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Abstract: Road user interaction is a fertile avenue for communication between road users, be it implicit communication 

or explicit signals sent with the intent to convey information. To date, most literature on characterising and 

modelling communication between road users has focussed on cooperative paradigms and concepts of shared 

goals enforced globally on communicating agents. In this paper, we argue that non-cooperative game theory 

can be used to characterise and model effective and mutually beneficial communication between road users. 

We demonstrate that non-cooperative game theory can produce meaningful improvements in payoffs and 

interaction safety for both the sender and recipient of communication as an emergent phenomenon. 

1 INTRODUCTION 

The reciprocal interaction between road users is a 

fundamental part of the transport experience. The 

modelling of such interaction is a rapidly growing 

field. Game-theoretic models are one paradigm in 

which interaction is studied (Ali et al., 2019; Elvik, 

2014; Ji & Levinson, 2020; Kita, 1999), especially 

from an autonomous vehicle’s perspective (Bitar et 

al., 2022, 2023; Camara et al., 2019). Yet, few such 

models pay attention to communication as a 

participatory component of road user interaction. In 

fact, recent work on road user communication as an 

active component of interaction rejects the game-

theoretic approach in part due to its perception as a 

framework that does not lend itself to communicative 

behaviour (Siebinga et al., 2023). Instead, the 

researchers rely on an underlying assumption of the 

existence of a shared goal between interacting 

players. Yet, non-cooperative game theory has been 

extensively used to describe and explain emergent 

cooperative and communicative behaviour in nature, 

economics, society, and networking (Axelrod & 

Hamilton, 1981; Fernández Domingos et al., 2017; 
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Orzan et al., 2023; Rubenstein & Kealey, 2010; 

Stewart & Plotkin, 2013). In this paper, we argue that 

non-cooperative game theory is a suitable framework 

for modelling and describing communicative 

behaviour between road users. We also argue that it 

can produce beneficial cooperative behaviour as an 

emergent property which does not require 

assumptions of common goals or shared values. 

We test three hypotheses in this study: 1) vehicles 

have a selfish incentive to send communication 

(explicit); 2) vehicles have a selfish incentive to 

respond to communication (implicit and explicit); and 

3) non-cooperative game theory can produce 

meaningful, cooperative communication as an 

emergent phenomenon which brings population-wide 

benefits, quantified by: (a) average population payoff; 

(b) number of crashes; and (c) number of near misses 

(defined as interactions with min𝐻𝑊𝑥
𝑥∈𝑇

≤ 0.5 𝑠). 
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2 METHOD 

2.1 The Interaction Model 

We conceptualise interactions as part of a lane-

change scenario. The interaction is a two-player, 

sequential, non-cooperative game in which the Main-

lane Vehicle 𝑀 moves first, followed by a response 

from the Joining Vehicle 𝐽 . The game is one of 

imperfect information (Harsanyi, 1968). We 

introduce two Bayesian elements and provide a 

pathway to update beliefs based on communication: 

𝑎𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛  and 𝑖𝑛𝑡𝑒𝑛𝑡𝑖𝑜𝑛 . 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛  (values: 

𝑎𝑡𝑡𝑒𝑛𝑡𝑖𝑣𝑒/𝑑𝑖𝑠𝑡𝑟𝑎𝑐𝑡𝑒𝑑) relates to whether Vehicle 𝑀 

is aware of and responsive to Vehicle 𝐽’s movement. 

𝐼𝑛𝑡𝑒𝑛𝑡𝑖𝑜𝑛  (values: 𝑐𝑜𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑣𝑒 /𝑝𝑢𝑛𝑖𝑡𝑖𝑣𝑒 ) relates 

to whether Vehicle 𝑀  is willing to accept a lane-

change if it is not in its favour. Both properties are 

determined by 𝑁𝑎𝑡𝑢𝑟𝑒 with a pre-defined probability 

𝑝 for 𝑎𝑡𝑡𝑒𝑛𝑡𝑖𝑣𝑒 and 𝑞 for 𝑐𝑜𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑣𝑒. 𝑀 has prior 

knowledge of its own 𝑖𝑛𝑡𝑒𝑛𝑡𝑖𝑜𝑛  and will use this 

knowledge in its decision-making. It does not have 

knowledge of its own 𝑎𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛, and therefore this 

attribute does not factor into the decision. If Vehicle 

𝑀  is 𝑑𝑖𝑠𝑡𝑟𝑎𝑐𝑡𝑒𝑑 , it has a further chance 𝑟  to be 

𝑓𝑢𝑙𝑙𝑦 𝑑𝑖𝑠𝑡𝑟𝑎𝑐𝑡𝑒𝑑 and not take any action. 

 

 

Figure 1: The extensive form sequential game between the 

Main-lane Vehicle 𝑀  and the Joining Vehicle 𝐽  (game 

tree). 

