
Creating an Academic Prometheus in Brazil: Weaving Check50, Autolab
and MOSS into a Unified Autograder

Kevin Monteiro do Nascimento Ponciano1 a, Abrantes Araújo Silva Filho1 b,
Jean-Rémi Bourguet1 c and Elias de Oliveira2 d

1Department of Computer Science, Vila Velha University, Vila Velha, Brazil
2Postgraduate Program of Informatics (PPGI), Federal University of Espı́rito Santo, Vitória, Brazil

Keywords: Autograder, Programming Activities, Criteria-Based Evaluation, Virtual Environments, Plagiarism Detection.

Abstract: The evaluation of programming exercises submitted by a large volume of students presents an ongoing chal-
lenge for educators. As the number of students engaging in programming courses continues to rise, the burden
of assessing their work becomes increasingly demanding. To address this challenge, automated systems known
as autograders have been developed to streamline the evaluation process. Autograders recognize solutions and
assign scores based on predefined criteria, thereby assisting teachers in efficiently assessing student programs.
In this paper, we propose the creation of a comprehensive autograding platform in a Brazilian university by
leveraging open-source technologies pioneered by prestigious universities such as Harvard, Carnegie Mellon,
and Stanford. Job processing servers, interface components, and anti-plagiarism modules are integrated to
provide educators with an evaluation tool, ensuring efficiency in grading processes and fostering enriched
learning experiences. Through data analysis of the students’ submissions, we aim to emphasize the platform’s
effectiveness and pinpoint areas for future enhancements to better cater to the needs of educators and students.

1 INTRODUCTION

With the rapid evolution of technology in recent
times, there has been a significant increase in the
demand for higher education courses related to the
IT market. Fields such as Computer Science, Com-
puter Engineering, and Information Systems are ex-
periencing heightened interest, leading many univer-
sities to open new slots and accommodate larger class
sizes. To meet this demand, a single professor of-
ten finds themselves responsible for multiple classes
in IT-related undergraduate programs. On the other
hand, when examining teaching methodologies, it be-
comes apparent that the majority of programming
subjects follow a standard pattern. This involves ex-
plaining an algorithm, the theory behind it, and then
instructing students to recreate the algorithm in a spe-
cific programming language (Bergin et al., 1996).

However, challenges arise when the professor
needs to assess each student’s programming activ-

a https://orcid.org/0009-0001-2393-7424
b https://orcid.org/0009-0008-0121-7566
c https://orcid.org/0000-0003-3686-1104
d https://orcid.org/0000-0003-2066-7980

ity, including evaluating compilation errors, syntax,
adherence to instructions, and the overall quality of
the code. Although it is the professor’s responsibil-
ity to evaluate these activities, the process becomes
overwhelming and exhausting as they spend numer-
ous hours analyzing variations of the same algorithm.
Fatigue can lead to overlooking errors or successes
during this correction period. Swift feedback is cru-
cial for students to understand their mistakes and learn
how to improve. Given the number of students, lim-
ited class hours, and a packed curriculum, it becomes
challenging for the professor to pinpoint these areas
for all students (Au, 2011). If this assessment is done
manually, it is very challenging to provide detailed
evaluation with quick feedback for a large volume of
students (Breslow et al., 2013).

Based on emerging trends such as the integration
of adaptive learning technologies, utilization of artifi-
cial intelligence and machine learning, and focus on
remote and online learning, new systems have been
developed for the automatic recognition of potential
solutions and mapping these solutions to scores as-
signed automatically based on criteria established by
teachers. These automated systems are generally re-
ferred to as “Autograders” — see for example the

Ponciano, K., Filho, A., Bourguet, J. and de Oliveira, E.
Creating an Academic Prometheus in Brazil: Weaving Check50, Autolab and MOSS into a Unified Autograder.
DOI: 10.5220/0012736700003693
Paper published under CC license (CC BY-NC-ND 4.0)
In Proceedings of the 16th International Conference on Computer Supported Education (CSEDU 2024) - Volume 2, pages 439-450
ISBN: 978-989-758-697-2; ISSN: 2184-5026
Proceedings Copyright © 2024 by SCITEPRESS – Science and Technology Publications, Lda.

439

proposal in Nordquist (2007). One of the objectives
of this work is to develop an autograder for the Vila
Velha University (UVV) capable of assisting teachers
in the standardized and detailed evaluation of student
programs.

Another serious issue found in student programs
is plagiarism materialized by the act of copying code.
Even if a course has a clear and rigorous academic in-
tegrity policy, students often copy program code from
each other (and/or copy code from the internet), sub-
mitting the copied program as if it were their own cre-
ation. Plagiarism is a serious problem because it pre-
vents the teacher from knowing if the class is learning
the material and which aspects of the content were
challenging for students and need reinforcement in
class. It is also very difficult for the teacher to man-
ually inspect all codes of all students and determine
if a program is original or plagiarized, as the number
of unique pairs that may contain plagiarism increases
quadratically (Heres and Hage, 2017). It is essential
for the teacher to be able to identify and appreciate
original solutions produced by students and penalize
the plagiarism of program codes. Automatic methods
for measuring similarity between program codes have
been used for many years to help humans detect pla-
giarism (Clough et al., 2003), and there are already
approaches to identify similarities between specific
programming codes (e.g., C (Sharrock et al., 2019),
SQL (Hu et al., 2022)) or graphs produced in concep-
tual modeling (e.g., ERD (Del Pino Lino and Rocha,
2018), UML (Ionita et al., 2013)). There are already
specific systems for detecting plagiarism in program
code that provide the teacher with a visually and eas-
ily interpretable report indicating the likelihood of
plagiarism in student codes (John and Boateng, 2021).
Therefore, another objective of this work is to inte-
grate automated plagiarism detection tools into the
autograder that will be produced to assist the teacher.

