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Abstract: Edge IoT devices, once seen as low-power units with limited processing, have evolved with introduction of 
FPGAs and AI accelerators, significantly boosting their computational power for edge AI. This leads to new 
challenges in optimizing AI for energy and network resource constraints in edge computing. Our study 
examines methods for distributed data processing with AI-enabled edge devices to improve collaborative 
learning. We focus on the challenge of assessing confidence in learning outcomes amid data variability faced 
by agents. To address this issue, we investigate the application of Bayesian neural networks, proposing a 
novel approach to manage uncertainty in distributed learning environments. 

1 INTRODUCTION 

Traditionally, Internet of Things (IoT) Edge devices 
have been perceived primarily as low-power 
components with limited capabilities for autonomous 
operations (Samie et al., 2016). However, in recent 
years, the focus of IoT research has shifted towards 
optimizing knowledge exchange and implementing 
AI and neural networks (NN) on edge devices. These 
advancements are largely due to the innovation of 
FPGAs and AI accelerators, which have 
exponentially increased the computational 
capabilities of Edge devices (Liang et al., 2023; 
Parmar et al., 2023; Wang et al., 2022). 

This evolution raises critical questions that system 
developers should address: 
 Knowledge Exchange: How can we implement 

seamless knowledge sharing between edge 
devices to refine machine learning algorithms 
while maintaining data privacy? 

 Resource Management: What strategies can 
effectively manage the computational power of 
these increasingly autonomous, high-performance 
devices? 
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 Spatiotemporal Locality: How can we address 
the localized nature of data to ensure real-time or 
near-real-time task execution? 

The challenges presented by limited resources on 
edge devices and the spatiotemporal locality of data 
are particularly significant. These issues require new 
approaches to manage computational capabilities and 
efficiently perform tasks in real-time or near-real-
time modes. 

The goal of this research is to investigate the 
algorithms and methods for deploying distributed 
machine learning within the framework of 
autonomous, network-capable, sensor-equipped, AI-
enabled edge devices. Specifically, we focus on 
determining confidence levels in learning outcomes, 
considering the spatial and temporal variability of 
data sets encountered by independent agents. To 
address this issue, we investigate the potential of the 
Distributed Neural Network Optimization (DiNNO) 
algorithm (Yu et al., 2022), aiming to extend it for 
organizing distributed data processing and 
uncertainty estimation using Bayesian neural 
networks (BNN).  

Within the scope of this paper, we explore the 
interaction of AI-enabled edge devices using the case 
of robotic platforms engaged in the task of 
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collaborative mapping. To achieve this, we need to 
address the following tasks: 
 Implement a simulation of robots navigating a 3D 

environment using the Webots platform 1 , 
augmented with advanced LiDAR sensors for 
detailed environmental mapping.  

 Decouple the DiNNO algorithm implementation 
into independent processes, enabling 
asynchronous network communication for 
distributed learning. 

 Integrate distributed uncertainty estimation into 
the resulting models by applying BNNs. 

The rest of the paper is structured as follows. Section 
2 is devoted to analyzing the state-of-the-art research, 
providing an overview of distributed machine learning 
methods, and implementing BNNs for uncertainty 
estimation. In Section 3, we present a collaborative 
mapping case. Section 4 introduces a distributed 
implementation of the DiNNO framework. Section 5 
focuses on distributed uncertainty estimation, 
exploring techniques for integrating BNN into 
DiNNO. Implementation details and the evaluation of 
our approaches are detailed in Section 6, followed by 
Section 7, which offers our conclusions and discussion 
of future work directions. 

2 RELATED WORK 

2.1 Distributed Machine Learning 
Methods 

Distributed machine learning (ML) algorithms, 
distinguished by their communication mechanisms, 
primarily support the exchange of model parameters, 
model outputs, or hidden activations. These 
exchanges can be enabled through peer-to-peer or 
client-server architectures (Park et al., 2021). The 
primary approaches utilized within these algorithms 
may be categorized as follows. 