The game continues as shown in Figure 1. A 

𝑓𝑜𝑙𝑙𝑜𝑤  action means Vehicle 𝑀  keeps a suitable 

time headway. A 𝑝𝑢𝑛𝑖𝑠ℎ action means 𝑀 tailgates 𝐽 
to induce a negative utility. An 𝑖𝑔𝑛𝑜𝑟𝑒 action means 

𝑀 continues moving as if it were in free flow and 

does not take measures to prevent a collision. The 

distraction state only lasts a finite amount of time, 

after which Vehicle 𝑀  employs the equivalent 

𝑎𝑡𝑡𝑒𝑛𝑡𝑖𝑣𝑒 action (i.e. 𝑓𝑜𝑙𝑙𝑜𝑤 or 𝑝𝑢𝑛𝑖𝑠ℎ).  

2.2 The Kinematic Model 

Each vehicle possesses a set of attributes and 

preferences unique to it. We explore the ranges used 

for these properties in this study in the Experimental 

Design section. The general movement of the two 

vehicles is governed by a modified version of the bi-

directional General Motors (GM) Car Following 

Model (Jin et al., 2013), which calculates the 

acceleration of the following vehicle 𝑥 at timestep 𝑛 

as follows: 

𝑎𝑥𝑛+1 =  
∝𝑥  (𝑣𝑥𝑛)

𝑚

∆𝑠𝑛
𝑙  ∆𝑣𝑛 (1) 

where: 

𝑎𝑥𝑛+1is the acceleration of the agent vehicle 𝑥 at 

the end of the next timestep 𝑛 + 1. 

𝑣𝑥𝑛  is the velocity of the agent vehicle 𝑥 at the 

current timestep 𝑛. 

∆𝑠𝑛 is the distance difference between the agent 

vehicle and its car-following target at timestep 𝑛. 

∆𝑣𝑛 is the velocity difference between the agent 

vehicle and its car-following target at timestep 𝑛. 

∝𝑥 is a sensitivity factor which governs the agent 

vehicle 𝑥’s corrective acceleration rate to maintain 

car-following headway. The higher the sensitivity 

factor, the more aggressive the correction. 

𝑚, 𝑙  are parametric sensitivity factors which in 

this study are set to 1. 

𝑎𝑥𝑛+1  is constrained by the agent vehicle’s 

acceleration preferences and physical limitations. 

These are explored and described in Table 1. 

 

The interaction begins at Timestep 𝑇0 = 0 when 

Vehicle 𝑀 takes its first action. 𝑇0’s duration is equal 

to Vehicle 𝐽’s Decision Time 𝐷𝐽. The second timestep 

𝑇1 begins once Vehicle 𝐽 takes its action and lasts an 

amount of time equal to Vehicle 𝑀’s Decision Time 

𝐷𝑀,  or after a certain period passes and 𝑀  may 

assume 𝐽 has decided to 𝑤𝑎𝑖𝑡. The third timestep 𝑇2 

begins when Vehicle 𝑀 takes its second action. The 

timesteps 𝑇1  and 𝑇2  are event-based, meaning their 

durations are tied to the specific values of 𝐷𝐽 and 𝐷𝑀 

in each interaction, respectively. 

Vehicle 𝑀  will accelerate with the appropriate 

𝑎𝑀1 if it wishes to 𝑏𝑙𝑜𝑐𝑘 Vehicle 𝐽’s attempt to 𝑗𝑜𝑖𝑛. 

This movement is not governed by the GM model. 

Instead, 𝑀 will apply the appropriate 𝑎𝑀1 so that it 
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would force a collision with 𝐽 within the lane change 

manoeuvre duration 𝑡𝐿𝐶 as follows: 

 

𝑎𝑀1 = 𝑎𝐽𝑚𝑎𝑥  +  2
𝑠𝑀0 + (𝑣𝐽0 − 𝑣𝑀0) 𝑡𝐿𝐶

𝑡𝐿𝐶
2  (2) 

where: 

𝑡𝐿𝐶 is the lane change duration. 

𝑎𝑀𝑚𝑎𝑥 is Vehicle 𝑀’s maximum acceleration. 

𝑎𝑀1 is constrained as follows: 

min(𝑚𝑎𝑥(𝑎𝑀1, 0) , 𝑎𝑀𝑚𝑎𝑥) 

 

Vehicle 𝑀 will yield with the appropriate 𝑎𝑀1 if 

it wishes to 𝑎𝑙𝑙𝑜𝑤  Vehicle 𝐽  to join ahead by 

following it. The value of 𝑎𝑀1 is derived from Eq. 1 

as shown in Table 1 (Eq. 3). Vehicle 𝑀 will maintain 

𝑎𝑀1 until it observes an action from Vehicle 𝐽 or a 

period of time passes after which 𝑀 assumes Vehicle 

𝐽 has decided to 𝑤𝑎𝑖𝑡. 
At the next timestep, if Vehicle 𝐽 decides to 𝑗𝑜𝑖𝑛, 

it employs the appropriate 𝑎𝐽2. This value is governed 

by the formulae derived from Eq. 1 as shown in Table 

1 (Eq. 4). Eq. 4(a) uses the car-leading element of the 

bi-directional GM model where a leading vehicle 

adjusts its velocity in response to the velocity of a 

following vehicle. If Vehicle 𝐽  decides to 𝑤𝑎𝑖𝑡 , it 

continues along its path at a constant speed until 𝑀 

passes (Eq. 5). 

