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Traditional CNN architectures for classification, while successful, suffer from limitations due to diminishing

spatial resolution and vanishing gradients. The emergence of modular ”building blocks” offered a new ap-
proach, allowing complex feature extraction through stacked layers. Despite the popularity of models like
VGG, their high parameter count restricts their use in resource-constrained environments like Edge Al This
work investigates efficient building blocks as alternatives to VGG blocks, comparing the performance of di-
verse blocks from well-known models alongside our proposal block. Extensive experiments across various
datasets demonstrate that our proposed block surpasses established blocks like Inception v1 in terms of ac-
curacy while requiring significantly fewer resources regarding computational cost (GFLOPs) and memory
footprint (number of parameters). This showcases its potential for real-world applications in Edge Al

1 INTRODUCTION

Edge computing has gained popularity thanks to high-
performance devices integrating microcontrollers and
multicore computing units GPUs on a single board.
This has allowed the emergence of AI Edge Comput-
ing, a research field that brings Al capabilities closer
to the network’s edge. Among the most known Edge-
Al devices, NVIDIA Jetson is a notable example of
this technology, offering high performances for many
computing-intensive tasks such as computer vision,
all while keeping energy consumption low. Despite
these advances, the edge nodes’ performance is not
comparable to high-end servers. For this reason, Edge
Al applications must be designed with resource con-
straints in mind.

In (De Lucia et al., 2022), three different strategies
are proposed to deploy Al models at the Edge. The
first relies on framework design, which adapts the Al
models to the new environment, mainly through data
or functional decomposition, using Federated Learn-
ing (McMahan et al., 2017), for example. Another
strategy, model adaption, implies using data com-
pression techniques and filtering the model through
quantization and pruning. Finally, these authors pro-
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pose using process acceleration to rewrite the models
according to the available device features (presence
of tensor operation support, multicore processing).
Overall, these strategies require some modification
before deploying a model to the Edge. In this paper,
we propose a different strategy, namely the choice of
better models (or convolutional blocks, in our case),
to achieve higher performances with less cost. This
strategy may bring important cost reductions and pre-
vent a continuity gap between model training on high-
end servers (ideal for faster training and prototyping)
and model deployment for inference at the Edge.

In this work, we target image classification, one
of the basic operations in machine learning. Early
Convolutional Neural Networks (CNN) use a suc-
cession of convolution and pooling layers before the
fully connected classification. This includes the first
CNN, LeNet in 1989 (LeCun et al., 1989), but also
early models like AlexNet (Krizhevsky et al., 2012),
VGG (Simonyan and Zisserman, 2015), or ZFNet
(Zeiler and Fergus, 2014). For instance, the tradi-
tional building block of Convolutional Neural Net-
works (CNNs) often comprises (i) a convolutional
layer with padding, (ii) a non-linearity like ReLU,
and (iii) a pooling layer for dimensionality reduction.
While this approach is effective, it suffers from sig-
nificant spatial resolution loss and a cumulative van-
ishing gradient problem, which limits the number of
successive convolutional layers.
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Over the years, the design of neural network archi-
tectures evolved from a focus on individual neurons
to larger-scale abstractions. Indeed, the rise of deep
learning ushered in a new era, where researchers be-
gan leveraging “’building blocks” - pre-defined modu-
lar units composed of stacked layers capable of cap-
turing more complex features.

The VGG network (Simonyan and Zisserman,
2015) stands as a pioneering example of exploiting
modularity by utilizing multiple convolutional blocks.
Contrary to earlier models such as AlexNet, the con-
volutional layers in VGG are grouped in nonlin-
ear transformations that leave the dimensionality un-
changed, followed by a resolution-reduction step, as
depicted in Figure 1.
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Figure 1: Comparison between AlexNet and VGG.
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This modular design philosophy readily translates
into modern deep learning frameworks, as loops and
subroutines facilitate the implementation of repeti-
tive structures, further promoting the adoption of such
building blocks in architecture design. Hence, mod-
ern CNN architectures are composed of blocks per-
forming many different operations, such as classical
or factorized convolutions with different kernel sizes,
tensor addition or concatenation, and parallelism.