Many prestigious universities, including Harvard
University and Carnegie Mellon University, have de-
veloped their own tools for code self-correction in
their Computer Science courses, offering open-source
solutions to construct comprehensive and tailored au-
tograding systems. This paper introduces the cre-
ation of a self-correction platform leveraging open-
source technologies such as “check50”1 (Sharp et al.,
2020), developed by Harvard University, serving as
a framework for assessing correctness of code, “Au-
tolab”2 (Milojicic, 2011), a project originating from
Carnegie Mellon University, employed as the fron-
tend component, “gradelab50”3, a tool to grade a stu-

1https://github.com/cs50/check50
2https://github.com/autolab/Autolab
3https://pypi.org/project/gradelab50/

dent’s submission based on check50’s json report and
a given grading scheme, and “MOSS”4 (Schleimer
et al., 2003), created at Stanford University, as the
anti-plagiarism module within the system. This paper
delves into the collaborative integration of these tools,
offering insights into the development and functional-
ity of a versatile and adaptable autograding solution.

The remainder of the paper is structured as fol-
lows: In Section 2, we will present some related
works. In Section 3, we will introduce the compo-
nents we integrated. In Section 4, we will describe
the architecture system of our proposal. In Section 5,
we will present some student feedback about the au-
tograder. Finally, in Section 6, we will conclude and
outline some perspectives.

2 RELATED WORK

The landscape of autograders, tools designed to auto-
mate the grading and evaluation of student program-
ming assignments, encompasses a diverse array of so-
lutions and methodologies.

Barlow et al. (2021) present a survey of the most
popular currently available autograders, reflecting the
growing interest and adoption of automated grading
systems in educational settings.

One prominent example is AutoGrader, a frame-
work developed by Helmick (2007) at Miami Univer-
sity for the automatic evaluation of student program-
ming assignments written in Java. Notably, Auto-
Grader supports static code analysis through tools like
PMD, enabling the detection of inefficiencies, bugs,
and suboptimal coding practices. While initially tai-
lored for Java, the underlying principles of automated
grading are adaptable to multiple programming lan-
guages.

OverCode, introduced by Glassman et al. (2015),
presents a novel approach to visualizing and exploring
large sets of programming solutions. Through a com-
bination of static and dynamic analysis, OverCode
clusters similar solutions, providing educators with
insights into students’ problem-solving approaches.

Anticipating common mistakes made by novice
programmers, Hogg and Jump (2022) develop test
suites integrated with autograders to provide under-
standable failure messages, enhancing the learning
experience.

Sridhara et al. (2016) employ fuzz testing to iden-
tify behavioral discrepancies between student solu-
tions and reference implementations, enhancing the
robustness of autograding systems.

4http://theory.stanford.edu/∼aiken/moss/

CSEDU 2024 - 16th International Conference on Computer Supported Education

440

Integrating autograders with Learning Manage-
ment Systems (LMS) or Massive Open Online Course
(MOOC) platforms has been explored in various
works (Danutama and Liem, 2013; Norouzi and
Hausen, 2018; Sharrock et al., 2019; Calderón et al.,
2020; Ureel II and Wallace, 2019).

While traditional autograders primarily evaluate
based on passed tests, Liu et al. (2019) propose ap-
proaches to handle semantically different execution
paths between student submissions and reference im-
plementations, addressing nuanced evaluation scenar-
ios.

The issue of plagiarism detection within auto-
graders has also received attention (zu Eissen and
Stein, 2006; Ali et al., 2011; Apriyani et al., 2020),
with methodologies ranging from text-based detec-
tion to code similarity analysis, contributing to aca-
demic integrity in programming education.

Furthermore, autograders have found applications
beyond traditional coursework, including competitive
programming (Arifin and Perdana, 2019), large-scale
programming classes (Sharrock et al., 2019), and pro-
gram repairs (Gulwani et al., 2018), block-based cod-
ing assignments (Damle et al., 2023) or exam envi-
ronment (Ju et al., 2018), illustrating their versatility
and utility across diverse educational contexts.

Recognized benefits of autograders include im-
proved student-tutor interactions, enhanced course
quality, increased learning success, and improved
code quality (Norouzi and Hausen, 2018; Marwan
et al., 2020; Hagerer et al., 2021), underlining their
positive impact on programming education.

Autograders are also able to capture the formative
steps that were involved in the development of the fi-
nal submission (Acuña and Bansal, 2022), providing
valuable insights into the iterative learning process
undertaken by students.

Recent research efforts have focused on refin-
ing autograder functionalities, such as implementing
penalty schemes to encourage reflective feedback en-
gagement (Leinonen et al., 2022) and advocating pol-
icy changes in submission formats (Butler and Her-
man, 2023). Additionally, developments like real-
time actionable feedback on code style (Choudhury
et al., 2016) further augment the pedagogical value of
autograders.

In summary, the evolution and proliferation of
autograders have significantly transformed program-
ming education, offering scalable, efficient, and in-
sightful assessment mechanisms.

3 COMPONENTS INTEGRATION

The choice of Autolab, check50, gradelab50, and
MOSS is due to their specialized functions for educa-
tion. Autolab simplifies everything with its simple in-
terface, offering fast feedback and assisting in course
and assessment organization. check50 allows for the
quick creation of checks to assess the correctness of
student code, and is supported by an active commu-
nity. gradelab50 is used to grade a student’s submis-
sion based on check50’s json report and a given grad-
ing scheme, and outputs a json report in a format that
can be used by Autolab. Finally, MOSS helps detect
plagiarism for free and accurately, ensuring honesty
in submissions.

3.1 Check50 Integration

check50 is a tool for checking student code in-
troduced in 2012 in CS50 at Harvard5 that pro-
vides a simple, functional framework for writing
checks (Sharp et al., 2020). check50 allows teach-
ers to automatically grade code on correctness and to
provide automatic feedback while students are cod-
ing. It is a correctness-testing tool made available to
both students and teachers, automatically runs a suite
of tests against students’ code to evaluate the correct-
ness of each submission.

