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Intelligent Transportation Systems (ITS) aim to enhance traffic management through Vehicle-to-Vehicle
(V2V), Vehicle-to-Infrastructure (V2I) and Infrastructure-to-Infrastructure (I2I) communications. However,
the wireless medium and dynamic nature of these networks expose them to security threats from faulty nodes
or malicious attacks. While cryptography-based mechanisms provide security against outsider attacks, the
network remains vulnerable to attacks from legitimate but malicious nodes. Trust models have hence been
proposed to evaluate node and data credibility to make informed security decisions. Existing models are either
vehicle-centric with limited stability due to mobility or infrastructure-based with risks of single points of fail-
ure. This paper proposes a self-organizing, infrastructure-based trust model for securing ITS communication
leveraging Smart Roadside Signs (SRSs). The model introduces a trust-based clustering algorithm using a
fuzzy-based Dempster Shafer Theory (DST). This eliminates dependence on external trusted authorities while
enhancing stability through infrastructure oversight. The decentralized trust formation and adaptive clustering
balance security assurance with scalability. The results of the simulations show that our model is resilient
against on-off attack, packet drop attack, jamming attack, bad-mouthing attack and collusion attack.

1 INTRODUCTION

Intelligent Transportation Systems (ITS) are envi-
sioned to enhance traffic management and coor-
dination through the integration of communication
technologies into transportation infrastructure. ITS
ecosystems comprise interacting vehicles, and road-
side infrastructures. Exchanging information through
interconnections such as Vehicle-to-Vehicle, Vehicle-
to-Infrastructure, and Infrastructure-to-Infrastructure
networks. However, the wireless medium and highly
dynamic nature of vehicular networks expose them to
security threats arising from both malicious attacks
as well as inadvertent faults due to physical failure.
While cryptography-based security mechanisms can
protect against outsider attackers, threats remain from
authorized nodes conducting insider attacks and from
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faulty nodes transmitting erroneous data.

To address these concerns, trust management
models have been proposed for securing ITS networks
and to aid real-time decision making on the fidelity of
received data and reliability of communication nodes
themselves. The majority of existing trust models are
vehicle-centric, with nodes evaluating others. How-
ever, high mobility of vehicles limited stability in as-
sessment. On the other hand, infrastructure-based
trust models rely on fixed nodes such as Road Side
Units (RSUs) for trust evaluation and Trusted Athori-
ties for credential and certificates management but re-
main prone to single point failures. Centralized archi-
tectures also pose scalability challenges.

This paper develops a  self-organizing
infrastructure-supported trust mechanism for re-
liable ITS networking, called Infrastructure-based
Communication Trust model for Intelligent Trans-
portation Systems (ICT4ITS). The model employs
Smart Roadside Signs (SRS) as distributed infras-
tructure entities to facilitate trust formation through
collaborative assessment (Abidi et al., 2023). The
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hybrid architecture balances scalability, with stability
and ensures the resiliency for security requirements.

In what follows, we define our main contributions:
(1) we introduce an infrastructure-based trust model
to ensure the stability of the network; (2) propose a
self-organizing Manager SRS election and monitor-
ing to enhance the scalability of the network, (3) and
employ a fuzzy-based Dempster Shafer Theory tech-
nique to evaluate the trustworthiness of the SRSs. The
rest of the paper is organized as follows: section 2
breifly reviews the existing trust models. Section 3
introduces the architecture of the model, highlights
its overall workflow and defines its considered pa-
rameters. The detailed description of the model is
presented in section 4. The results are discussed in
section 5. Section 6 concludes the paper.

2 LITERATURE REVIEW

Securing communications and establishing trust be-
tween nodes is essential for the adoption of ITS ap-
plications. In what follows, we review the state of the
art in order to analyse recent research on trust models
and security mechanisms for enabling reliable com-
munication in ITS.