Federated Learning (FL) orchestrates the 
periodic transmission of local training parameters 
(e.g., weights and gradients of a NN) from workers to 
a central parameter server. This server then performs 
model averaging and disseminates the updated global 
model to the workers. Such a strategy not only may 
preserve data privacy by avoiding the need for raw 
data exchange but also may enhance communication 
efficiency through adjustable transmission 
intervals (Lim et al., 2020). The authors of (Abreha et 
al., 2022) identify FL as a solution to challenges in 

 
1 https://www.cyberbotics.com 

edge computing environments, such as unwanted 
bandwidth loss, data privacy issues, and legalization 
concerns. They highlight that FL allows for co-
training models across distributed clients, such as 
mobile phones, automobiles, and hospitals, via a 
centralized server while maintaining data 
localization. 

The authors of (Nguyen et al., 2022) propose an 
extension of the FL model, called FedFog, designed 
to enable FL over a wireless fog-cloud system. The 
authors address key challenges such as non-
identically distributed data and user heterogeneity. 
The FedFog algorithm performs local aggregation of 
gradient parameters at fog servers and a global 
training update in the cloud. 

Alternating Direction Method of Multipliers 
(ADMM)-derived Methods (Boyd, 2010) (such as 
DiNNO (Yu et al., 2022), GADMM, and CADMM) 
aim to implement the distributed learning in the 
absence of a central coordinating entity by enabling 
communication directly between the neighboring 
worker nodes in a peer-to-peer (P2P) manner. One 
critical issue of FL and such P2P learning methods is 
that the communication overhead is proportional to 
the number of model parameters, limiting their 
efficacy in supporting deep NNs (Elgabli et al., 2020). 

Federated Distillation utilizes the exchange of 
model outputs, which are significantly lower in 
dimensionality compared to the full model sizes for 
distributed learning. In this approach, each worker 
performs local iterations based on its individual loss 
function. This process is enhanced with a 
regularization component that measures the 
discrepancy between the worker's predicted output 
for a specific training sample and the aggregated 
global output for the same class. A widely known 
application of knowledge distillation is model 
compression, through which the knowledge of a large 
pretrained model may be transferred to a smaller one 
(Ahn et al., 2019). 

Split Learning (SL) partitions multi-layer NN 
into segments, thus making it possible to train large-
sized deep NN that exceed the memory capacities of 
a single edge device. This approach divides the NN 
into lower NN segments on the workers' devices, each 
containing raw data and a shared upper NN segment 
hosted on a parameter server. The NN cut layer is a 
boundary between the lower and upper NN segments. 
Workers compute the activations at the NN cut layer 
and send these activations to the parameter server. 
The parameter server uses these activations as inputs 
for the upper NN segment to continue the forward 
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pass, compute the loss, and initiate the backward pass. 
Gradients calculated at the cut layer are then 
transmitted back to the workers, allowing them to 
update the weights of the lower NN segments. 
However, the efficacy of SL in terms of 
communication is subject to ongoing discussion 
(Koda et al., 2020). 

2.2 Uncertainty Estimation and 
Bayesian Neural Networks 

2.2.1 Bayesian Neural Networks 

In a conventional NN architecture, a linear neuron is 
characterized by a weight (𝑤), a bias (𝑏), and an 
activation function (𝑓 ). Given an input 𝑥, a single 
linear neuron performs the following operation: 𝑦 = 𝑓 (𝑤 ⋅ 𝑥 +  𝑏)  (1)
where 𝑦 is the output of the neuron. 

Bayesian Neural Networks (BNNs) employ a 
Bayesian approach to train stochastic NNs (Jospin et 
al., 2022). Instead of deterministic weights and 
biases, they utilize probability distributions, denoted 𝑃(𝑤)  for weights and 𝑃(𝑏)  for biases. Typically, 
these distributions are approximated as Gaussian, 
with mean and standard deviation derived from the 
training data. Hence, a Bayesian neuron outputs a 
range of possible values, not just one. So, the 
operation of a Bayesian Linear neuron can be 
described as: 𝑃(𝑦|𝑥) = 𝑓 𝑃(𝑤)  ×  𝑥 + 𝑃(𝑏)  (2)

In a BNN, the Gaussian distributions for weights 
and biases may be defined by the mean 𝜇 and the 
standard deviation  𝜎.  For weights, the 
distribution  𝑃(𝑤) is modeled as a Gaussian 
distribution with a mean 𝑤  and a standard deviation 𝑤 , where: 𝑤 = log(1 + 𝑒 ) (3)