As a result, check50 has allowed us to provide
students with immediate feedback on their progress
as they complete an assignment while also facilitat-
ing automatic and consistent grading, allowing teach-
ing staff to spend more time giving tailored, qualita-
tive feedback. check50 consists of a tool divided into
two parts. The first part encompasses the source code
of the tool, which incorporates verification methods,
reading input files, formatting text outputs, as well
as APIs and other elements that ensure the full func-
tioning of the library. The second part consists of
validators (checks), which allow educators, follow-
ing a standard structure, to develop specific problems.
These include validation steps, customization of feed-
back for approved or rejected steps, and the creation
of a model code that check50 uses to determine the
correctness of the code submitted by the student.

A great advantage of check50 is its modularity, al-
lowing a complete separation between the tool and
its validators. This enables any educator to use pre-
existing validators, developed by the community, or
create their own validators. These can be executed
both online, with the validators hosted on GitHub, and
locally, in a check50 installation.

5https://www.edx.org/cs50

Creating an Academic Prometheus in Brazil: Weaving Check50, Autolab and MOSS into a Unified Autograder

441

Creating validators can be done locally or through
repositories on GitHub, without the need to be on the
same machine where check50 is installed. To build a
basic validator, only a .yaml file named .cs50.yml
is required, which defines the name of the validation,
the command to be executed, the expected output, and
the required exit code as described in Listing 1. Note
that for more complex validations, it is recommended
to use Python in a file named __init__.py.� �

check50 :
c he ck s :

o l a : # d e f i n e a check named o l a
− run : py thon3 o l a . py # r u n s o l a . py

s t d o u t : Ol á ! # e x p e c t Ol á ! i n
s t d o u t

e x i t : 0 # e x p e c t e x i t c o d e 0
o l a s : # d e f i n e a check named o l a s
− run : py thon3 o l a s . py # r u n s o l a s . py

s t d i n : 2 # i n s e r t 2 i n t o
s t d i n

s t d o u t : o l a o l a # o l a o l a i n
s t d o u t

e x i t : 0 # e x p e c t e x i t c o d e
0� �

Listing 1: Simple checks.

The Listing 2 illustrates advanced checks, initially
verifying the compilation of the ola.c file. Subse-
quently, upon successful compilation, it proceeds to
validate whether the file appropriately outputs the ex-
pected message.� �

i m p o r t check50
i m p o r t check50 . c

@check50 . check ()
d e f e x i s t s () :

”””O a r q u i v o o l a . c e x i s t e ?”””
check50 . e x i s t s (” o l a . c ”)

@check50 . check (e x i s t s)
d e f c o m p i l e s () :

””” V e r i f i c a se o a r q u i v o o l a . c compi l a : ” ” ”
check50 . c . CFLAGS={ ' ggdb ' : True , ' lm ' : True , '
s t d ' : ' c17 ' , ' Wall ' : True , ' Wpedantic ' : True }

check50 . c . compi l e (” o l a . c ” , exe name =” o l a ” ,
cc =” gcc ” , m a x l o g l i n e s =50 , l c s 5 0 =True)

@check50 . check (c o m p i l e s)
d e f uvv () :

””” Responde c o r r e t a m e n t e ao nome UVV?”””
check50 . run (” . / o l a ”) . s t d i n (”UVV”) . s t d o u t (”
Ola , UVV! ”) . e x i t ()

@check50 . check (c o m p i l e s)
d e f k e v i n () :

””” Responde c o r r e t a m e n t e ao nome Kevin ?”””
check50 . run (” . / o l a ”) . s t d i n (” Kevin ”) . s t d o u t (”
Ol á , Kevin ! ”) . e x i t ()� �

Listing 2: Advanced checks.

Additionally, it is possible to configure check50 in
detail through the .cs50.yml file as described in List-

ing 3, specifying which files will be submitted to the
tests and which will be excluded, as well as including
test dependencies, such as external libraries that will
be installed during the execution of check50.� �

check50 :
f i l e s : &c h e c k 5 0 f i l e s

− ! e x c l u d e ”*”
− ! r e q u i r e o l a . c� �

Listing 3: Test details.

To locally execute a test, use the command:
check50 --dev path/to/check/ -o json on the
files specified in the .cs50.yml. It will generate a
JSON file with both successful and failed tests, as de-
scribed in Listing 4.� �
{

” s l u g ” : ” . . / a u t o g r a d e r / . check50 / ” ,
” r e s u l t s ” : [

{
”name ” : ” e x i s t e ” ,
” d e s c r i p t i o n ” : ” o l a . c e x i s t e ? ” ,
” p a s s e d ” : t r u e ,
” l o g ” : [

” c h e c k i n g t h a t o l a . c e x i s t s . . . ”] ,
” c a u s e ” : n u l l ,
” d a t a ” : {} ,
” dependency ” : n u l l

} ,
{

”name ” : ” compi l a ” ,
” d e s c r i p t i o n ” : ” o l a . c compi l a ? ” ,
” p a s s e d ” : t r u e ,
” l o g ” : [

” r u n n i n g gcc o l a . c −o o l a . . . ”] ,
” c a u s e ” : n u l l ,
” d a t a ” : {} ,
” dependency ” : ” e x i s t e ”

} ,
{

”name ” : ” r e s p o s t a ” ,
” d e s c r i p t i o n ” : ” c o r r e t o ? ” ,
” p a s s e d ” : t r u e ,
” l o g ” : [

” r u n n i n g . / o l a . . . ” ,
” c h e c k i n g f o r o u t p u t Ol á ! . . . ,
” c h e c k i n g e x i t e d wi th 0 . . . ”] ,

” c a u s e ” : n u l l ,
” d a t a ” : {} ,
” dependency ” : ” compi l a ”

}
] ,
” v e r s i o n ” : ” 3 . 3 . 7 ”

}� �
Listing 4: JSON file results.

3.2 Autolab Integration

Autolab is an open source course management and
autograding service started at Carnegie Mellon by
Professor David O’Hallaron (see Milojicic (2011)).
Many courses from other schools including Univer-
sity of Washington, Peking University, Cornell Uni-

CSEDU 2024 - 16th International Conference on Computer Supported Education

442

versity, among others use the service. Autolab con-
sists of two main components: a Ruby on Rails
web app, and Tango, a Python job processing server.
The web app offers a full suite of course manage-
ment tools including scoreboards, configurable as-
signments, PDF and code handouts, grade sheets, and
plagiarism detection. The job processing server ac-
cepts job requests to run students’ code along with an
instructor written autograding script within a virtual
machine.

