing complex and
realistic dataset. In fact, based on the experiments of
the literature review, the multimodal approach usually
improves the results. However, in our case, the results
showed a decreasing of performance comparing to the
single modalities. At the same time, we cannot con-
sider single modality approach either based on activ-
ity or based on emotion because we cannot guarantee
that this modality appears in meltdown crisis. So, we
should rely on a multimodal approach.

For these reasons, we have tried to enhance our
proposed model by proposing other architectures. So,
by taking advantage of the early fusion, we proposed
a multimodal CNN-model architecture for meltdown
crisis behavior recognition. These architectures are
described in the following subsections.

5.1.2 Experiment 2: Customized Multimodal
CNN-Model Architecture

As shown in Figure 3, we proposed a CNN-based ar-
chitecture with two input streams for detecting facial
expressions and for physical activities. Then, we in-
troduced the same layers with the same parameters;
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Data: Input 1: D //Labeled Data Frame of
Emotions
Input 2: D,
// Labeled Data Frame of Activities
Result: Output: Y,,f *5 = 0 //for normal state;
,LfH’ =1 //for meltdown crisis state
Ixi representative vector of D
/1 XP : representative vector of Dy,
1Y Predicted classes
// numHiddenDimension: dimension of hidden
layer
/I numClasses=2
/I Layers=Layer1 = convolution2dLayer,
Layer2=maxPooling2dLayer,
Layer3=convolution2dLayer,
Layer4=maxPooling2dLayer,
Layer5=convolution2dLayer,
Layer6=fullyConnectedLayer]:layers of the
proposed model
/[Layer: one of model’s layers
Layers = createLayer(
X,{ ,numHiddenDimension) //create layers for
inputl
Layers2 = createLayer(X”
,numHiddenDimension) //create layers for
input2
//When the two layers are merged, the same
name of the layers cannot be used. So, we Use
renamel_ayerfunction to rename the layer
name in layers2
For Layer in Layers do
/[ for each layer in the model Layers2 =
renamel.ayerFunction(Layers2,’-2’) ;
// rename layers of input2 by adding’-2’
end
LayersAdd = concatenationLayer(1, 2,
’Name’, ’cat’) //add concatenation layer in
order to fuse features extracted from our two

inputs
FeaturesMap = ConcatenateFeatures{X lf s Xzf s
X . X+ X0, X0 XD, X0}

//The Feature map of the concatenate features
extracted from D et Dy,

LayersAdd =

fullyConnectedLayer(numClasses,’ Name’)

//add fullyConnectedLayer for classification
purposes

Algorithm 1: Rename layers of our CNN-model with two
inputs.

» The first layer is allocated to the Convolution
layer with kernel - size = 4 and ReLu activation
function.

* The second layer is a max-pooling layer with pool
- size (2, 2).

* The third layer is allocated to Convolution layer
with kernel - size =4 and ReLu as activation layer.
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 The fourth layer is a max-pooling layer with pool

- size (2, 2).

 The fifth layer is allocated to Convolution layer

with kernel - size =4 and ReLu as activation layer.

» The sixth layer is a max-pooling layer with pool

— size (2, 2).

* The seventh layer is a flatten layer.
* A concatenation Layer is employed to concate-

nate features extracted from two modalities.

* For classification purposes, three Dense layers are

employed; the first layer consists of 128 nodes
and ReLu activation function, the second Dense
layer is composed by 10 nodes and ReLu activa-
tion function.Finally, a Dense Layer is allocated
for classification purposes with the Softmax Func-
tion.

* To compile this network, the Adam optimizer is

utilized with these default settings (Learning rate
= 0.001, beta-1 = 0.9, beta-2 = 0.999, epsilon =
le-07, amsgrad = False). Moreover, to fit this net-
work, we used 100 epochs, 128 as a batch size.
We obtained motivating results with a validation
accuracy of 76.80%.

Table 3: Classification results of the Inception-Resnet-V2
Fused Features.