The remainder of the interaction is governed in 

accordance with the general formula in Eq. 1 and 

subject to the parameters and constraints shown in 

Table 1 (Equations 1 through 7). The interaction 

continues until a crash is detected or all the following 

conditions are met: 

▪ |𝑎𝑀𝑛| ≤ 0.01 𝑚/𝑠2 

▪ |𝑎𝐽𝑛| ≤ 0.01 𝑚/𝑠2 

▪ 𝐻𝑊𝐽𝑛
≥  𝐻𝑊𝐽𝑚𝑖𝑛

, 𝑖𝑓 𝐽′s 𝐴𝑐𝑡𝑖𝑜𝑛 = 𝑊𝑎𝑖𝑡 

The equations of linear motion are used to 

determine the values of the velocities and distances of 

each vehicle at every timestep. 

Table 1: General Motors car following model parameters and constraints as applied to Eq. 1. 

Eq. 

№ 

Action Parameters Special Cases Constraints 

3 𝑀:𝐴𝑙𝑙𝑜𝑤 

or 

𝐹𝑜𝑙𝑙𝑜𝑤 

∆𝑠𝑛 =  𝑠𝐽n − 𝑠𝑀n 

∆𝑣𝑛 = 

min (𝑣𝑀0, 𝑣𝐽n) − 𝑣𝑀𝑛 

𝑖𝑓𝑣𝑀n = 0,   𝑎𝑀𝑛+1 = 𝑎𝑀𝑐 

𝑖𝑓𝐻𝑊𝑀n < 𝐻𝑊𝑀min, 

 𝑎𝑀𝑛+1 = min (𝑎𝑀𝑛+1,  𝑑𝑀𝑐
) 

min(𝑚𝑎𝑥(𝑎𝑀𝑛+1, 𝑑𝑚𝑎𝑥) , 𝑎𝑀𝑐) 

4 𝐽: 𝐽𝑜𝑖𝑛 (a) 𝑖𝑓 𝑣𝐽0 < 𝑣𝐽𝐷: 

∆𝑠𝑛 =  𝑠𝐽n − 𝑠𝑀n 

∆𝑣𝑛 = 

max (𝑣𝑀𝑛, 𝑣𝐽𝐷) − 𝑣𝐽𝑛 

 

(b) 𝑖𝑓 𝑣𝐽0 ≥ 𝑣𝐽𝐷: 

∆𝑠𝑛 = 𝑡𝑓 𝑣𝐽𝑛 

∆𝑣𝑛 = 𝑣𝐽𝐷 − 𝑣𝐽𝑛 

- 𝑖𝑓 𝑣𝐽0 < 𝑣𝐽𝐷: 

min (𝑚𝑎𝑥 (𝑎𝐽𝑛+1, 0) , 𝑎𝐽𝑚𝑎𝑥) 

 

 

𝑖𝑓 𝑣𝐽0 ≥ 𝑣𝐽𝐷: 

min (𝑚𝑎𝑥 (𝑎𝐽𝑛+1, 𝑑𝑚𝑎𝑥) , 𝑎𝐽𝑐) 

5 𝐽:𝑊𝑎𝑖𝑡 𝑎𝐽𝑛 = 0 - - 

6 𝑀:𝑃𝑢𝑛𝑖𝑠ℎ 𝑎𝑠 𝐹𝑜𝑙𝑙𝑜𝑤 𝑎𝑠 𝐹𝑜𝑙𝑙𝑜𝑤 

𝑖𝑓 𝑀 𝑖𝑠 𝑝𝑢𝑛𝑖𝑡𝑖𝑣𝑒,   ∝𝑀  =  ∝𝑃 

𝑎𝑠 𝐹𝑜𝑙𝑙𝑜𝑤 

7 𝑀: 𝐼𝑔𝑛𝑜𝑟𝑒
/𝐶𝑜𝑛𝑡𝑖𝑛𝑢𝑒 

∆𝑠𝑛 =  𝑡𝑓 𝑣𝑀𝑛 

∆𝑣𝑛 =  𝑣𝑀0 − 𝑣𝑀𝑛 

𝑖𝑓𝑣𝑀n = 0,   𝑎𝑀𝑛+1 = 𝑎𝑀𝑐 min(𝑚𝑎𝑥(𝑎𝑀𝑛+1, 𝑑𝑚𝑎𝑥) , 𝑎𝑀𝑐) 

where: 

𝑑𝑚𝑎𝑥 is the maximum possible deceleration to mitigate collision. 

min (𝑣𝑀0, 𝑣𝐽𝑛) (Eq. 3) is used to ensure that the car following model does not push 𝑀 beyond its initial velocity 𝑣𝑀0 

even if 𝐽 has a higher velocity 𝑣𝐽0 than 𝑣𝑀0. 

max (𝑣𝑀𝑛, 𝑣𝐽𝐷) (Eq. 4) ensures 𝐽 accelerates to meet its 𝑣𝐽𝐷 even if 𝑀’s velocity is lower than 𝑣𝐽𝐷. 