After receiving the submitted files, the Autolab
frontend forwards them to Tango, a backend system,
through HTTP requests. Tango, in turn, inserts these
files into a job queue, preparing them for evaluation.
The assignment of jobs to available containers or vir-
tual machines is done via SSH, ensuring that each
submission is processed in an isolated and secure en-
vironment. This system allows Tango to efficiently
direct jobs through the evaluation process. Tango has
the ability to direct jobs to appropriate VM instances
based on the corresponding course. For example, jobs
for course CS1 are exclusively directed to the CS1
VM instance, ensuring that the evaluation takes place
in the most suitable environment.

After a job is completed, the feedback is trans-
ferred back to Tango via SSH. This feedback is then
forwarded to the Autolab frontend through HTTP re-
quests. The frontend is responsible for presenting the
comments to users, either through the browser or CLI.
Additionally, the system can update grades on the stu-
dent’s report card, if necessary, and store comments in
the database for future access.

3.3 MOSS Integration

MOSS (for a Measure Of Software Similarity) is an
automatic system for determining the similarity of
programs introduced in 1994 at Stanford (Schleimer
et al., 2003). The main application of MOSS is actu-
ally used to detect plagiarism in programming classes.
The algorithm behind MOSS is a significant improve-
ment over other cheating detection algorithms. It
saves teachers and teaching staff a lot of time by
pointing out the parts of programs that are worth a
more detailed examination.

The tool is developed to identify similarities be-
tween codes, but it does not have the ability to auto-
matically determine if one code is a copy of another.
The responsibility to analyze the similarities detected
by MOSS falls on the educator. The developers sug-
gest using MOSS as a resource to assess the amount
of similarity between codes, helping to identify un-
usual correspondences that may require further inves-
tigation.

The implementation of MOSS is facilitated by a
bash configuration script, which allows users to sub-
mit their code for analysis by the MOSS server, sim-
plifying the submission process. Users can specify
the programming language of the tested codes using
the -l option. This allows for a more accurate anal-
ysis, as MOSS supports various languages. In List-
ing 5, Lisp programs are compared for example.� �

moss − l l i s p foo . l i s p b a r . l i s p� �
Listing 5: Moss example use.

Moreover, the -d option signifies that submissions
are structured by directory, considering files within
the same directory as components of a unified pro-
gram, as presented in Listing 6. This comparison in-
volves programs composed of both .c and .h files.� �

moss −d foo / * . c foo / * . h b a r / * . c b a r / * . h� �
Listing 6: Moss example use.

A crucial aspect in similarity analysis is to avoid
considering as plagiarism the code that is common to
all students, such as the code provided by the instruc-
tor. This is done through the -b option, which speci-
fies a base file, excluding from the report the code also
present in this file. To adjust the system’s sensitiv-
ity, the -m option sets the maximum number of times
a code snippet can appear before being disregarded,
helping to differentiate between legitimate sharing
and potential plagiarism. Finally, the -n option sets
the number of corresponding files to be shown in the
results. Using these options provides users with sig-
nificant flexibility in the use of MOSS, allowing for
adjustments as needed to obtain more precise and rel-
evant similarity analyses, facilitating the identifica-
tion of unusual correspondences that may require fur-
ther investigation.

The similarity scores produced by MOSS are use-
ful for judging the relative amount of matching be-
tween different pairs of programs and for more easily
seeing which pairs of programs stick out with unusual
amounts of matching. But the scores are certainly not
a proof of plagiarism.

4 SYSTEM ARCHITECTURE

In order to use check50, Autolab and MOSS together,
some modifications were necessary. In Figure 1, we
illustrate the system architecture diagram detailing
the components of our Brazilian Autograder solution.

Students initiate the evaluation process by submit-
ting their code, engaging in an interactive assessment

Creating an Academic Prometheus in Brazil: Weaving Check50, Autolab and MOSS into a Unified Autograder

443

Figure 1: System architecture diagram.

facilitated by Autolab. Autolab acts as the interme-
diary, for combining check50 files with student code
to create a consolidated files database. Tango then
orchestrates the creation of a Virtual Machine (VM)
and executes check50 within it, showcasing the back-
end processing of code submissions. This pivotal step
ensures the execution of automated tests on student
submissions within a controlled environment. The
process concludes with two concurrent outcomes: the
Tango JSON output from the VM and the operation
of check50 and gradelab50. These components are
responsible for executing auto-correction and gener-
ating outputs detailing the exercise steps. Addition-
ally, teachers have the option to submit assignments
for review, enabling plagiarism detection or similar-
ity checking and maintaining academic integrity and
originality in student work.

The course home page of our autograder is de-
picted in Figure 2.

Figure 2: Course home page.

Figure 3 illustrates the submission page of our au-
tograder.

Figure 3: Submission page.

In the VMs created by Tango, it is possible to per-
form any type of self-assessment in numerous pro-
gramming languages, as long as the test output ad-
heres to the required JSON format for Autolab to in-
terpret and render on the frontend whether the test
passed, failed, the grade for each step, and any nec-
essary hints.

We first modified the Dockerfile of Tango’s VMs
to install check50. Then, we modified the Makefiles
that Autolab executes to start the autograder. There-
fore, in addition to running a simple Python test, for
example, it can also run check50.

CSEDU 2024 - 16th International Conference on Computer Supported Education

444

� �
a l l :

t a r xvf a u t o g r a d e . t a r

cp − r c r e d i t . py s r c

(cd s r c ; py thon3 d r i v e r . py ;)

c l e a n :

rm − r f *\ ˜ s r c� �
Listing 7: Default Makefile.� �

a l l :

t a r xvf a u t o g r a d e . t a r

−check50 −−dev / s r c / −o j s o n

c l e a n :

rm − r f *\ ˜ s r c� �
Listing 8: Modified Makefile with check50.