Despite its age, VGG remains a reference in
the domain of image classification, as its sequen-
tial architecture is easy to understand and imple-
ment. Nonetheless, the traditional VGG implemen-
tation induces an important number of parameters,
which penalizes its usage in resource-constrained en-
vironments such as the case of Edge Al

For this reason, in this paper, we aim to iden-
tify more efficient blocks instead of VGG blocks.
Using a VGG-like architecture as a framework, we
compare the performances of different blocks used in
well-known classification models such as MobileNet
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(Howard et al., 2017), ResNet (He et al., 2016), In-
ception (Szegedy et al., 2014), SqueezeNet (Iandola
et al., 2016), GhostNet (Han et al., 2020). We also
include blocks from other models for object detection
YOLO v8 (Jiang et al., 2022; Jocher et al., 2023) or
segmentation CGNet (Wu et al., 2019), and propose
our block based on a simplified Inception block.

The remainder of this paper is organized as fol-
lows: Section 2 presents the main blocks considered
for this work and their characteristics. Section 3 de-
scribed the datasets and benchmark parameters used
in the comparison. Section 4 presents the perfor-
mance benchmarks and analyses the obtained results.
Finally, Section 5 discusses the impact of the experi-
ments in the context of Edge Al and draws some fu-
ture work directions.

2 DEEP LEARNING ”BUILDING”
BLOCKS

Early CNNs only used a succession of convolution
and pooling layers before the fully connected classi-
fication. This includes the first CNN, LeNet in 1989
(LeCun et al., 1989), and early CNN of the deep learn-
ing era like AlexNet (Krizhevsky et al., 2012), VGG
(Simonyan and Zisserman, 2015), ZFNet (Simonyan
and Zisserman, 2015), etc. Those models were sim-
ple because they are sequential but prone to problems
such as the vanishing gradient problem. Since 2012,
deep learning has become the state-of-the-art in com-
puter vision, and research in deep learning is still very
active.

Modern CNNs use a succession of complex com-
ponents that we call blocks. Blocks are made of dif-
ferent operations, such as classical or factorized con-
volutions with different kernel sizes, tensor addition
or concatenation, parallelism, etc. Some of these
blocks are far more sophisticated than the original
VGG blocks, making interesting alternatives to op-
timize image classification models’ performance and
memory footprint. Therefore, this work uses selected
blocks from well-known models to replace VGG’s
original blocks.

Our baseline reference are the blocks from VGG
(Simonyan and Zisserman, 2015), implemented with
only two or three sequential convolutional layers with
3x3 filters and ReL.U activation.

More recent models implement blocks that have
at least two paths. The first to propose a two paths
block is ResNet (He et al., 2016) with the residual
unit. ResNet blocks are like VGG blocks with two
layers and a skip connection. The skip connection is
the sum of the input of the block and the output of the
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last convolutional layer.

Concatenation can also be used instead of addi-
tion. This is used in many blocks such as the Incep-
tion models, GhostNet (Han et al., 2020), SqueezeNet
(Iandola et al., 2016), the C2F block of YOLOvS8
model (Jiang et al., 2022; Jocher et al., 2023), or
the Context-Guided block of the CGNet (Wu et al.,
2019) segmentation models. We have selected the
main block of those models for this study.

Hence, the Inception VI block, wused in
GoogleNet (Szegedy et al., 2014), processes
the features in a parallel manner with three convolu-
tional layers with filters of size 1x1, 3x3, and 5x5.
The output of each layer is concatenated with the
output of a pooling layer to be used in the next block.
Point-wise convolution is used before each layer to
reduce the number of channels.

The GhostNet block is based on the principle of
redundant features in a CNN. Simple transformations
can be used to increase the number of channels. This
is simply done by concatenating the feature maps with
a transformed version of the same features. In the
GhostNet module, it is done with depth-wise convo-
lution (each filter is only applied to one channel). An-
other well-known model, SqueezeNet (Iandola et al.,
2016), uses a similar approach to GhostNet with two
paths with 1x1 and 3x3 convolutions.

GhostNet and SqueezeNet were designed to be
lightweight when compared to heavier models such
as VGG and GoogleNet. Other lightweight models
include the MobileNet and YOLO families.