Eunice and Juvanna proposed a secured multi-hop
clustering protocol that uses a weighted voting-based
cluster head election (Eunice and Juvanna, 2019).
Nodes monitor behavior locally to evaluate trust lev-
els. While providing authentication and integrity, the
decentralized approach can introduce communication
overhead. Kerrache introduced a trust-aware archi-
tecture using named data networking to form trusted
vehicle groups (Kerrache, 2022). A trusted third
party evaluates nodes based on credentials, recom-
mendations and plausibility checks. However, fre-
quent key distribution may lead to scalability issues.
Gupta et al. developed an enhanced beacon trust
management model integrated with a clustering pro-
tocol (Gupta et al., 2023). Malicious nodes are de-
tected using plausibility checks on periodic beacons.
The authors use vector points that represent the ve-
hicle’s position, speed, and driver direction sent in
the beacon message. On the one hand, a centralized
server is employed to analyse and compare the mes-
sages and detect malicious nodes using predefined
thresholds sets. On the other hand, vehicles’ densities
and velocities change rapidly due to the dynamic na-
ture of VANET. Thus, the centralized threshold-based
mechanism lacks adaptability to dynamic topologies.
Kchaou et al. presented a secured clustering tech-
nique using proxy re-encryption to enable authorized
data sharing between cluster members. But the single
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cluster head is a single point of failure (Kchaou et al.,
2018). Hasrouny et al. used an opinion dynamics-
based model for establishing trust relations between
nodes to select reliable group leaders (Hasrouny et al.,
2019). Alsuhli et al. introduced a double-headed clus-
tering structure to improve resilience to targeted at-
tacks on cluster heads (Alsuhli et al., 2019). The de-
centralized approach enhances reliability but latency
and overhead needs evaluation. Fatemidokht and Raf-
sanjani proposed a quality of service and monitoring-
based clustering algorithm that detects misbehaving
nodes (Fatemidokht and Kuchaki Rafsanjani, 2020).
The multi-metric decision enables adaptive clustering
based on dynamic contexts.

Scalability constitutes a major constraint for the
communication trust models. For instance, the au-
thentication schemes proposed in (Eunice and Ju-
vanna, 2019) and (Kerrache, 2022) arise the scalabil-
ity issue, due to the increase of communication over-
head and latency. Moreover, the stability concern oc-
curs, with the lack of awareness of the dynamic na-
ture of the ITS environment, the high speed move-
ment of the vehicles, and by employing centralized
architectures that increase the risk of single point fail-
ure, such as in (Gupta et al., 2023), and (Kchaou et al.,
2018). On the one hand, most recent works deployed
decentralized approaches for self-organized trust es-
tablishment between vehicles without dependence on
external infrastructure. While this method provides
better scalability and avoids single points of failure, it
lacks the stability of the network. On the other hand,
most of the infrastructure based models rely on a sin-
gle trust authority and they are mainly used for certifi-
cate and credential managements, which ensures sta-
bility but lacks scalability and increases the risk of a
single point failure. Exploring models that introduce
a trade-off between the scalability and stability of the
network, while ensuring the robustness of the com-
munication, maybe a promising research direction to
meet the requirements of ITS applications.

In our proposed model, we combine the infras-
tructure based model with the self organizing trust,
by introducing the Smart Road Signs, where the trust
establishment is realized based on cooperation of the
SRSs. This combination ensures the scalability and
stability of the network while securing the network
communication and increasing the robustness of the
model.

3 SYSTEM DESIGN

This section introduces the architecture of the pro-
posed model, the main phases of the trust workflow,
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and the considered attacks and parameters.

3.1 ICT4ITS: Architecture

In this paper, we introduce a decentralized communi-
cation trust model for ITS leveraging different com-
ponents including Smart Road Signs (SRSs) and a
watchdog module. Figure 1 outlines the overall sys-
tem architecture.

Lower layer trust evaluation

Watchdog

Subordinate
SRS

Subordinate

!
U

Subordinate |}
SRS 6'l:
I

1

SRS

Figure 1: General architecture of the ICT model.

We propose partitioning the traffic road system
into regional areas constituting sets of connected
roads with embedded regulatory nodes. These over-
sight nodes, consisting of SRSs, govern traffic data
flows within their regional roads. Specifically, SRSs
are signs equipped with digital displays that provide
real-time traffic notifications to drivers, enabled by
processing capabilities and internet connectivity. We
configure SRSs in a hierarchical structure with two
types: Manager SRSs and Subordinate SRSs, as de-
fined in (Sahli et al., 2022). Managers oversee Subor-
dinates within their supervised region. Furthermore,
our framework incorporates watchdog smodules as
described by Siddiqua et al. (Siddiqua and Jahan,
2022) and Akwirry et al. (Akwirry et al., 2022). The
watchdog inclusion constitutes an important element
that boosts reliability within our model. These over-
seer components are deployed within a Trusted Ex-
ecution Environment (TEE) to securely monitor in-
coming and outgoing traffic of other entities inside
the transmission range. In particular, the watchdog
can overhear network activity among nodes as long
as they reside within proximity and save them in its
pool. By eavesdropping on packet routing of nearby
SRSs, the watchdog verifies whether packets are cor-
rectly forwarded to the subsequent node. Moreover,
according to Akwirry et al. (Akwirry et al., 2022),
watchdogs may be leveraged to evaluate transmission
trustworthiness levels and perform computational an-
alyzes. Thus, the watchdog’s omnidirectional moni-
toring capability facilitates the calculation of accurate
trust values of SRSs within its region.