In the Makefile presented in Listing 7, the systems
extracts the necessary files to perform the test, copies
the file submitted by the student to the src folder, and
then executes the Python code responsible for auto-
correction.

In the second Makefile presented in Listing 8, the
systems simply extracts the folder already structured
with the necessary files to perform the auto-correction
following the check50 standard, and then executes
check50.

Consequently, Autolab performs self-corrections
for each code submitted by the student using check50.
However, at this stage, we encountered a conflict be-
tween the two components. Autolab expects the test
to return a JSON with the problems passed in the eval-
uation with their respective grades, while check50 re-
turns a completely different JSON and without the
necessary grades for Autolab to register them on the
student’s report card.

To bridge this gap and tackle this incompatibil-
ity, we used grade50, developed by Professor Patrick
Totzke6 from the University of Liverpool. grade50
reads the JSON report produced by check50 and,
based on parameters established in a .yaml file, gen-
erates a textual output. This output can be formatted
either in a .jinja2 template file or in a JSON format.

Listing 9 defines a scoring schema for two main
categories: ”Compilation” and ”Correctness”. Each
category contains specific checks, with points as-
signed per test. Custom comments are defined for
each possible outcome, providing clear and targeted
feedback to students.

6https://github.com/pazz/grade50

� �
− name : ” Compila ç ã o ”

c he ck s :
− name : ” e x i s t e ”

p o i n t s : 20
f a i l c o m m e n t : ”FALHOU (0 / 2 0 p o n t o s) :

Arquivo o l a . c n ã o e n c o n t r a d o . ”
pass comment : ”PASSOU (2 0 / 2 0 p o n t o s) :

O a r q u i v o o l a . c e x i s t e . ”
− name : ” compi l a ”

p o i n t s : 30
f a i l c o m m e n t : ”FALHOU (0 / 3 0 p o n t o s) :

Arquivo n ã o compi l a . ”
pass comment : ”PASSOU (3 0 / 3 0 p o n t o s) :

Suces so : a r q u i v o compi lado . ”

− name : ” C o r r e t u d e ”
c he ck s :

− name : ” r e s p o s t a ”
p o i n t s : 50
f a i l c o m m e n t : ”FALHOU (0 / 5 0 p o n t o s) :

O o u t p u t n ã o e s t á c o r r e t o . ”
pass comment : ”PASSOU (5 0 / 5 0 p o n t o s) :

O o u t p u t e s t á c o r r e t o . ”� �
Listing 9: Scoring schema.

The output generated by grade50 follows the tem-
plate of the .jinja2 file. It provides a summary of
the points obtained per test group, followed by de-
tails on specific comments for each group. This struc-
ture facilitates the understanding of results by stu-
dents and teachers, highlighting areas of success and
areas needing improvement.

grade50 greatly improves check50’s capabilities
by incorporating a quantitative aspect to code eval-
uation, thereby enriching the learning experience
through comprehensive insights into student perfor-
mance. However, the output of grade50 also differs
from the JSON expected by Autolab. With the au-
thorization of Professor Patrick Totzke, we modified
grade50 into a component that we called gradelab50
to produce an output exactly in the format expected
by Autolab as presented in Figure 4.

After these minor changes, check50 performs
self-assessments of student submissions, gradelab50
retrieves the output generated by check50, scores
the submissions according to the successfully passed
steps, and Autolab records the grades on the students’
report card and provides the feedback generated by
gradelab50 to the students.

Autolab streamlines MOSS usage by incorporat-
ing it directly into its platform, replacing command-
line instructions with a user-friendly interface. Within
this interface, users only need to specify certain con-
figurations, such as file compression status, file lan-
guage, and the base file selection. Once these options
are defined, files can be uploaded via the web browser
for analysis and submission as depicted in Figure 5.

Autolab’s backend manages the execution of the
pre-indexed MOSS script on the server. Upon com-

Creating an Academic Prometheus in Brazil: Weaving Check50, Autolab and MOSS into a Unified Autograder

445

Figure 4: Correction Feedback Page.

pletion of the script, users are directed to the MOSS
webpage, where they can review the submitted files
and identify potential instances of plagiarism among
students as shown in Figure 6.

5 BENEFITS AND DRAWBACKS

In Fall 2023, 1,144 submissions were made by 82 stu-
dents (average of 14 submissions/student), marking
an unprecedented volume of submissions. This con-
trasts with the period when teachers were required
to manually execute and correct student work. The
tasks performed by the students were basically of two
broad types: simple exercises, so that students could
develop fundamental programming skills, and PSETs
(Problem Sets), so that students could develop com-
putational thinking skills and train the ability to solve
problems. The exercises were developed by the sub-
ject teachers, and the PSETs were adapted from Har-

Figure 5: Graphical User Interface of Autolab with MOSS.

Figure 6: MOSS webpage.

vard Course CS50x7.
The PSETs were translated into Brazilian Por-

tuguese and some were adapted to reflect the reality

7https://cs50.harvard.edu/x/2023/

CSEDU 2024 - 16th International Conference on Computer Supported Education

446

Figure 7: American (above) x Brazilian (below) coins.

in Brazil. For example, in the original PSET Cash8,
American coins were used, and in the translated and
adapted PSET, Brazilian coins were used, as shown in
Figure 7. All check50 “checks” have been rewritten
to reflect the adapted version of the PSETs.

Figure 8: Grades by submission type.

As expected, students’ grades (on a scale from 0
to 10) were better in the simple exercises and lower
in the PSETS, as depicted in Figure 8, considering all
submissions and all exercises and PSETs.

When we analyzed a specific programming exer-
cise, for example, the calculation of body mass index,
we noticed that, as expected, students’ grades were
higher according to the number of submissions they
make to Autolab, as described in Figure 9.

At the moment we did not limit the number of
submissions that a student could make: he could sub-
mit as many times as he wanted, until he got a good
grade. The student realized the first submission, re-
ceived feedback from Autolab, debugged his program
and submited it again, until he succeeded.