Algorithm | Parameters Accuracy
Fine Tree 80.7%
DT Medium Tree 85.7%
Coarse Tree 85.5%
Optimizable 86.9%
LinearSVM 69.2%
Quadratic SVM 74.4%
Cubic SVM 74.4%
e 1 Fine Gaussian SVM | 74.4%
Medium  Gaussian | 74.4%
SVM
Coarse Gaussian | 60.6%
SVM
FineKNN 73.9%
MediumKNN 64.0%
CoarseKNN 39.5%
KNN CosineKNN 72.2%
CubicKNN 59.6%
Weighted KNN 71.2%
With 2 hidden layers | 85.1%
MLP (10 nodes -20 nodes)
With 3 hidden layers | 79.8%
(10 nodes -10 nodes -
10 nodes)
With 3 hidden layers | 80.0%
(20 nodes -10 nodes -
10 nodes)
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|
I _—
Max-Pooling Fl
L | T——
' : Layer 1.2
Facial Frames Comvolaticn Max-Feoling L
Laver 1-1 Layer 1-1

I —_—
i
Mas-Pooling
Layer 2.2

R

Ceavolution
Laper 2-1

Convolutice
Layer 2-2

Max-Peoling
Layer 2.1
Body Frames

u

lattem Layer]

Fully
Connected
Layer

Fully
Coanected
Laver

Feature
concatenation

PG

Flatten Layer 2

Figure 3: CNN-Model architecture.

5.1.3 Experiment 3: Multimodal CNN-Model
Architecture for Meltdown Crisis
Recognition Based on Compound
Emotions and Abnormal-Complex
Physical Activities.

As illustrated in Figure 1, we proposed a CNN based
architecture with two input streams for detecting fa-
cial expressions and for physical activities. Then, we
put forward the same layers with the same parame-
ters;

* The first layer is allocated to a Convolution layer
with kernel-size= 4 and ReLu as activation func-
tion.

¢ The second layer is a max-pooling layer with
pool-size(2, 2).

The third layer is allocated to a Convolution layer
with kernel-size = 4 and ReLu as an activation
layer.

The fourth layer is a max-pooling layer with pool-
size(2, 2).

The fifth layer is allocated to the Convolution
layer with kernel-size = 4 and ReLu as the acti-
vation layer.

The sixth layer is allocated to the Fully Connected
layer with 128 nodes.

A concatenation Layer is employed to concate-
nate the features extracted from two modalities.

For classification purposes, a Dense layer is em-
ployed with the Softmax Function.
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Figure 4: Values for training Loss and validation Loss.

* To compile this network, the Adam optimizer
is utilized with these settings (Learning-rate =
0.001, beta-1 = 0.9, beta-2 = 0.999, epsilon = le-
07, amsgrad = False). Moreover, to fit this net-
work, we used 50 epochs, 32 as a batch-size.

Our “"MeltdownCrisis” dataset is composed of
Emotions: (15113 Frames); Physical activities
(24929 Frames). Because, we run our model on
”cpu” environment, by using 3000 frames for each
modality. These data are split into 70% for the
training dataset, 20% for the testing dataset and
10% for the validation dataset. The recorded re-
sult achieved a validation accuracy of 99.50%.
The function Loss of this model is presented in the
Figure 4. The red line represents the Loss function
of training data and the blue line stands for the
Loss function of validation data. So, this model
represents the most efficient model because it is
the fastest model that provides us with the best
recognition rate. Thus, this is a strong point be-
cause time is a significant factor for Smart-AMD
System.