We propose a two-layer trust evaluation. In the
lower layer trust evaluation, Subordinate SRSs use
fuzzy logic to estimate the trustworthiness of neigh-

bouring SRSs. The output of the lower layer evalu-
ation of each Subordinate SRS is transmitted to the
Manager SRS for aggregation. Accordingly, Man-
ager SRS applies the DST for trust aggregation in the
higher level trust evaluation.

3.2 ICT4ITS: System Overview

The SRSs are exposed to potential security threats and
they may even transmit erroneous information. Since
Manager SRSs aggregate the evaluations of the Sub-
ordinate SRSs and dictate regional operations, their
security impacts the overall system functionality. Ac-
cordingly, ensuring trustworthy Manager SRSs con-
stitutes critical network vulnerability. We propose a
trust framework centred on SRS behavioural analy-
sis to enhance communications security within SRS
nodes. The proposed model enables classification of
SRS nodes as either malicious or honest based on
observed metrics. The proposed model aims to es-
tablish a stable and trusted SRS cluster through two
key phases. Firstly, during the election phase, SRSs
participate in a competitive election process to se-
lect a Manager SRS. Subsequently, in the Manager
SRS Observation phase, Subordinate SRSs exchange
packets with the Manager to report traffic state infor-
mation. Theses packets are then used to continually
evaluate cluster components behaviour based on the
quality of the communication.

The election relies on an initial trust assessment
across SRSs. The SRSs exchange a designated num-
ber of packets. The process runs in a bi-directional
way to enable mutual evaluations between all SRSs.
Then, each SRSs feed Quality of Service indicators
(QoS), stored in the pool of the watchdog module, as
inputs to its fuzzy inference system to estimate the
trustworthiness of neighbouring SRS nodes.

Upon completing the peer trust evaluations via
fuzzy logic, the integrated watchdog aggregates the
trust level outputs to identify the most trusted SRS to
appoint as Manager.

For Manager SRS observation, our hierarchical
topology minimizes packet exchange. Subordinate
SRSs forward packets to the Manager, similarly to
the election process. Concurrently, the watchdog
records communications while Subordinates evaluate
each other through fuzzy logic, utilizing observed pa-
rameters as inference inputs. Subordinates broadcast
assessments to the Manager, which aggregates them
using Dempster Shafer Theory (DST). The Manager
relays the integrated evaluation back to Subordinates.

Subordinate SRSs compare the Manager SRS’s
trust evaluations against locally computed assess-
ments. If the Manager’s assessed trust value for a
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monitored node diverges from the Subordinate’s eval-
uation by an established acceptable threshold range,
the Subordinate deems the Manager’s judgment as
honest. However, if the Manager’s rating exceeds the
permissible differential gap (maximum trust value de-
viation tolerated), the Subordinate may determine the
Manager has acted maliciously or erroneously in an
inaccurate manner. Through this comparative anal-
ysis, Subordinates can check and balance the Man-
ager’s evaluations based on ground truth local obser-
vations. Thereby, the integrity of centralized hierar-
chical decisions gets enhanceed by distributed over-
sight of lower-level SRSs. Accordingly, if more than
2/3 of the Subordinates estimate that the Manager has
acted maliciously, a new election phase is triggered.

3.3 ICT4ITS: Attack Model

In this paper, we consider the following communica-
tion related attacks (Shetty and Manjaiah, 2022).

* Packet Drop Attack (PDA). Malicious node
drops a number of packets, intentionally or un-
intentionally, disrupting communication and lead-
ing to packet loss.

* Jamming Attack (JA). Malicious nodes inject
multiple packets into the network to overcharge
it, causing network congestion.