Our autograder solution has helped our teachers to
improve the consistency and the efficiency of grading
student’s assignments. Furthermore, the autograder
allowed teachers to spend more time on qualitative

8https://cs50.harvard.edu/x/2023/psets/1/cash/

Figure 9: Grades by number of submissions.

feedback for students.
Another clear benefit was that, by reducing the

need for manual code correction, teachers were able
to take advantage of the time saved to enhance pro-
gramming exercises and develop new exercises de-
signed to assess specific student skills.

Students in our CS1 course have also taken advan-
tage of the instantaneous feedback on code’s correct-
ness provided by check50, and students’ motivation
level has increased with informal and friendly com-
petition through the anonymous grade scoreboard.

The interface provided by Autolab, which allows
the teacher to make notes directly on the student’s
code, was cited by the students themselves as one of
the system’s most useful features.

In general, our platform allowed teachers and stu-
dents to optimize their time and make better use of
interaction periods.

However, some problems occurred. We have
found that some students have begun to use our au-
tograder as a debug tool, in a kind of trial and error
coding, instead of thinking about the problem and cre-
ating a solution. These students were unable to estab-
lish healthy habits for planning, compiling, running
and debugging their programs. Despite being real
problems, they are pedagogically manageable during
office hours or other direct meetings with students.

Another limitation we faced pertained to the anal-
ysis of student data. Although Autolab provides
several tools for reporting and simple data analysis,
including monitoring of low performance students,
there is no easy way to export data in a format more
suitable to our needs. The analysis of the grades we
show was actually based on manual data collection
and verification, a process that is slow and prone to
errors. In future work, one of our priorities will be to

Creating an Academic Prometheus in Brazil: Weaving Check50, Autolab and MOSS into a Unified Autograder

447

gain a deeper understanding of how Autolab stores all
data and to develop routines for retrieving data that
are best suited to our needs.

6 CONCLUSIONS

One of the crucial aspects in the teaching-learning
process of computer science disciplines is the learning
assessment phase and the evaluation of codes written
by students. Ideally, this assessment should be stan-
dardized and detailed, with students receiving prompt
feedback on what is correct and/or incorrect. How-
ever, teachers face a significant challenge in achiev-
ing standardized and detailed evaluation with quick
feedback in classes (in-person or virtual) with a large
number of students. The main issue is the time it takes
for the professor to provide feedback to the students.

In this paper, we have discussed the development
and integration of a comprehensive autograding sys-
tem tailored for programming assignments in educa-
tional settings. To mitigate these challenges, we pro-
posed the integration of automated tools, including
check50, Autolab, and MOSS, to streamline the grad-
ing process and enhance the overall learning experi-
ence. Our approach leverages open-source technolo-
gies and existing frameworks developed by renowned
institutions, such as Harvard University and Carnegie
Mellon University. By combining these tools into a
cohesive autograding platform, we aimed to provide
educators with efficient means to assess student pro-
grams, detect plagiarism, and deliver timely feedback.

Our evaluation of the system’s performance show-
cased significant improvements in grading efficiency
and consistency, as evidenced by the substantial in-
crease in the number of submissions processed within
a semester. Generally, the feedbacks provided by an
autograder prior to students’ submission of each as-
signment compel students to spend more time debug-
ging and allow the students to obtain higher correct-
ness scores (Norouzi and Hausen, 2018; Sharp et al.,
2020).

Future work may also involve further refining the
integration of supplementary features, such as peer-
review by students (Silva et al., 2020a), or incorpo-
rating intelligent tutoring systems based on Item Re-
sponse Theory (Silva et al., 2020d,c,b). These en-
hancements aim to augment the pedagogical efficacy
of a more comprehensive and multi-functional auto-
grader.

REFERENCES

Acuña, R. and Bansal, A. (2022). Using programming auto-
grader formative data to understand student growth. In
IEEE Frontiers in Education Conference, FIE 2022,
Uppsala, Sweden, October 8-11, 2022, pages 1–8.
IEEE.

Ali, A. M. E. T., Abdulla, H. M. D., and Snásel, V.
(2011). Overview and comparison of plagiarism de-
tection tools. In Snásel, V., Pokorný, J., and Richta,
K., editors, Proceedings of the Dateso 2011: Annual
International Workshop on DAtabases, TExts, Specifi-
cations and Objects, Pisek, Czech Republic, April 20,
2011, volume 706 of CEUR Workshop Proceedings,
pages 161–172. CEUR-WS.org.

Apriyani, N., Atmadja, A. R., Fuadi, R. S., and Ger-
hana, Y. A. (2020). The detector of plagiarism
in autograder for php programming languages. In
ICONISTECH-1 2019: Selected Papers from the 1st
International Conference on Islam, Science and Tech-
nology, ICONISTECH-1 2019, 11-12 July 2019, Ban-
dung, Indonesia, page 205. European Alliance for In-
novation.

Arifin, J. and Perdana, R. S. (2019). Ugrade: Auto-
grader for competitive programming using contestant
pc as worker. In 2019 International Conference on
Data and Software Engineering (ICoDSE), pages 1–
6. IEEE.

Au, W. (2011). Teaching under the new taylorism: high-
stakes testing and the standardization of the 21st cen-
tury curriculum. Journal of Curriculum Studies, 43:25
– 45.

Barlow, M., Cazalas, I., Robinson, C., and Cazalas, J.
(2021). Mocside: an open-source and scalable on-
line ide and auto-grader for introductory programming
courses. Journal of Computing Sciences in Colleges,
37(5):11–20.

Bergin, J., Roberts, J., Pattis, R., and Stehlik, M. (1996).
Karel++: A Gentle Introduction to the Art of Object-
Oriented Programming. John Wiley & Sons, Inc.,
USA, 1st edition.

Breslow, L., Pritchard, D. E., DeBoer, J., Stump, G. S., Ho,
A. D., and Seaton, D. T. (2013). Studying learning
in the worldwide classroom research into edx’s first
mooc. Research & Practice in Assessment, 8:13–25.