Another simple block used in this work is the main
component of MobileNet V1 (Howard et al., 2017),
a single Depthwise Separable Convolution layer. On
the other hand, MobileNet V2 (Sandler et al., 2019)
and V3 (Howard et al., 2019) are two more modern
versions popular for their efficiency and good per-
formance. They used the same inverted bottleneck
residual block: the number of channels is increased
with 1x1 convolutions; this is the expanding or pro-
jection step, which will be processed by depthwise
filters. Then, another 1x1 layer will squeeze back the
number of channels. In both models, the block also
used the skip connection of ResNet. However, Mo-
bileNet V3 adds another component called Squeeze-
and-Excitation (Hu et al., 2019). This fully connected
network assigns a dynamic weight to each channel of
the feature maps. It is really small because it only uses
the output of a global pooling as input. This is one of
the most straightforward ways to generate dynamic
weights. This can be interpreted as a basic channel-
wise attention (Vaswani et al., 2017).

So far, we have discussed blocks designed for
classification networks. However, many blocks were

designed for other tasks, such as object detection or
segmentation, even though they perform some form
of internal classification. Therefore, we have selected
two components from the YOLOv8 object detection
and the CGNet segmentation model.

It is difficult to find the original motivation for the
design of the C2F module used in YOLO v8 (Ter-
ven and Cordova-Esparza, 2023). It is a succession
of residual bottleneck blocks wired in the same man-
ner as the Dense block of the DenseNet (Huang et al.,
2018) model: each feature map is concatenated be-
fore the final convolutional layer. To be more effi-
cient, the first bottlenecks are only applied to half of
the input features. Despite their apparent complexity,
the YOLO models are efficient for real-time detection
on edge devices.

Similarly, CGNet was developed as a lightweight
alternative to bigger segmentation models such as
DeepLabV3 (Chen et al., 2017) or HRNet (Wang
et al., 2020). It uses a succession of Context-
Guided blocks to avoid too many down-sampling
steps. Those blocks have two paths that are com-
bined with a convolutional 1x1 layer. The first path
uses Separable Depthwise Convolution, and the sec-
ond uses a similar layer with a bigger dilation rate. In
this manner, the block can compare the features at dif-
ferent scales. It also uses skip connection and the pre-
viously mentioned squeeze-and-excitation technique
to create a deep network.

2.1 Proposed Block

In this section, we propose a new block, inspired
by many existing blocks proposed in the literature.
This block was first designed by our team in the con-
text of image segmentation for grape disease detec-
tion (Mohimont, 2023). Indeed, a PSPNet model was
used to segment grape bunches infected by gray mold.
This PSPNet model uses a Pyramid Pooling Module
(PPM) (Zhao et al., 2017) that is the main inspiration
for our proposed block.

The PPM block applies many pooling layers to
the feature maps with different window size, resulting
in a pyramid of pooled features. Point-wise convo-
lution and up-sampling are then used to concatenate
every feature maps. In this manner it is also similar
to the Inception block. The core idea of the PPM is
to increase the receptive field size to get a better con-
text, preventing some mistakes for object segmenta-
tion. For examples, the pixels of a car are often colo-
cated with pixels from roads and pedestrian crossing.

In our proposed block, we use a pooling pyramid
with three successive 2x2 max-pooling layers. Our
assumption is that pooling is the cheapest way to in-

305



CLOSER 2024 - 14th International Conference on Cloud Computing and Services Science

MavDanlineg
MavDaaling

MaxPooling
2x2

SepConv 3x3

Figure 2: Structure of our proposed block.

crease the receptive field because it does not need pa-
rameters or a large window size. More importantly,
every CNN, since ResNet, have been using at least
two paths inside their main convolutional module.
The simplest way is to put a residual connection but
you can also use many layer in parallel like Incep-
tion. A simple residual block will act as features re-
finement, it improves the input feature in an iterative
manner (Jastrzebski et al., 2018). And adding par-
allel processing with different kernel can also help
to get bigger receptive field. In both case, the final
features were computed from features with different
scales. Increasing the receptive field is generally done
by stacking multiple layers. In our proposed block we
uses three successive max-pooling layers to anticipate
the bigger receptive field of the next layers and gain
more contextual information.