* Bad-Mouthing Attack (BMA). Malicious nodes
collude to ruin the reputation of well-behaved
nodes by providing fake negative feedback, un-
dermining trust and credibility.

* On-Off Attack (OOA). Malicious nodes provide
random attacks by injecting erroneous data arbi-
trarily, disrupting communication intermittently.

* Collision Attack (CA). Multiple nodes collabo-
rate to harm the network by intentionally perform-
ing attacks, interfering with legitimate message
transmission and causing data corruption or loss.

3.4 ICT4ITS: Considered Parameters

In the proposed model we consider the factors that
affect the communication performance between the
SRSs. Accordingly, we use packet delivery rate,
throughput, end-to-end delay, and error rate as param-
eters to evaluate the trustworthiness of the SRSs. In
what follows, we define theses parameters:

» Packet Delivery Rate (PDR): Defined as the ra-
tio between effectively received packets versus to-
tal packets transmitted. Higher PDR correlates to
more reliable delivery, as larger discrepancies in-
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dicate potential disruptions degrading availability:

Total Recei Pack
PDR — otal Received Packets
Total Sent Packets

ey

e Throughput: Throughput quantifies the amount
of data successfully conveyed across the network
over a set time window. Higher throughput en-
ables dependent real-time services by promoting
responsiveness:

Total Transmitted Packets
Total Time

Throughput = )

* End-to-end delay: Represents packet travel time
from source to recipient. Low latency boosts suit-
ability for time-critical transportation applications
sensitive to lag:

__ Y (Receive Time—Send Time)
End-to-end delay = Total Received Packets

Error Rate: It measures the proportion of packets
lost compared to the total packets transmitted over
a specified time period. Lower error rates signal
heightened delivery dependability:

Number of Lost Data Packets
Total Sent Packets
“)

e Number of packets: It refers to the number of
times a task enters a send sleep state awaiting the
transmission of packets to the destination node.
In this parameter, we consider that the nodes ex-
hibit a restricted capacity permitting only singular
packet broadcasts at discrete times, necessitating
interim sleep states between each networked send
operation.

Error Rate =

The deployed watchdog module is dedicated to
passively monitor communications and obtain ground
truth recordings of the before-mentioned parameters
that are used for trust computation. In fact, the PDR
and throughput metrics serve as indicators to detect
PDA. The Number of Packets metric aids in identi-
fying OOA. Furthermore, end-to-end delay and error
rate metrics are instrumental in detecting JA.

4 ICT4ITS: OPERATIONAL
PHASE DESCRIPTION

As vehicle networks exhibit inherently dynamic
and uncertain environments, fuzzy logic pro-
vides VANET-based systems with flexible, adaptive
decision-making capabilities by leveraging human ex-
pert knowledge. This suitability for handling inex-
act real-world inputs endows fuzzy architectures with
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an apt trust scoring mechanism for SRS components
reliant on variable network transmission reliability.
Fuzzy logic is composed mainly of three steps defined
as follows (Zadeh, 2004): (1) fuzzification, where
crisp input values are translated into degrees of mem-
bership across fuzzy sets using functions like sig-
moid, trapezoidal, Gaussian, or triangular (Pedrycz,
1994); (2) inference system, which involves mapping
fuzzified inputs to outputs through if-then rule sets;
(3) defuzzification, where fuzzy output sets are quan-
tified into singular or multiple values using methods
like centroid, bisector, or mean of maxima (Saade and
Diab, 2000).

In our model, we adopt the triangular presenta-
tion as fuzzifier due to its simplicity and efficiency
(Souissi et al., 2023). We use the inference system
proposed in (Umoren et al., 2019). Finally, we apply
centroid technique based on its demonstrated effec-
tiveness for consolidating expressions of incomplete
knowledge into decisive score reporting (Saade and
Diab, 2000). The Subordinate SRSs’ fuzzy systems
take as an input the packet delivery rate, throughput,
number of packets, end-to-end delay, and error rate.
In what follows, we present the linguistic variables
associated to each input: Packet delivery rate [low,
moderate, high], throughput [very low, low, moder-
ate, high], number of packets [less, average, more],
end-to-end delay [short, normal, long], and error rate
[very low, low]. The linguistic terms associated to
the output are: trustworthiness [very low, low, moder-
ate, high]. Figures from 2-6 represent the membership
functions of the input variables and figure 7 presents
the membership function of the output variable.