The ∆𝑠𝑛 employed in free flow (Eq. 4 and Eq. 7) is equal to the space covered in 𝑡𝑓 seconds at the agent vehicle’s current 

velocity (𝑣𝑀𝑛 or 𝑣𝐽𝑛). This creates a “phantom vehicle” which drives 𝑡𝑓 seconds ahead for the agent vehicle to follow. 

This is designed to give a gentle acceleration profile in free-flow situations. 
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2.3 Communication 

Communication in this model is issued by Vehicle 𝑀 

and received by Vehicle 𝐽. We employ two forms of 

communication: implicit communication, 

characterised as the presence and value of 

acceleration, and explicit communication, which is 

either absent or present. When present, explicit 

communication can be either positive or negative. 

2.4 The Bayesian Elements 

Vehicle 𝑀 is assigned two stochastic properties upon 

its creation: 𝑎𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛 (𝑎𝑡𝑡𝑒𝑛𝑡𝑖𝑣𝑒/𝑑𝑖𝑠𝑡𝑟𝑎𝑐𝑡𝑒𝑑) and 

𝑖𝑛𝑡𝑒𝑛𝑡𝑖𝑜𝑛  ( 𝑐𝑜𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑣𝑒/𝑝𝑢𝑛𝑖𝑡𝑖𝑣𝑒 ). Research 

suggests that 1% of all drivers in the UK were 

observed using a mobile phone in 2021 (DfT, 2022). 

In this model, more exaggerated probabilities have 

been chosen to amplify the effect for easier 

observation. These base probabilities are known to 

Vehicle 𝐽 as prior beliefs, therefore we do not expect 

the general conclusions of this study to be affected by 

the base values assigned to these probabilities. We 

confine the purpose of communication to advertise 

the two stochastic properties of Vehicle 𝑀 discussed 

earlier. Vehicle 𝐽 will use these signals to update its 

beliefs on Vehicle 𝑀 ’s stochastic properties in 

accordance with Bayes’ Theorem (Joyce, 2021). 

2.5 The Payoff Functions 

Ride Comfort 𝑼𝒂 

We base ride comfort on both the acceleration values 

at each timestep (with respect to the comfortable 

value 𝑎𝑐) and the fluctuation of acceleration across 

timesteps (best measured as the standard deviation of 

acceleration about its mean). It is calculated is as: 
𝑈𝑎 = 

1

𝑇
∑min((1 −

𝑎𝑛
𝑎𝑐  ∨  𝑑𝑐

) × 𝑡𝑛 , 0)

𝑇

𝑛=1

 

−  √
1

𝑇
∑(𝑎𝑛 − 𝑎𝑛̅̅ ̅)

2

𝑇

𝑛=1

 

(8) 

where 

𝑎𝑐 is used in the denominator of the first term if 

𝑎𝑛 ≥ 0, else 𝑑𝑐. 
𝑇 is the total count of the interaction’s timesteps. 

𝑡𝑛 is the duration of timestep 𝑛. 

 

Time Headway 𝑼𝒉 

𝑈ℎ  is a function of the minimum time headway 

achieved during the interaction with respect to the 

minimum acceptable headway 𝐻𝑊𝑚𝑖𝑛. 

𝑈ℎ = 

 {

𝑈𝑐𝑟𝑎𝑠ℎ 𝑖𝑓 ∃ 𝐻𝑊𝑥∈𝑇 ≤ 0 

min
𝑥∈𝑇

(1 −
𝐻𝑊𝑚𝑖𝑛

𝐻𝑊𝑥
) 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 
(9) 

 

Speed difference 𝑼𝒗 

For Vehicle 𝑀, 𝑈𝑣 is based on the difference between 

the vehicle’s initial and final (steady state) velocities. 

For Vehicle 𝐽 , 𝑈𝑣  is the difference between 𝐽 ’s 

desired velocity and 𝑀’s final velocity if 𝐽  opts to 

𝑤𝑎𝑖𝑡 ,. If 𝐽  chooses to 𝑗𝑜𝑖𝑛, 𝑈𝑣  is a function of 𝐽’s 

highest achieved velocity. 