5.2 Validation

To perform a quantitative evaluation of the best
recorded result and validate our proposed approach,
we measured Recall, Precision and F-measure values.
The obtained results are 99.50% Validation-accuracy,
99.75% Precision, 98.50% Recall and 99.62% F-
measure.
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5.2.1 Discussion

To achieve a more realistic evaluation, we assessed
our suggested approach by comparing it with exist-
ing literature works. According to Table 4, the work
of (Psaltis et al., 2019) permits to recognize of the
behaviors of normal people based on their facial and
body gesture modalities. In this work, the dataset was
acquired using the Kinect camera. The authors pro-
posed a CNN network for feature extraction and SVM
for classification purposes. The recorded classifica-
tion rate was 98.3%. In addition, based on two facial
expressions and speech modalities, [94] suggested
an Attentional BLSTM model to recognize autistic
behaviors and classify autistic children in different
groups. The dataset was acquired using High Defi-
nition cameras during interviews between the psychi-
atrist and each autistic child. The obtained classifi-
cation rate is 68.6%. However, our proposed model
proves its effectiveness, compared with both (Psaltis
et al., 2019) and (Lin et al., 2020). This can be ex-
plained by the fact that these approaches did not ad-
dress the challenges of recognizing autistic abnormal
behaviors during a Meltdown crisis. In addition, they
were not conducted in an uncontrolled environment.

6 CONCLUSION

In conclusion, this paper presented a comprehensive
approach for analyzing autistic children’s behavior
during a meltdown crisis, with a focus on the de-
tection of such crises. The proposed multimodal fu-
sion method adopted early fusion due to challenges
arising from different output sizes of the suggested
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Table 4: A Comparative study with state of the art methods.

Paper | Approach | People Modality | Camera Dataset Classification | Classification Rate
Category | Type Type Method
(Psaltis | CNN and | Normal -Facial Kinect Facial SVM 98.3%
et al, | SVM expression | camera expression
2019) -Body and body
gestures gesture
dataset
(Lin Attentional | Autist Facial High Audio- Dense layer | 68.8%
et al., | BLSTM expres- Definition | video with the Soft-
2020) sions and | cameras ADOS max function
speech interview
records dataset
Our CNN Autist Compound | Kinect Meltdown | Dense layer | 99.5%
based emotions camera Crisis with the Soft-
model Frames dataset max function
and
Abnormal-
Complex
Physical
activity
Frames

emotion and physical activity systems. The result-
ing Multi-modal CNN model architecture showcased
three Convolution layers, two Max-pooling Layers,
and Fully Connected layers to efficiently recognize
meltdown crisis states based on compound emotions
and abnormal-complex physical activities.

The experimental results, detailed in three dis-
tinct experiments, demonstrated the effectiveness of
the proposed approach. In Experiment 1, using
the Inception-Resnet-V2 model features and applying
Principal Component Analysis (PCA), the best accu-
racy of 86.9% was achieved using the Decision Tree
(DT) classifier with Bayesian optimization. In Exper-
iment 2, a Customized Multimodal CNN-model Ar-
chitecture exhibited a validation accuracy of 76.80%,
providing a fast and efficient model. Finally, Ex-
periment 3 introduced a Multimodal CNN-model ar-
chitecture specifically designed for meltdown crisis
recognition, achieving an outstanding validation ac-
curacy of 99.50%.

The validation step further confirmed the ro-
bustness of the proposed approach, with a confu-
sion matrix showing high precision (99.75%), recall
(98.50%), and F-measure (99.62%) values. The com-
parison with existing literature highlighted the superi-
ority of the proposed model in addressing the unique
challenges of recognizing autistic abnormal behav-
iors during a meltdown crisis in an uncontrolled en-
vironment. Overall, the presented model provides a
valuable tool for caregivers to promptly identify and
intervene in meltdown crises, potentially preventing
harm to autistic children. The approach demonstrates
promising results and opens avenues for further re-

search and development in the field of autism behav-
ior analysis and crisis detection. As future works,
we will look forward to evaluating Smart—-AMD in
authentic contexts. Furthermore, we aim to enrich
our “MetldownCrisis” dataset with other videos and
different meltdown crisis scenarios taken from other
healthcare centers. In addition, we aim to propose a
new system that allows us to identify and detect ab-
normal and stereotyped facial expressions and physi-
cal activities during multiple states.These works will
be developed using Deep Learning techniques, such
as CNN, LSTM, ConvLSTM, etc.
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