10

os

Membership Valug

—100 —075 —050 —025 000 025 050 075 100
Input wariable "packet drop rate”

Figure 2: Fuzzy classes and membership functions for the
packet delivery rate.
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Figure 3: Fuzzy classes and membership functions for the
number of packets.

Our model adopts Mamdami fuzzy inference for
mapping the input parameters to the trustworthiness
of the SRSs using a fuzzy rule-based system (Rahim
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Figure 4: Fuzzy classes and membership functions for the
throughput.
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Figure 5: Fuzzy classes and membership functions for the
end-to-end delay.
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Figure 6: Fuzzy classes and membership functions for the
error rate.
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Figure 7: Fuzzy classes and membership functions for the
output.

et al., 2017). Our engine utilizes the Mamdani min-
max implication approach for discerning rule conse-
quences. We used the rule base proposed in (Umoren
et al., 2019). However, this rule base relies primar-
ily on the detection of packet loss and lacks spe-
cific representations that characterize jamming at-
tacks. Accordingly, we added the missing rules de-
veloped through analysis of analytical data collected
from simulated jamming attack scenarios. Table 1
describes the structure of the IF-THEN of the addi-
tional clauses. Thereafter, defuzzification phase is ex-
ecuted. We adopt the widespread Centroid method
which finds the center of gravity (COG) slice-point
equally partitioning the aggregation mass for maxi-
mum representativeness, as follows:

CoG — fXx HA (x) dx (5)

Jx pa(x) dx
Where 4 is the set of membership functions of the
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fuzzy set A and x is the variable over the universe of
discourse X.

We employ Dempster-Shafer theory (DST) as
an aggregator for consolidating potentially disparate
trust evaluations estimated by Subordinate SRSs
nodes into a unified assessment. In fact, we lever-
age DST for modelling uncertain reasoning. As an
evidence-based mathematical approach, DST proves
useful in decision-making scenarios exhibiting in-
complete or conflicting insights. To this end, we con-
vert the fuzzy outputs of the lower layer trust evalua-
tion to belief functions.

Let A be the output set of a subordinate SRS’s
fuzzy inference system, where A, Ay, A3, and A4 are
the elements of the fuzzy output set obtained from
a fuzzy inference system, that represents the trust-
worthiness estimated by one subordinate SRS of one
of the neighbouring SRSs. We convert each fuzzy
output set A; into a belief function m; using a map-
ping function f; that assigns Basic Probability Assign-
ments (BPAs) based on the degree of membership of
each element in the output set:

mi(x) = fi(ua; (%)), (6)

where X is an element in the frame of discernment.
In this context, the frame of discernment is the set A
that encompasses all possible linguistic terms that the
output variable, the trustworthiness, can take. A; is
the linguistic term of the output of the fuzzy system,
with terms [very low, low, moderate, high]. g, (x)
represents the membership function of each term.

Therafter, we combine the belief functions
mi1,My1,M31,M4] ... M4y, representing the BPAs of
each belief function m; of the SRSs, using DST com-
bination’s rule as follows:

CT=m1®my ©m33Oma ©...Omy, (7)

Where CT is the curent trust value and n is the num-
ber of the SRSs. The fuzzy-based DST provides
a pathway for consolidating distributed evaluations
under imprecise conditions. Overall, this fuzzy-to-
evidential pipeline supports coherent centralized trust
evaluation within decentralized ITS environments by
combining localized uncertainty management with
global consistencies. The aim of this combination is
to increase the accuracy of the evaluation and enhance
the robustness of the network. After evaluating the
current trustworthiness of each SRS using the fuzzy-
based DST, we update their trustworthiness using a
dynamic weighted sum as shown in Equation 8:

Updated_trust_value =o.-CT +B-HT  (8)