𝑈𝑣𝑀 =  1 −
𝑣𝑀0

min (𝑣𝑀0, 𝑣𝐽𝐷)
 (10) 

𝑈𝑣𝐽 = 

 

{
 
 

 
 1 −

𝑣𝐽𝐷

min (𝑣𝑀0, 𝑣𝐽𝐷)
𝑖𝑓 𝐽 𝑤𝑎𝑖𝑡𝑠

min(1 −
𝑚𝑎𝑥
𝑥∈𝑇

 𝑣𝐽𝑥

max (𝑣𝐽0, 𝑣𝐽𝐷)
, 0) 𝑖𝑓 𝐽 𝑗𝑜𝑖𝑛𝑠

 
(11) 

 

Time penalty 𝑼𝒕 
Vehicle 𝐽 is subject to 𝑈𝑡 if it chooses to 𝑤𝑎𝑖𝑡. 𝑈𝑡 is 

a function of the time 𝐽 needs to wait for 𝑀 to pass 

before it can 𝑗𝑜𝑖𝑛 behind it. It is calculated as: 

𝑡𝑠𝑢𝑚 =∑𝐻𝑊𝐽𝑛
[𝐻𝑊𝐽𝑛

𝑇

𝑛=1

< 𝐻𝑊𝐽𝑚𝑖𝑛
] 

𝑡𝑒𝑥𝑡𝑟 = 

(
𝐻𝑊𝐽𝑚𝑖𝑛𝑣𝐽0 + 𝑠𝐽𝑇 − 𝑠𝑀𝑇

0.5(𝑣𝑀0 +max(𝑣𝑀0, 𝑣𝑀𝑇)) − 𝑣𝐽0

) 

 

𝑈𝑡𝐽 = 

{

𝑈𝑐𝑟𝑎𝑠ℎ
∗ 𝑖𝑓 𝑣𝐽0 ≥ 𝑣𝑀0

−𝜇 × 𝑡𝑠𝑢𝑚 𝑖𝑓 𝐻𝑊𝐽𝑇 > 𝐻𝑊𝐽𝑚𝑖𝑛

−𝜇 (𝑡𝑠𝑢𝑚+ 𝑡𝑒𝑥𝑡𝑟) 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

(12) 

where 

𝜇 is a reduction factor used to normalise 𝑈𝑡 with 

respect to the other payoff components. 

* 𝑈𝑐𝑟𝑎𝑠ℎ is used in this instance to prevent 𝐽 from 

waiting indefinitely for a slower 𝑀 to pass 

 

Table 2 summarises the payoff calculations based 

on the action(s) taken. 
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Table 2: Payoff summary per vehicle per action pair. 

Action Pair Vehicle 

𝑴 

Vehicle 𝑱 

𝐴𝑙𝑙𝑜𝑤/𝐽𝑜𝑖𝑛 

𝑈𝑎 + 

𝑈ℎ + 

𝑈𝑣 

𝑃(𝐴𝐶) × 

(𝑈𝑎𝐴𝐶 + 𝑈ℎ𝐴𝐶 + 𝑈𝑣𝐴𝐶) + 

𝑃(𝐴𝑃) × 

(𝑈𝑎𝐴𝑃 + 𝑈ℎ𝐴𝑃 + 𝑈𝑣𝐴𝑃) + 

𝑃(𝐷) × 

(𝑈𝑎𝐷 + 𝑈ℎ𝐷 + 𝑈𝑣𝐷) 

𝐵𝑙𝑜𝑐𝑘/𝐽𝑜𝑖𝑛 

𝐴𝑙𝑙𝑜𝑤/𝑊𝑎𝑖𝑡 

𝑈𝑎+𝑈𝑣 

𝑃(𝐴𝐶) × 𝑈𝑡𝐴𝐶 + 

𝑃(𝐴𝑃) × 𝑈𝑡𝐴𝑃 + 

𝑃(𝐷) × 𝑈𝑡𝐷 

𝐵𝑙𝑜𝑐𝑘/𝑊𝑎𝑖𝑡 

where 

𝐴𝐶: 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑣𝑒&𝐶𝑜𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑣𝑒 

𝐴𝑃: 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑣𝑒&𝑃𝑢𝑛𝑖𝑡𝑖𝑣𝑒 

𝐷:𝐷𝑖𝑠𝑡𝑟𝑎𝑐𝑡𝑒𝑑 

3 EXPERIMENTAL DESIGN 

We run three simulation groups as follows: 

Control Group. Vehicle 𝑀 does not engage in any 

form of explicit communication. Vehicle 𝐽  relies 

solely on the base probabilities of Vehicle 𝑀 ’s 

𝑎𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛  and 𝑖𝑛𝑡𝑒𝑛𝑡𝑖𝑜𝑛  as prior beliefs. These 

probabilities are outlined later in this section. 

Test Group A. Vehicle 𝑀 does not issue any explicit 

signals. Vehicle 𝐽  reads 𝑀 ’s acceleration as an 

implicit signal to update its prior beliefs in line with 

the likelihoods outlined in Table 6. 

Test Group B. Vehicle 𝑀  employs explicit 

communication signals as outlined in Table 5. 

Each simulation group comprises a simulation of 

30,000 interactions. Each interaction is a unique 

iteration of Vehicle 𝑀 and Vehicle 𝐽 with attributes 

and preferences which are randomly generated from 

a uniform distribution of preset ranges. All three 

simulation groups use the same random generator 

seed. This allows for pairwise comparisons to be 

made at the interaction level, including paired t-tests. 

Table 3 outlines the different attributes and the 

ranges from which they are generated. Table 4 lists 

the constants defined in the Method section which are 

used in all interactions and simulations in this study. 