The parameter 𝑤  ensures that the standard 
deviation is always positive. Similarly, the 
distribution 𝑃(𝑏)  for biases is represented as a 
Gaussian distribution with a mean 𝑏  and a standard 
deviation 𝑏  , where: 𝑏 = log(1 + 𝑒 ) (4)

During the forward pass of a Bayesian neuron, 
these distributions are sampled to obtain a weight and 
bias for each neuron. The sampled weights and biases 
are then used to compute the neuron's output. The 
parameters 𝑤 , 𝑤 , 𝑏 , 𝑏  are learned during NN 
training to optimize the network's performance. 

BNNs, unlike traditional NNs that use a single 
forward pass, can perform multiple forward passes 
and calculate the mean and standard deviation of the 
outputs. These statistics can reveal the model's 
uncertainty for each input data point, varying with the 
problem the NN tackles. 

2.2.2 Kullback-Leibler Divergence 

Kullback-Leibler Divergence (KL Divergence) 
(Claici et al., 2020; Kullback & Leibler, 1951) is 
employed to account for the difference between the 
Gaussian distributions that represent the parameters 
of the BNN. KL Divergence serves as a measure to 
quantify the dissimilarity between two probability 
distributions and can be generally computed as: 𝐷 (𝑔 ∥ ℎ) = 𝑔(𝑥)log 𝑔(𝑥)ℎ(𝑥) d𝑥 (5)

where 𝑔(𝑥)  and ℎ(𝑥)  are two probability density 
functions defined over the same support. The concept 
of "expected excess surprise" captures the core idea 
behind KL Divergence, reflecting the expected 
degree of "surprise" encountered when another 
"model" distribution approximates an actual 
distribution. As outlined by (Belov & Armstrong, 
2011), if 𝑁 (𝜇  , 𝜎 ) and 𝑁 (𝜇  , 𝜎 ) are two normal 
probability density functions, equation (5) may be 
reduced to: 𝐷 (𝑁 ∥ 𝑁 ) = 12 log 𝜎𝜎 + 𝜎 +  (𝜇 −  𝜇 )𝜎 − 1 (6)

Within the BNNs, applying KL Divergence helps 
quantify the deviation of the neural network's 
parameter distribution from a specified prior 
distribution. The overall loss in a BNN model is 
generally expressed as: 𝑡𝑜𝑡𝑎𝑙 = 𝑏𝑎𝑠𝑒 +  𝑘𝑙 ×  𝑘𝑙  (7)

where 𝑏𝑎𝑠𝑒  refers to the conventional loss 
function, such as Binary Cross-Entropy or Mean 
Squared Error; 𝑘𝑙  is a hyperparameter that 
enables adjusting of the level of uncertainty in the 
model's outcomes; and 𝑘𝑙  is the sum of the 
KL Divergence between the distribution of BNN 
modules 𝑁 (𝜇 , 𝜎 )  and a predefined normal 
distribution 𝑁 (𝜇 , 𝜎 ). 

3 COLLABORATIVE MAPPING 
CASE 

As a case study for a distributed AI application 
operating within the Edge Cloud, we have chosen a  
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Figure 1: Components of AI-Enabled edge device. 

collaborative environment mapping problem. This 
task  involves  deploying a  network of  independent, 
robotic edge devices (robots) at various starting 
points. Each device is tasked with building a coherent 
map of the environment, utilizing installed sensors, 
and exchanging knowledge about the environment 
with other devices.  

These devices are designed to update a local ML 
model with newly acquired data samples and 
facilitate inter-device communication via a network 
interface (see Figure 1). Equipped with computational 
cores dedicated to specific responsibilities, the 
devices feature:  
 Real-time core for immediate data processing 

and direct control of actuators. 
 General-purpose core for overall device control. 
 AI core to support an edge training cycle. 
The Distributed Neural Network Optimization 
(DiNNO) (Yu et al., 2022) algorithm is employed as 
the principal method for addressing the distributed 
machine learning problem in our study. DiNNO 
enables the implementation of distributed learning 
within a network of independent agents. These agents 
are identical robotic platforms regarding 
computational capabilities and sensor equipment. 
Each robot possesses its own sensor data set and 
maintains an individual version of the NN. These 
robots refine their NN models throughout the learning 
phase using fresh sensory inputs and then exchange 
NN parameters. This iterative process ensures that, 
over time, all agents align on a harmonized NN 
representation. The CubiCasa5K data set  (Kalervo et 
al., 2019) was used as a reference for the floor plans 
generation (see Figure 2). 