Where CT is the newly assessed trust value and HT is
the historical trust value.
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This consolidates the recent evaluation with his-
toric trustworthiness to balance temporary fluctua-
tions with overall trends. The o and B parameters de-
termine weighting concreted to new versus old evalu-
ations respectively. We implement an adaptive tun-
ing approach for o and [ assignments to provide
custom credibility response rates per SRS based on
past performance profiles. Well-behaved nodes are
assigned higher o prioritizing current evaluations to
quickly improve standing. However, for SRSs ex-
hibiting bursts of maliciousness, higher  maintains
influence of prior windows to dampen volatility ef-
fect. Accordingly, if the old trust value of the SRS is
higher than 0.6 we assign 0.7 to o and 0.3 to . If the
old trust value ranges between [0.4, 0.6], we assign
a neutral weight to o and P equals to 0.5. Finally,
if the old trust value is lower than 0.4, we prioritize
higher B value equals 0.7 and lower o equals to 0.3.
Thereby, misbehaving SRSs require more consistent
integrity demonstrations before trust value upgrades.
This strategy strengthens resilience against strategic
oscillation tactics aimed at briefly feigning good be-
haviour to swiftly regain network standing after at-
tacks. Through tailored weighting, we promote fair
credibility aggregation while preventing exploitation.

S PERFORMANCE EVALUATION

In this section, we present the simulation setup and
and discuss the results. In order to generate the
data, we used Network Simulator (NS2). NS2 is an
open-source, event-driven simulator, designed specif-
ically for research in computer communication net-
works. Moreover, we used Generator Network Sim-
ulator (GNS2) for the script generation, which is a
software based on the drag and drop technique to gen-
erate the Tool Command Language (TCL) for NS2 of
the defined scenario.

Our simulation scenario comprises 10 nodes, rep-
resenting our SRSs, situated within shared wireless
transmission range modeling a decentralized network
within the same cluster. The Nodes perform as the
data sink and/or active sources. Traffic generation
occurs via File Transfer Protocol (FTP) encapsulated
through Transmission Control Protocol packet (TCP)
for reliability. We configure TCP agents on each node
to handle connection setup, data transfer, flow con-
trol and event handling. FTP is a protocol used for
transferring files between computers on a network. It
is not characterized by a constant bit rate, but rather
involves the transfer of files, which may vary in size
and number, and may take varying amounts of time
to transmit. During simulation execution, we gather
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Table 1: Rules base structure.

Packet delivery | Throughput | Number of packets | Delay | Error rate Trust
high high Average long low low
high high more long low low
high high Average normal low low
high high more normal low low
high very low Average long low low
high very low more long low low
high very low Average normal low low
high very low more normal low very low
high high Average long low low
high high more long low very low
high high Average normal low low
high high more normal low low
high very low Average long low low
high very low more long low very low
high very low Average short very low high
high very low Average normal low medium
high very low more normal low very low
high high Average long low low

moderate high more long low very low
moderate high Average normal low low
moderate high more normal low very low
moderate very low Average long low low
moderate very low more long low very low
moderate very low Average normal low low
moderate very low more normal low low
moderate high Average long low low
moderate high more long low low
moderate high more normal low low
moderate high Average normal low low

per-flow metrics including delay, error rate, delivery
rate, throughput and absolute packet deliveries.

In what follows, we discuss the numerical results
of the trust model across different scenarios to assess
its robustness in the presence of different attacks and
the stability of the cluster formation. In all subsequent
figures, the x-axis denotes the number of iterations,
while the y-axis represents the trust value of the SRSs.

5.1 Model’s Robustness Evaluation

In order to evaluate the robustness of our model, we
examine its performance in the presence of different
percentages of malicious nodes and various attacks.

In the first scenario, we test the resiliency of our
model against on-off attack and packet drop attack.
Accordingly, we track the evolution of the trust value
of a well-behaving node and a malicious node per-
forming packet drop attack within on-off mode. The
results of the experimentation are presented in figure
8. The malicious SRS performed the PDR in the fol-
lowing iterations: 2, 4-9, 13-15, 18-20, 24, 27-29.

In the second scenario, we test the resiliency of
the proposed model against on-off attack and bad
mouthing attack, as presented in figure 9. In this sce-

nario, the malicious SRS performed attacks at itera-
tions number: 1-5, 11-5, 22-25.

In both scenarios, the malicious SRS and the be-
nign SRS have initial trust value equals to 0.5. We
notice in figure 8 and 9, that the trust value of the
malicious node decreases rapidly whenever it starts
performing the malicious attacks. However, when it
readopts a good behaviour, the trust value is slowly
growing compared to the drop rate when it performs
attacks. This is due to the adaptive weight of the trust
update. In fact, when the malicious nodes presents a
good behaviour after being malicious the model uses
higher B value. Accordingly, the trust updates rely
more on old trust evaluation, which requires the ma-
licious node to present a good performance for a long
time window to upgrade its trust value. This mecha-
nism allows our model to track alternative behaviour
of malicious nodes and detect their attacks.