𝑀  is assigned the 𝑎𝑡𝑡𝑒𝑛𝑡𝑖𝑣𝑒  property with a 

probability 𝑝 = 0.75 . This property is concealed 

from 𝑀 , i.e. it does not factor into 𝑀 ’s decision-

making. 𝑀  is assigned the 𝑐𝑜𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑣𝑒  property 

with a probability 𝑞 = 0.6. This property is known to 

𝑀 and factors into its decision-making. 𝑀 is assigned 

the 𝑓𝑢𝑙𝑙𝑦 𝑑𝑖𝑠𝑡𝑟𝑎𝑐𝑡𝑒𝑑  property with a probability 

𝑟 = 0.5. This property is also concealed from 𝑀. 

Vehicle 𝐽  has prior knowledge of these base 

probabilities, but no concrete knowledge of the 

attribute assignment. It must assign a probability to 

each of the three possible positions of Vehicle 𝑀 on 

the game tree based on these prior beliefs. 

Absent any other information, the probabilities 𝐽 
assigns to each of Vehicle 𝑀’s nodes (Figure 1) are: 

▪ 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑣𝑒/𝐶𝑜𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑣𝑒: 0.75×0.6 = 0.45 

▪ 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑣𝑒/𝑃𝑢𝑛𝑖𝑡𝑖𝑣𝑒: 0.75×0.4 = 0.3 

▪ 𝐷𝑖𝑠𝑡𝑟𝑎𝑐𝑡𝑒𝑑: 0.25 

The 𝑑𝑖𝑠𝑡𝑟𝑎𝑐𝑡𝑒𝑑 state lasts for twelve timesteps 

(5 - 8 seconds, based on the values of 𝐷𝐽  and 𝐷𝑀 ) 

after which Vehicle 𝑀  returns to its appropriate 

actions as described in the Method section. 

The entire experiment is conducted twice with 

two different rulesets. In Ruleset 1 (Transparent), 

both vehicles enjoy full knowledge of each other’s 

properties (Table 3). Thus, both vehicles have 

complete information, and the only element of 

uncertainty comes from the Bayesian elements 

described previously. In Ruleset 2 (Blind), both 

vehicles are blind to each other’s properties and so 

have incomplete information. They assume the 

opponent has identical properties to their own where 

applicable (otherwise a random value within the 

ranges specified in Table 3 is used). Both vehicles 

read each other’s velocities and positions accurately. 

Table 3: Kinematic properties of the model and their ranges. 

Property Description Value Range 

𝑎𝑐 Maximum comfortable acceleration (0.20, 2.00) m/s2 

𝑎𝑚𝑎𝑥 Maximum allowable acceleration (2.50, 3.50) m/s2 (Bokare & Maurya, 2017) 

𝑑𝑐 Maximum comfortable deceleration (-0.50, -1.50) m/s2 

𝐻𝑊𝑚𝑖𝑛 Minimum acceptable time headway (0.50, 3.50) s 

𝐷𝑇 Decision time (0.50, 1.50) s 

∝𝑃 Punitive sensitivity factor (exclusive to 𝑀) (0.15, 0.35) 

𝑣0 Initial velocity 𝑀: (8.00, 18.00) m/s;     𝐽: (4.00, 10.00) m/s 

𝑠0 Initial distance (𝑠𝑀0 = 0 as datum) (5.00, 80.00) m 

𝑣𝐷 Desired velocity (exclusive to 𝐽) (0.75, 1.50) × 𝑣0𝐽 m/s 

𝜔 𝑊𝑎𝑖𝑡 penalty reduction factor (0.10, 0.20) 
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Table 4: list of constants used in the simulations and their values. 

Constant Description Value 

𝑡𝐿𝐶  Lane change duration 5 seconds (Finnegan & Green, 1990; Salvucci & Liu, 2002) 

∝𝑀, 𝑚, 𝑙 GM model sensitivity factors 1 

𝑡𝑛 Timestep 𝑛 (from 𝑇2 onwards)* 0.5 seconds 

𝑡𝑓 Phantom vehicle time headway 4 seconds 

𝑈𝑐𝑟𝑎𝑠ℎ  Crash penalty -250 

𝑑𝑚𝑎𝑥 Maximum safe deceleration -4.5 m/s2 (AASHTO, 2011; Bokare & Maurya, 2017) 

* We set an upper limit of 60 time-based timesteps (𝑡𝑛) (30 seconds) for the duration of each interaction. The reason for 

dictating this upper limit is computational efficiency for the computer model. 

Table 5: Probabilities of Vehicle 𝑀 issuing various communicative signals. 

Signal Category Description 
Probability of occurrence 

Attentive Distracted 

Implicit: acceleration 𝑀 alters its velocity as appropriate 1 0.5 

Explicit: attention e.g. eye contact 𝑀 makes eye contact with 𝐽 0.9 0.05 

Explicit: intention 

e.g. gestures 
𝑀 issues a cooperative signal Cooperative: 0.8; Punitive: 0.2 0.1 

𝑀 issues a threatening signal Cooperative: 0.1; Punitive: 0.8 

Table 6: Breakdown of the likelihoods of each signal given Vehicle 𝑀's different possible stochastic attributes. 