Butler, L. and Herman, G. L. (2023). First try, no (auto-
grader) warm up: Motivating quality coding submis-
sions. In 2023 ASEE Annual Conference & Exposi-
tion.

Calderón, D., Petersen, E., and Rodas, O. (2020). Salp: A
scalable autograder system for learning programming-
a work in progress. In 2020 IEEE Integrated STEM
Education Conference (ISEC), pages 1–4. IEEE.

Choudhury, R. R., Yin, H., and Fox, A. (2016). Scale-driven
automatic hint generation for coding style. In Mi-
carelli, A., Stamper, J. C., and Panourgia, K., editors,
Intelligent Tutoring Systems - 13th International Con-
ference, ITS 2016, Zagreb, Croatia, June 7-10, 2016.
Proceedings, volume 9684 of Lecture Notes in Com-
puter Science, pages 122–132. Springer.

CSEDU 2024 - 16th International Conference on Computer Supported Education

448

Clough, P. et al. (2003). Old and new challenges in auto-
matic plagiarism detection. National plagiarism advi-
sory service, 41:391–407.

Damle, P., Bull, G., Watts, J., and Nguyen, N. R. (2023).
Automated structural evaluation of block-based cod-
ing assignments. In Doyle, M., Stephenson, B., Dorn,
B., Soh, L., and Battestilli, L., editors, Proceedings
of the 54th ACM Technical Symposium on Computer
Science Education, Volume 2, SIGCSE 2023, Toronto,
ON, Canada, March 15-18, 2023, page 1300. ACM.

Danutama, K. and Liem, I. (2013). Scalable autograder and
lms integration. Procedia Technology, 11:388–395.

Del Pino Lino, A. and Rocha, A. (2018). Automatic evalu-
ation of erd in e-learning environments. In 2018 13th
Iberian Conference on Information Systems and Tech-
nologies (CISTI), pages 1–5.

Glassman, E. L., Scott, J., Singh, R., Guo, P. J., and Miller,
R. C. (2015). Overcode: Visualizing variation in
student solutions to programming problems at scale.
ACM Trans. Comput. Hum. Interact., 22(2):7:1–7:35.

Gulwani, S., Radiček, I., and Zuleger, F. (2018). Auto-
mated clustering and program repair for introductory
programming assignments. ACM SIGPLAN Notices,
53(4):465–480.

Hagerer, G., Lahesoo, L., Anschütz, M., Krusche, S., and
Groh, G. (2021). An analysis of programming course
evaluations before and after the introduction of an au-
tograder. In 19th International Conference on In-
formation Technology Based Higher Education and
Training, ITHET 2021, Sydney, Australia, November
4-6, 2021, pages 1–9. IEEE.

Helmick, M. T. (2007). Interface-based programming as-
signments and automatic grading of java programs. In
Hughes, J. M., Peiris, D. R., and Tymann, P. T., edi-
tors, Proceedings of the 12th Annual SIGCSE Confer-
ence on Innovation and Technology in Computer Sci-
ence Education, ITiCSE 2007, Dundee, Scotland, UK,
June 25-27, 2007, pages 63–67. ACM.

Heres, D. and Hage, J. (2017). A quantitative comparison
of program plagiarism detection tools. In Proceed-
ings of the 6th Computer Science Education Research
Conference, page 73–82, New York, NY, USA. Asso-
ciation for Computing Machinery.

Hogg, C. and Jump, M. (2022). Designing autograders
for novice programmers. In Merkle, L., Doyle, M.,
Sheard, J., Soh, L., and Dorn, B., editors, SIGCSE
2022: The 53rd ACM Technical Symposium on Com-
puter Science Education, Providence, RI, USA, March
3-5, 2022, Volume 2, page 1200. ACM.

Hu, Y., Miao, Z., Leong, Z., Lim, H., Zheng, Z., Roy, S.,
Stephens-Martinez, K., and Yang, J. (2022). I-rex:
An interactive relational query debugger for SQL. In
Merkle, L., Doyle, M., Sheard, J., Soh, L., and Dorn,
B., editors, SIGCSE 2022: The 53rd ACM Technical
Symposium on Computer Science Education, Provi-
dence, RI, USA, March 3-5, 2022, Volume 2, page
1180. ACM.

Ionita, A. D., Cernian, A., and Florea, S. (2013). Automated
UML model comparison for quality assurance in soft-
ware engineering education. eLearning & Software
for Education.

John, S. and Boateng, G. (2021). ”i didn’t copy his code”:
Code plagiarism detection with visual proof. In Roll,
I., McNamara, D. S., Sosnovsky, S. A., Luckin, R.,
and Dimitrova, V., editors, Artificial Intelligence in
Education - 22nd International Conference, AIED
2021, Utrecht, The Netherlands, June 14-18, 2021,
Proceedings, Part II, volume 12749 of Lecture Notes
in Computer Science, pages 208–212. Springer.

Ju, A., Mehne, B., Halle, A., and Fox, A. (2018). In-class
coding-based summative assessments: tools, chal-
lenges, and experience. In Polycarpou, I., Read, J. C.,
Andreou, P., and Armoni, M., editors, Proceedings of
the 23rd Annual ACM Conference on Innovation and
Technology in Computer Science Education, ITiCSE
2018, Larnaca, Cyprus, July 02-04, 2018, pages 75–
80. ACM.

Leinonen, J., Denny, P., and Whalley, J. (2022). A compar-
ison of immediate and scheduled feedback in intro-
ductory programming projects. In Merkle, L., Doyle,
M., Sheard, J., Soh, L., and Dorn, B., editors, SIGCSE
2022: The 53rd ACM Technical Symposium on Com-
puter Science Education, Providence, RI, USA, March
3-5, 2022, Volume 1, pages 885–891. ACM.

Liu, X., Wang, S., Wang, P., and Wu, D. (2019). Auto-
matic grading of programming assignments: an ap-
proach based on formal semantics. In Beecham, S.
and Damian, D. E., editors, Proceedings of the 41st
International Conference on Software Engineering:
Software Engineering Education and Training, ICSE
(SEET) 2019, Montreal, QC, Canada, May 25-31,
2019, pages 126–137. IEEE / ACM.