The proposed block is a therefore simplified In-
ception block based on the Spatial Pyramid Pooling
Fusion module used in YOLO. The first step is the
classical succession of Convolution 3x3 with batch
normalization and ReLU activation. Then, max-
pooling is applied three times in a cascade manner
to the feature maps. The four sets of feature maps
are then concatenated to be processed by a depth-wise
separable convolutional layer before the skip connec-
tion. In this manner, it is less expensive than Inception
because the Max-Pooling layers do not use parame-
ters and because they are applied depth-wise. Figure
2 shows a precise illustration of the proposed block.
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Table 1: Characteristics of the datasets.

Dataset Irr}age Training | Validation Classes
size samples | samples
MNIST 28x28x1 60,000 10,000 10

Fashion MNIST | 28x28x1 60,000 10,000 10

CIFAR-10 32x32x3 50,000 10,000 10
CIFAR-100 32x32x3 50,000 10,000 100
Tiny ImageNet | 64x64x3 100,000 | 10,000 200
ImageNette 160x160x3 | 9,469 3,925 10
ImageWoof 160x160x3 | 9,025 3,929 10

3 BENCHMARK DESCRIPTION

To compare the performance of the different blocks,
we chose to train the models using different datasets
from the literature. Indeed, one of the objectives
of this work is to study the correlation between the
model accuracy on small benchmarks with low res-
olution and the accuracy of the same model with
higher-resolution data.

We have selected seven datasets created for model
benchmarking: MNIST (Lecun et al., 1998), Fashion
MNIST (Xiao et al., 2017), CIFAR-10 and CIFAR-
100 (Krizhevsky, ), Tiny ImageNet (Tavanaei, 2020;
Tin, ), ImageNette and ImageWoof (Howard, 2020).
The details of each dataset are shown in Table 1.

Widely known, the two MNIST datasets are used
in our experiments as a baseline to check the imple-
mentations (absence of bugs). Indeed, high accuracy
levels superior to 90% are expected for both datasets,
as the complexity of the datasets offers almost no
challenge to the blocks.

Similarly, we use CIFAR datasets because they are
the smallest color image datasets available. MNIST
and CIFAR are standard for the early development of
new models but shall not be considered a reference
for real applications.

The Tiny ImageNet, with 64x64 pixels images,
was selected as an intermediate step between low-
resolution and higher-resolution data found in real ap-
plications. Indeed, this resolution shall offer sufficient
information to start favoring more recent blocks.

Finally, for higher resolution datasets, we used
the 160p versions of ImageNette and ImageWoof
(Howard, 2020). These datasets comprise ten classes
selected from the ImageNet-1k benchmark (Deng
et al., 2009). Results obtained with these datasets are
more valuable to our analysis because they represent
real images.

3.1 Benchmark Setting

Our objective is not to achieve the best accuracy for
each model but to compare their performances sim-
ilarly. For this reason, we used a simple VGG-like
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Figure 3: VGG-like architecture used in the experiments.

architecture, as shown in Figure 3. This architecture
is then adapted by replacing the convolutional layers
(blocks represented in blue in Figure 3) with other
blocks proposed in the literature. In this manner, we
can compare different blocks in a fast way. Another
advantage of this strategy is that it enables quick pro-
totyping of new models on edge devices.

The training parameters are similar for all vari-
ants, with a maximum of 500 epochs and an early
stopping after 20 epochs of stagnation of valida-
tion loss. The classical cross entropy loss is used
as the objective function, with the Adam optimizer
(Kingma and Ba, 2017). Also, accuracy is used as
the primary metric because every class has the same
number of samples.

4 RESULTS

4.1 MNIST Datasets

Table 2 shows the training and validation accuracy
for each model. Both C2F and the proposed pool-
ing block reach the best accuracy of 99.6% on the
original MNIST dataset. However, this simple test is
insignificant because every other model also reaches
high accuracy. The differences are slightly wider on
the Fashion MNIST dataset, with accuracies going
from 89.3% for the MobileNet V1 to 92.7% for the
Inception V1 block.

Table 2: Results on the MNIST datasets.