 
Figure 2: Visualization of the environment map, including 
starting points, exploration pathways and lidar range for the 
robotic agents, as described by (Yu et al., 2022). 

4 DISTRIBUTED EDGE 
LEARNING APPROACH 

To enhance the DiNNO algorithm for edge 
computing, we moved from a centralized learning 
framework that uses sequential processes and shared 
memory to a distributed version. In this setup, each 
agent operates independently, processing local 
LiDAR data, optimizing NN parameters locally, and 
exchanging updated NN parameters with peers 
through messages. 

We have introduced an epoch-based decentralized 
consensus algorithm to support the decentralized 
peer-to-peer exchange of NN parameters among 
agents (see Algorithm 1). The maximum amount of 
synchronization epochs (MaxRound), network socket 
(Socket), unique peer identifier (Id), and the initial 
state of the NN parameters (State) are given as inputs 
for the algorithm. PeerComplete[ ] and PeerState[ ] 
structures are utilized to track the completion status 
and states of peers, respectively. The core of the 
algorithm lies in the exchange of two types of 
messages: 
 The RoundComplete message indicates the 

completion of a round by a peer.  
 The State message contains the peer's state for the 

current round. 
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Algorithm 1: Peers State Exchange. 

Require: MaxRound, Socket, Id, State 
Initialize: Round, PeerComplete[ ], PeerState[ ] 
Message ← (State, 0) 
SEND(Socket, Message, Id) 
while Round < MaxRound do 

(Message, PeerId) ← RECEIVE(Socket) 
if Message is RoundComplete then 
 PeerComplete[PeerId] ← TRUE 
else 
 if Round < Message.Round then 
  FINISHROUND 
 end if 
 PeerState[PeerId] ← Message.State 
end if 
if ∀s ∈ PeerState, s ≠ Ø then 
 State ← NODEUPDATE(State, PeerState) 
 ∀s ∈ PeerState, s ← Ø 
 PeerCompleted[Id] ← TRUE 
 PeerState[Id] ← State 
 Message ← RoundComplete 
 SEND (Socket, Message, Id) 
end if 
if ∀p ∈ PeerComplete, p = TRUE then 
 FINISHROUND 
end if 

end while 
function FINISHROUND ∀p ∈ PeerComplete, p ← FALSE 

Round ← Round + 1 
Message.State ← State 
Message.Round ← Round 
SEND (Socket, Message, Id) 

end function 
The introduction of the RoundComplete message 

alongside the round finalization logic addresses the 
issues introduced by the latency in the message 
delivery. These challenges include out-of-order 
messages, delayed status updates, and 
desynchronization between rounds. A 
RoundComplete message is sent by a peer only after 
it has received all State messages from the other 
peers. It ensures that a peer only advances to the next 
round once all peers have completed the current 
round, indirectly handling message delays by waiting 
for all messages to be received before proceeding.  

As for the out-of-order messages, the agent checks 
if the received State message is from the future round. 
If so, it triggers the FINISHROUND function to ensure 
the peer catches up to the correct round. This 
mechanism helps in managing out-of-order deliveries 
due to latency.  

This algorithm version assumes all messages will 
eventually reach their intended recipients, not 
considering agent malfunctions, halts, or permanent 
network equipment failures that could cause message 
loss or communication breakdowns. 

 
 

5 DISTRIBUTED UNCERTAINTY 
ESTIMATION 

To address uncertainty estimation in the distributed 
mapping problem, we incorporate a BNN by 
replacing the conventional linear layers in the NN 
with Bayesian Linear Layers. The architecture of the 
BNN is detailed as follows: 
 Input Layer (2): x, y – an input coordinate 

representing the global position on the 
environment map.  