Signal Category Value Description 𝑷(𝑬|𝑯) 
𝑪𝒐𝒐𝒑𝒆𝒓𝒂𝒕𝒊𝒗𝒆 𝑷𝒖𝒏𝒊𝒕𝒊𝒗𝒆 𝑫𝒊𝒔𝒕𝒓𝒂𝒄𝒕𝒆𝒅 

Implicit: acceleration 0 𝐽 observes no acceleration from 𝑀  0.1* 0.1* 0.55 

1 𝐽 observes deceleration from 𝑀 0.45* 0.3* 0.2 

-1 𝐽 observes acceleration from 𝑀 0.45* 0.6* 0.25 

Explicit: attention 

e.g. eye contact 

0 𝐽 is unable to make eye contact with 𝑀 0.1 0.1 0.95 

1 𝐽 makes eye contact with 𝑀 0.9 0.9 0.05 

Explicit: intention 

e.g. gestures 

0 𝐽 does not observe an intention from 𝑀 0.585* 0.415* 0.9 

1 𝐽 observes positive intent from 𝑀 0.36* 0.09* 0.045 

-1 𝐽 observes negative intent from 𝑀 0.055* 0.495* 0.055 

* These 𝑃(𝐸|𝐻) values are based on results obtained from a pilot simulation run of 10,000 interactions. 

 

 

 

4 RESULTS 

All three simulation groups were concluded 

successfully. The results are aggregated, and key facts 

presented in Table 7. The simulations produced 

logical interaction behaviours. Vehicles behaved in a 

predictable manner, favouring safer actions, and 

avoiding unreasonable risks. The number of recorded 

crashes and near misses was minimal (0.14% and 

0.74% at maximum, respectively). The 𝑎𝑙𝑙𝑜𝑤/𝑗𝑜𝑖𝑛 - 

𝑏𝑙𝑜𝑐𝑘 /𝑤𝑎𝑖𝑡  split was balanced, with slight bias 

towards 𝑏𝑙𝑜𝑐𝑘 / 𝑤𝑎𝑖𝑡  (average 44% and 53%, 

respectively). This indicates a balanced distribution 

of starting conditions and vehicle attributes. The 

non-ideal outcomes (𝑎𝑙𝑙𝑜𝑤 /𝑤𝑎𝑖𝑡  and 𝑏𝑙𝑜𝑐𝑘 /𝑗𝑜𝑖𝑛 ) 

were minimal but non-trivial (average 1.6% and 

1.1%, respectively). 

We pay special attention to the occurrence of 

non-ideal outcomes in this study, since such 

outcomes indicate misinterpretation from one or both 

road users in an interaction, and therefore would 

prove a useful metric for gauging effective 

communication between road users. Ruleset 1 

produced fewer non-ideal outcomes across all three 

groups than Ruleset 2. Similarly, Ruleset 1 proved the 

safer of the two sets, with fewer near misses and 

crashes than Ruleset 2. Ruleset 1 produced higher 

average payoffs for both vehicles than Ruleset 2. 

However, Ruleset 2 saw a higher percent increase for 

both vehicles’ payoffs compared to Ruleset 1. 

5 DISCUSSION 

Non-ideal outcomes in the form of 𝑎𝑙𝑙𝑜𝑤/𝑤𝑎𝑖𝑡 and 

𝑏𝑙𝑜𝑐𝑘 /join are manifestations of one or more road 

users misinterpreting an interaction. These outcomes 

are considered non-ideal since Vehicle 𝑀 intends a 

certain outcome, but Vehicle 𝐽  responds with a 

different action. Such outcomes typically return 
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worse payoffs to both vehicles than either of the ideal 

alternatives (average -6.01 and -0.831, respectively). 

In game theory, such outcomes are considered Pareto 

inefficient. Pareto efficiency is a situation where no 

player can receive a better payoff without causing 

another to receive a worse payoff (Osborne, 2003). 

Since either vehicle could have taken an alternative 

action to improve at least its own payoff, such 

outcomes are Pareto inefficient. 

In Ruleset 1 (Transparent), the uncertainty around 

Vehicle 𝑀’s 𝑎𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛 and 𝑖𝑛𝑡𝑒𝑛𝑡𝑖𝑜𝑛 are the main 

contributors to such outcomes. Since Vehicle 𝑀 has 

knowledge of Vehicle 𝐽 ’s true attributes, the 

acceleration value it employs to 𝑎𝑙𝑙𝑜𝑤  or 𝑏𝑙𝑜𝑐𝑘 

Vehicle 𝐽   is more likely to create an acceptable 

environment for 𝐽. This is why Ruleset 1 produces 

fewer non-ideal outcomes over all compared to 

Ruleset 2 (Blind). Furthermore, since Ruleset 1’s 

interaction uncertainty is confined to only two 

attributes, the effect of communication on Vehicle 𝐽’s 

decision making is amplified. This is evident in the 

total percent decrease in Ruleset 1’s non-ideal 

outcomes which average 28.07%. Ruleset 2’s stands 

at a more conservative 9.63%.  