Block MNIST Fashion MNIST
Split Train | Val | Train | Val
VGG 99,7 99,2 | 96,5 92,2

MobileNet V1 | 99,9 99,1 | 92,6 89,3
MobileNet V2 | 99,8 99,1 | 94,8 91,6
MobileNet V3 | 99,9 99,3 | 94,5 91,6
ResNet V1 99,9 99,4 | 94,8 91,3
Inception V1 99,9 99,4 | 96,4 92,7
SqueezeNet 99,8 99,1 | 94,7 92

GhostNet 99,5 98,4 | 94,2 91,1
CGNet 1 99,4 | 97,3 91,9
C2F 1 99,6 | 94,2 90,1
Pooling block 1 99,6 | 94,5 91,4

4.2 CIFAR Datasets

The subsequent results shown in Table 3 concern the
CIFAR datasets. These tests bring more interesting
insights as the performances among different block
models are much more evident despite the relatively
similar image size to MNIST and Fashion MNIST.
From our experiments, the Inception V1 module per-
forms best on both datasets with 74.9% and 38.8%,
while our proposed block only reaches 46.5% on
CIFAR-10 and 15.7% on CIFAR-100. Our interpreta-
tion is that a pooling-based block will perform poorly
on tiny images (32x32) because the loss of informa-
tion will be too significant. This is also true for the
C2F block because it was designed for object detec-
tion in high-resolution images.

We can also make two observations. First, an orig-
inal VGG block still reaches good accuracy for both
MNIST and CIFAR datasets. Secondly, our pool-
ing module was not affected by the low resolution of
the MNIST datasets. This is easily comprehensible
because both MNIST datasets contain well-defined
segmented shapes with a black background, while
CIFAR datasets use complex objects at 32x32 size.
Hence, the difficulty gap between the MNIST and CI-
FAR datasets is wide: almost any model can reach
good accuracy on the handwritten digits classification
task, but classifying objects at such low resolution is,
by definition, ambiguous.

4.3 Tiny ImageNet

The performances for the Tiny ImageNet dataset are
shown in Table 4. Those images are still low-
resolution, but their size is four times bigger than CI-
FAR, with 64x64 pixels. In this context, our Pooling
block reaches the best accuracy with 32% compared
to 28.3% obtained by MobileNet V3 or C2F. This re-
sult indicates that the image size reaches a sufficient
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Table 3: Results on CIFAR datasets.

Block CIFAR-10 CIFAR-100
Split Train | Val | Train | Val
VGG 84 73.3 | 50.3 37.2

MobileNet V1 | 72.3 66.1 | 38.4 31.6
MobileNet V2 | 82.2 71.3 | 524 38.2
MobileNet V3 | 80.1 71.7 | 46.9 36.3
ResNet V1 84.3 74 50.8 36.6
Inception V1 83.7 74.9 | 50.2 38.8
SqueezeNet 78.1 70.5 | 46.9 36.8

GhostNet 76.4 69.4 | 45.4 38.2
CGNet 90.9 72 43.2 349
C2F 35.8 355 | 11.2 10.8

Pooling block | 48 46.5 | 16.2 15.7

Table 4: Results on average-size images (Tiny ImageNet).

Split Train | Val
VGG 28,7 23
MobileNet V1 | 23,8 20,1
MobileNet V2 | 34,1 27,9
MobileNet V3 | 35,9 28,3
ResNet V1 33,8 25
Inception V1 25,7 18,3
SqueezeNet 22,5 18,7

GhostNet 29,2 24,6
CGNet 36,1 26,1
C2F 427 28,3

Pooling block | 41,6 32

size to be explored by our Pooling block.

Please note that images like MNIST, CIFAR, or
Tiny ImageNet do not represent actual images found
in real applications. We recommend the usage of
those datasets for specific Tiny-ML applications (for
example, face expression detection from 48x48p im-
ages (Shao and Cheng, 2021)).

4.4 ImageNette and ImageWoof

Finally, this section compares the blocks with larger
images obtained from ImageNette and ImageWoof
datasets. These two datasets are less commonly used
than MNIST and CIFAR because they were proposed
in 2019 by FastAl without a research publication.
Nonetheless, we argue that these datasets are more
representative for benchmarking on high-resolution
images (we have selected the 160p version for fast
training, but there is also the 320p and full size avail-
able). Both datasets use classes from the ImageNet-
1k benchmark, aiming to propose challenging classi-
fication benchmarks. Indeed, ImageWoof is the most
difficult because it only uses classes of dog breeds.
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Table 5: Results on larger images (ImageNette, Image-
Woof).