 SIRENLayer (256): a layer with a sinusoidal 
activation function suitable for Neural Implicit 
Mapping. 

 4 x Bayesian Linear Layers (256): four Bayesian 
Linear layers with 256 nodes each, activated by 
the ReLU function. These layers are probabilistic 
and support uncertainty estimation. 

 Output Layer (1): a linear layer with one node 
activated by the Sigmoid function. 

This modification introduces probabilistic inference 
to the model, allowing for estimating uncertainty in 
the network's predictions.  

BNNs stand out for their ability to measure 
prediction uncertainty, unlike deterministic networks 
that give a single output. By performing multiple 
forward passes to compute outputs' mean and 
standard deviation, BNNs offer insight into the 
model's confidence for each mesh grid point. To 
ensure correct regularization of the BNN parameters 
during the distributed learning regularization phase, 
Algorithm 2 has been developed to consider the 
semantics of median (µ) and standard deviation (ρ) 
parameters of BNN neurons. We utilize 
KL Divergence, as detailed in Equation (6), for the 
regularization of BNN ρ-parameters between the 
models of individual actors. 

Algorithm 2: Optimization of BNN Parameters. 

Require: Model, Optimizerµ, Optimizerρ, Wµ, Wρ, Iter, 𝜃 , 𝜃 , Dualsµ, Dualsρ 
for i ← 1 to Iter do 
 Reset gradients of Optimizerµ and Optimizerρ 
 PredLoss ← COMPUTELOSS(Model) 
 𝜃 ,𝜃  ← EXTRACTPARAMETERS(Model) 
 Regµ ← L2REGULARIZATION(𝜃 ,𝜃 ) 
 Regρ ← D_KL(𝜃 ,𝜃 ) 
 Lossµ ← PredLoss + ⟨𝜃 ,Dualsµ⟩ + Wµ × Regµ 
 Lossρ ← ⟨𝜃 ,Dualsρ⟩ + Wρ × Regρ 
 UPDATEPARAMETERS(Optimizerµ,Lossµ) 
 UPDATEPARAMETERS (Optimizerρ,Lossρ) 
end for
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Figure 3: Visualization of the 3D model of the environment, 
generated from the floor plan, showcasing a LiDAR-
equipped TurtleBot navigating the space in a Webots 
simulation. 

6 IMPLEMENTATION AND 
EVALUATION 

Using floor plans from the CubiCasa5K dataset, we 
created STL 3D interior models for robotic 
exploration. These models were imported into 
Webots to simulate TurtleBot robots navigating these 
spaces, as illustrated in Figure 3. Webots allowed us 
to implement 3D robotic systems and environments 
with typical sensors like cameras and LiDAR, 
enabling realistic sensor noise and measurement 
uncertainties in our experiments. 

This study assumes that all robots have access to 
global positioning information. Agents' movement 
paths were predefined to create simulation programs 
for their interior navigation. During navigation, 
LiDAR sensor data collection is simulated as a 
Webots data stream.  

The experiment involves launching seven 
independent agents that gradually collect information 
from LiDAR sensors while exploring a virtual interior 
space. This paper examines the analysis of data sets 
collectively collected and processed after the agents 

completed their traversal. This method is necessary 
because NN training requires significant energy, 
which might not be accessible to autonomous edge 
devices in mobile investigation mode. 

Each agent runs as a separate Python process. 
Agent communication occurs via direct TCP 
connections between processes on the same virtual 
local network. The ZeroMQ library is used for 
asynchronous data exchange. Containerization of 
agent processes is achieved using Singularity 
containers equipped with GPU access. In the 
experiments outlined, we initiate all processes on 
GPU-enabled computing nodes managed by the 
SLURM workload manager.  

6.1 Single-Agent Uncertainty 
Estimation 

We conducted a series of experiments with a single 
isolated agent to evaluate the effectiveness of the 
BNN architecture proposed in Section 5 for 
estimating uncertainty in NN outcomes and the 
impact of the 𝑘𝑙  parameter from Equation (7). 
The agent was trained exclusively on local data 
during the experiment without exchanging 
information with other agents. The visualization of 
the training results is presented in Figure 4.  