Similarly, Ruleset 1 produces fewer crashes (2 

average) and near misses (38 average) than Ruleset 2 

(12 and 70, respectively) as there is less room for 

misinterpretation. In fact, 𝑏𝑙𝑜𝑐𝑘/𝑗𝑜𝑖𝑛  outcomes 

caused the bulk of crashes and near misses in all three 

groups. It makes sense therefore that Ruleset 1 sees 

fewer of these than Ruleset 2, all while enjoying a 

greater percent decrease in both. Ruleset 1’s average 

percent decrease in crashes and near misses from base 

to full communication sits at 40.96%, whereas 

Ruleset 2’s averages at only 9.13%. This is partly 

because Ruleset 2 saw a rise in near misses in the test 

groups over the control (17.46%). This suggests that 

communication encouraged Vehicle 𝐽  to take more 

risks. Interestingly, however, despite the increase in 

near misses, there was a 35.71% reduction in crashes. 

Active communication, it seems, has encouraged 

Vehicle 𝐽 to take more 𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑑 risks, whilst also 

refraining from taking potentially catastrophic risks. 

Indeed, looking at average payoffs, we see further 

evidence to corroborate this theory. 

The average payoffs for both 𝑀  and 𝐽  are 

predictably higher (better) in Ruleset 1 than Ruleset 2 

(-0.668 vs -0.993). Having full knowledge of an 

opponent’s attributes and preferences means both 

vehicles can make accurate calculations on each 

other’s movements and responses, resulting in fewer 

over-all dangerous or undesirable interactions. Both 

rulesets benefit from added communication. The 

main difference is that Ruleset 1 saw the most benefit 

going from no communication to implicit 

communication, whereas Ruleset 2 saw the most 

benefit going from implicit to full communication. 

Since players under Ruleset 1 already play an 

optimised game in which they have near-complete 

information, implicit communication is sufficient to 

provide Vehicle 𝐽  meaningful certainty on 𝑀 ’s 

𝑎𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛  and 𝑖𝑛𝑡𝑒𝑛𝑡𝑖𝑜𝑛 . Further communication 

(Group B) only serves to strengthen what is already 

sufficiently known. On the other hand, when the 

information available is either incomplete or 

inaccurate, such as in Ruleset 2, explicit 

communication becomes more vital as information 

becomes more limited. Indeed, research shows that 

Table 7: Summary of simulation results. 

Metric 

Ruleset 1 (Transparent) Ruleset 2 (Blind) 

None 

(Control) 

Implicit 

(Group A) 

Full 

(Group B) 

None 

(Control) 

Implicit 

(Group A) 

Full 

(Group B) 

Allow/Wait 162 166 119 191 193 166 

Block/Go 81 64 57 167 153 156 

Total near misses 47 35 32 63 74 74 

Total crashes 2 1 1 14 12 9 

Average payoff (Vehicle 𝑀) -0.776 -0.735 -0.731 -1.154 -1.085 -1.017 

One-tailed paired t-test (vs Implicit) - < 0.01 0.31 - 0.02 < 0.01 

One-tailed paired t-test (vs None) - - < 0.01 - - < 0.01 

Average payoff (Vehicle 𝐽) -0.619 -0.580 -0.569 -0.967 -0.909 -0.827 

One-tailed paired t-test (vs Implicit) - < 0.01 0.11 - 0.04 < 0.01 

One-tailed paired t-test (vs None) - - < 0.01 - - < 0.01 
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road users seek communication from others when 

facing uncertainty (Portouli et al., 2014). Our results 

corroborate these findings. 

Finally, communication in both rulesets gave 

statistically significant payoff improvements to both 

Vehicle 𝑀 (the issuer) and Vehicle 𝐽 (the recipient). 

Thus, cooperative communication can emerge from 

selfish motives. These improvements were also 

statistically significant with implicit communication 

over control, meaning that active participation by 

Vehicle 𝑀 was not necessary for Vehicle 𝐽 to make 

better decisions based on implicitly communicated 

information. This is an important finding considering 

autonomous vehicles, which may be able to make use 

of freely advertised information such as acceleration 

to better understand human drivers’ intent. 

6 CONCLUSIONS 

We have conducted a series of experiments which 

demonstrate that non-cooperative game theory is a 

viable framework to study, model and characterise 

the exchange of implicit and explicit communication 

between interacting road users. More importantly, we 

show that it is possible to produce meaningfully safer 

interactions and fewer non-ideal outcomes without 

the need to assume common goals a priori. By 

foregoing this assumption, non-cooperative game 

theory provides a more robust framework for 

modelling communication descriptively and 

prescriptively in a variety of situations and scenarios. 

Therefore, in a strict game-theoretic sense, effective 

communication is a viable non-cooperative strategy 

which can benefit both the sender and the recipient. 
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