In the third scenario, we test the robustness of
our model against packet drop attack, jamming attack,
and bad mouthing attack, as shown in 10, 11, and 12,
respectively. Unlike the first and second scenario, in
this scenario the malicious SRS are constantly per-
forming attacks. As shown in the figures, the benign
SRSs quickly converge to a high trust value. Simi-
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Figure 8: Trustworthiness of a well-behaving SRS and a
malicious SRS performing OOA and PDA.
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Figure 9: Trustworthiness of a well-behaving SRS and a
malicious SRS performing OOA and BMA.

larly, the malicious SRSs converge rapidly to a low
trust value after few iterations of performing attacks.
This can be explained by the employment of a fuzzy-
based DST for trust computation. This mechanism
allows the model to increase the accuracy of the eval-
uation by handling the uncertainty of the data. The
two-layer evaluation enhance the visibility of the en-
vironment by combining more evidence to ensure the
accuracy of the evaluation and the robustness of the
network. Moreover, the adaptive trust update mech-
anism ensures that the update of the trust values of
benign SRS consider recent trust evaluation for rapid
growth. On the other hand, it ensures that the trust up-
date for the malicious SRSs considers more old trust
values, guaranteeing a quick decrease of their trust
value among the iterations.
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Figure 10: Trustworthiness of a well-behaving SRS and a
malicious SRS performing PDR.
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Figure 11: Trustworthiness of a well-behaving SRS and a
malicious SRS performing jamming attack.
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Figure 12: Trustworthiness of a well-behaving SRS and a
malicious SRS performing BMA.

5.2 Cluster Stability Evaluation

In the last experimentation, we examine the stabil-
ity of the cluster by examining the time laps before
starting a new Manager election phase. Moreover,
we examine the trustworthiness of the Manager in the
meantime. In this scenario, we suppose that the Man-
ager is well-behaving and in the first 15 iterations, we
inject 1/3 of the number of the Subordinate SRSs per-
forming BMA. After iteration 15, we increase the per-
centage of the malicious nodes to 2/3 out of the total
subordinate SRSs. The results of the experimentation
are plotted in figures 13, and 14, respectively. The
figures show that whenever the number of the ma-
licious nodes performing BMA is less than the 2/3
of the Subordinate SRSs, the fake feedbacks do not
affect the stability of the cluster and the trustworthi-
ness of the Manager. However, after iteration 15 the
trustworthiness of the Manager decreases, although
its is a benign SRS and a new election process is trig-
gered. This can be explained by the fact that when
the number of the malicious SRSs performing BMA
increases, the combination of their evaluations affects
the final evaluation. However, it is worth mentioning
that this case scenario is unrealistic and it is implausi-
ble to have more than 2/3 of the SRS to become com-
promised simultaneously.

8 9 1011121514 1516 17 18 19 20 21 22 23 24 25 26 27 28 29 30

Manager SRS stability

Figure 13: Stability of the Manager SRS.

9 10111213 141516 17 1819 202122 23 24 25 26 27 28 2930

Manager SRS

Figure 14: Trustworthiness of the Manager SRS.
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6 CONCLUSIONS

The paper introduces a decentralized trust manage-
ment model for electing trustworthy Manager SRS
and forming stable clusters. It ensures continuous
cluster monitoring by tracking Manager SRS behav-
ior via collaborative assessment among subordinate
SRSs. The proposed model integrates the stabil-
ity of infrastructure-based evaluation with the scal-
ability and resilience of decentralized trust architec-
ture. Self-organizing clustering dynamically selects
trusted Managers, reducing communication overhead
and eliminating single point failures. Trust compu-
tation, using fuzzy logic and DST, increases the ac-
curacy of trust evaluation by handling the uncertainty
of the input and the conflicted outputs of the SRSs.
Simulation-based evaluation reveals resilience against
OOA, PDA, JA, BMA, and CA but struggles with col-
lusion and BMA when malicious SRSs exceed 2/3 of
the total. Despite potential computational complex-
ity, combining fuzzy inference with DST strength-
ens the network, offering robustness and flexibility
for uncertain and conflicting evidence. Future work
includes evaluating response time and incorporating
social metrics like honesty and cooperativeness to en-
hance trust evaluation accuracy.
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