To generate outputs from the BNN, 50 queries 
were made for each pair of input coordinates (𝑥, 𝑦). 
Subsequently, a visualization was created to illustrate 
the mean values and standard deviations of the NN 
responses. 

It was observed that a low value of the 𝑘𝑙  
parameter leads to a low variance in the NN’s results, 
which does not allow for distinguishing the 
"hallucinations" of the NN from areas with sufficient 
data to form a general understanding of the 
environment. Conversely, a high 𝑘𝑙  parameter  

 
Figure 4: Comparative visualization of single-agent uncertainty estimation. 

 
(a) Mean, 𝑘𝑙 = 10  

 
(b) Mean, 𝑘𝑙 = 5 × 10  

 
(c) Mean, 𝑘𝑙 = 5 × 10  

 
(d) Standard deviation, 𝑘𝑙 = 10  

 
(e) Standard deviation, 𝑘𝑙 = 5 × 10  

 
(f) Standard deviation, 𝑘𝑙 = 5 × 10  
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value results in excessive noise and a high degree of 
uncertainty in the NN’s results. Therefore, to ensure 
that the BNN provides an effective assessment of 
uncertainty, fine-tuning of the 𝑘𝑙  parameter 
during the training process is required. 

6.2 Multi-Agent Uncertainty 
Estimation 

To assess the effectiveness of BNNs in estimating 
uncertainty within distributed, decentralized learning 
environments, a series of experiments were 
conducted. These experiments aimed to evaluate the 
impact of different regularization approaches on the 
training quality of BNNs. The validation loss was 
evaluated in the context of the following 
regularization strategies: 
 Uniform L2 regularization of NN parameters 

without making distinctions between parameter 
types; 

 Separate regularization of conventional and BNN 
parameters, applying L2 regularization for both; 

 Separate regularization of conventional and BNN 
parameters, utilizing L2 regularization for 
conventional parameters and Kullback–Leibler 
divergence for Bayesian parameters (see 
Algorithm 2). 

The results of the evaluation are presented in Figure 
5. We observe that applying Kullback–Leibler 
divergence for parameter regularization (Algorithm 
2) leads to a 12-30% decrease in the validation loss of 
the distributed BNN training compared to other 
regularization strategies. Additionally, this approach 
enhances the stability of the training process. The 
visualization of the outcome of decentralized BNN 
training according to Algorithm 2 is presented in 
Figure 6. 

7 CONCLUSIONS 

Within the scope of this paper, we addressed a 
problem of uncertainty estimation within distributed 
machine learning based on AI-enabled edge devices. 
We set up a simulation of a collaborative mapping 
problem using the Webots platform; introduced an 
epoch-based decentralized consensus algorithm to 
support the decentralized peer-to-peer exchange of 
NN parameters among agents; and integrated 
distributed uncertainty estimation into our models by 
applying Bayesian neural networks. 
 
 

 
Figure 5: Comparison of validation loss during distributed 
BNN training 1) with uniform L2 regularization (uniform 
reg.); 2) separate L2 regularization (reg. w/o D_KL); 3) 
Kullback-Leibler divergence for regularization of BNN ρ-
parameters (reg. with D_KL). 

   
(a)                                       (b) 

Figure 6: Visualization of the decentralized BNN training 
results according to Algorithm 2: a) mean; b) standard 
deviation. 

Our experiments indicate that BNNs can 
effectively support uncertainty estimation in a 
distributed learning context. However, to ensure an 
effective assessment of uncertainty by the BNN, we 
highlighted the need for precise tuning of the learning 
hyperparameters during training. We also determined 
that applying Kullback–Leibler divergence for 
parameter regularization resulted in a 12-30% 
reduction in validation loss during the training of 
distributed BNNs compared to other regularization 
strategies.  

For future work, we suggest exploring how 
distributed learning with BNNs can be tailored for 
embedded AI hardware. This would involve refining 
the NN architecture to suit the resource constraints of 
AI-enabled edge devices. We also plan to explore task 
management and offloading strategies within the 
multi-layered fog and hybrid edge-fog-cloud 
environments to improve computational efficiency 
and resource utilization. 
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