Block ImageNette | ImageWoof
Split Train | Val | Train | Val
VGG 86 70,5 | 58,8 45,8

MobileNet V1 | 88,6 71,4 | 65,2 48,6
MobileNet V2 | 82,7 71,1 | 67 50,6
MobileNet V3 | 79,7 64,8 | 54,6 39,4
ResNet V1 85 71,6 | 70,9 49
Inception V1 88,8 75,6 | 75,4 61,5
SqueezeNet 82,6 69,3 | 51 42

GhostNet 79,3 68,9 | 58,9 47,1
CGNet 93,4 73 67,9 49,9
C2F 90,8 73,2 | 92,8 63,7

Pooling block | 92,5 78,5 | 95,1 66,4

Average Accuracy and GFLOPs required

Figure 4: Accuracy and computation needs for each model.

In the experiments summarized in Table 5, our
pooling block obtained the higher accuracy, with
78.5% for ImageNette and 66.4% for ImageWoof. In-
ception V1 is the second best on ImageNette with
75.6% and C2F on ImageWoof with 63.7%.

4.5 Image Classification for the Edge

The previous sections demonstrate the interest in re-
cent blocks, especially with larger images. However,
a higher accuracy is not enough when optimizing for
the Edge. Indeed, resource-constrained environments
such as those found on the Edge need to balance ac-
curacy, computing power, and memory footprint.

Figure 4 compares the achieved accuracy and the
required computing power in GFLOPs (billions of
floating-point operations) when classifying a 160p
image. For example, the Inception V1 model needs
3 GFLOPs for one inference, while our pooling mod-
ule only needs half of this with 1.46 GFLOPs (close
to the 1.5 GFLOPs of C2F).

A small correlation of 0.31R? was found between
the accuracy of the models and the computation re-
quirement. This is expected because the architecture
is as important as the number of filters. For exam-
ple, GhostNet reaches a better average accuracy of
58% compared to MobileNet V1, which achieves only
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Figure 5: Number of parameters for each model.

52%. Nonetheless, both models need a similar com-
putation of about 0.6 GFLOPs.

Another element to consider is memory consump-
tion. As the number of parameters increases, the
model grows in complexity, requiring more mem-
ory to house intermediate calculations and activation
states. With the notable exception of Inception V1,
most recent modules have a limited memory footprint,
as shown in Figure 5.

Compared to Inception V1, which obtained the
second better accuracy on the classification of 160p
images, our pooling block shows several advantages.
First, it only needs a third of the parameters, with
197k compared to over 600k for Inception V1. This
is the advantage of using parameter-free layers like
Max-Pooling instead of convolutional layers. An-
other advantage is that our module also acts as a bot-
tleneck because the number of features is squeezed
back after the concatenation, thus avoiding increasing
parameters in the next convolutional layer.

S CONCLUSIONS

In this work, we compare different convolutional
blocks used in recent image classification models
and a new Pooling-based Inception block. System-
atic benchmarking was performed on seven datasets
(MNIST, Fashion-MNIST, CIFAR-10, CIFAR-100,
Tiny-ImageNet, ImageNette, and ImageWoof).

In a controlled setting with a VGG-like architec-
ture, our proposed block is more accurate on medium-
size images (Tiny-ImageNet, ImageNette, and Im-
ageWoof) than other classical blocks such as ResNet
or Inception V1. We also found that the MNIST
and CIFAR datasets are not representative enough to
benchmark models designed for high-resolution im-
ages. Furthermore, our proposed block model needs
less computation and memory than Inception V1.

These results reinforce the interest in comparing
the models’ accuracy and other parameters that may
impact the usage of the models, especially in the
case of Edge or IoT devices. Choosing an efficient

model also brings side-benefits for Edge-Al applica-
tions, such as reducing the energy requirements and
freeing processing cores for accessory tasks (for ex-
ample, interfacing with a GPS for precise location).
We are aware that the chosen VGG-like architec-
ture limits our current results. Our immediate fu-
ture works include, therefore: (1) the creation of a
new model based on our Pooling block to be trained
on the ImageNet-1K dataset; (2) the optimization of
the Pooling block with reparametrization techniques
(Vasu et al., 2023; Ding et al., 2021); and (3) the de-
ployment of the future model on edge applications.
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