Marwan, S., Gao, G., Fisk, S. R., Price, T. W., and Barnes,
T. (2020). Adaptive immediate feedback can improve
novice programming engagement and intention to per-
sist in computer science. In Robins, A. V., Moskal,
A., Ko, A. J., and McCauley, R., editors, ICER 2020:
International Computing Education Research Con-
ference, Virtual Event, New Zealand, August 10-12,
2020, pages 194–203. ACM.

Milojicic, D. S. (2011). Autograding in the Cloud: Inter-
view with David O’Hallaron. IEEE Internet Comput.,
15(1):9–12.

Nordquist, P. (2007). Providing accurate and timely feed-
back by automatically grading student programming
labs. In Arabnia, H. R. and Clincy, V. A., editors,
Proceedings of the 2007 International Conference on
Frontiers in Education: Computer Science & Com-
puter Engineering, FECS 2007, June 25-28, 2007, Las
Vegas, Nevada, USA, pages 41–46. CSREA Press.

Norouzi, N. and Hausen, R. (2018). Quantitative evalua-
tion of student engagement in a large-scale introduc-
tion to programming course using a cloud-based auto-
matic grading system. In IEEE Frontiers in Education
Conference, FIE 2018, San Jose, CA, USA, October
3-6, 2018, pages 1–5. IEEE.

Schleimer, S., Wilkerson, D. S., and Aiken, A. (2003). Win-
nowing: Local algorithms for document fingerprint-
ing. In Halevy, A. Y., Ives, Z. G., and Doan, A.,
editors, Proceedings of the 2003 ACM SIGMOD In-
ternational Conference on Management of Data, San

Creating an Academic Prometheus in Brazil: Weaving Check50, Autolab and MOSS into a Unified Autograder

449

Diego, California, USA, June 9-12, 2003, pages 76–
85. ACM.

Sharp, C., van Assema, J., Yu, B., Zidane, K., and Malan,
D. J. (2020). An open-source, api-based framework
for assessing the correctness of code in CS50. In Gian-
nakos, M. N., Sindre, G., Luxton-Reilly, A., and Div-
itini, M., editors, Proceedings of the 2020 ACM Con-
ference on Innovation and Technology in Computer
Science Education, ITiCSE 2020, Trondheim, Norway,
June 15-19, 2020, pages 487–492. ACM.

Sharrock, R., Bonfert-Taylor, P., Hiron, M., Blockelet, M.,
Miller, C., Goudzwaard, M., and Hamonic, E. (2019).
Teaching C programming interactively at scale using
taskgrader: an open-source autograder tool. In Pro-
ceedings of the Sixth ACM Conference on Learning
@ Scale, L@S 2019, Chicago, IL, USA, June 24-25,
2019, pages 56:1–56:2. ACM.

Silva, W., Alves, J., Brito, J. O., Bourguet, J., and
de Oliveira, E. (2020a). An easy-to-read visual ap-
proach to deal with peer reviews and self-assessments
in virtual learning environments. In ICBDE ’20: The
3rd International Conference on Big Data and Edu-
cation, London, UK, April 1-3, 2020, pages 73–79.
ACM.

Silva, W., Spalenza, M., Bourguet, J., and de Oliveira, E.
(2020b). Lukewarm starts for computerized adap-
tive testing based on clustering and IRT. In Lane,
H. C., Zvacek, S., and Uhomoibhi, J., editors, Com-
puter Supported Education - 12th International Con-
ference, CSEDU 2020, Virtual Event, May 2-4, 2020,
Revised Selected Papers, volume 1473 of Communi-
cations in Computer and Information Science, pages
287–301. Springer.

Silva, W., Spalenza, M., Bourguet, J., and de Oliveira, E.
(2020c). Recommendation filtering à la carte for in-
telligent tutoring systems. In Boratto, L., Faralli, S.,
Marras, M., and Stilo, G., editors, Bias and Social As-
pects in Search and Recommendation - First Interna-
tional Workshop, BIAS 2020, Lisbon, Portugal, April
14, 2020, Proceedings, volume 1245 of Communica-
tions in Computer and Information Science, pages 58–
65. Springer.

Silva, W., Spalenza, M., Bourguet, J., and de Oliveira, E.
(2020d). Towards a tailored hybrid recommendation-
based system for computerized adaptive testing
through clustering and IRT. In Lane, H. C., Zvacek,
S., and Uhomoibhi, J., editors, Proceedings of the 12th
International Conference on Computer Supported Ed-
ucation, CSEDU 2020, Prague, Czech Republic, May
2-4, 2020, Volume 1, pages 260–268. SCITEPRESS.

Sridhara, S., Hou, B., Lu, J., and DeNero, J. (2016). Fuzz
testing projects in massive courses. In Haywood, J.,
Aleven, V., Kay, J., and Roll, I., editors, Proceedings
of the Third ACM Conference on Learning @ Scale,
L@S 2016, Edinburgh, Scotland, UK, April 25 - 26,
2016, pages 361–367. ACM.

Ureel II, L. C. and Wallace, C. (2019). Automated critique
of early programming antipatterns. In Hawthorne,
E. K., Pérez-Quiñones, M. A., Heckman, S., and
Zhang, J., editors, Proceedings of the 50th ACM Tech-
nical Symposium on Computer Science Education,

SIGCSE 2019, Minneapolis, MN, USA, February 27
- March 02, 2019, pages 738–744. ACM.

zu Eissen, S. M. and Stein, B. (2006). Intrinsic plagiarism
detection. In Lalmas, M., MacFarlane, A., Rüger,
S. M., Tombros, A., Tsikrika, T., and Yavlinsky, A.,
editors, Advances in Information Retrieval, 28th Eu-
ropean Conference on IR Research, ECIR 2006, Lon-
don, UK, April 10-12, 2006, Proceedings, volume
3936 of Lecture Notes in Computer Science, pages
565–569. Springer.

CSEDU 2024 - 16th International Conference on Computer Supported Education

450

