
Uncovering Bad Practices in Junior Developer Projects Using Static
Analysis and Formal Concept Analysis

Simona Motogna a, Diana Cristea b, Diana-Florina Şotropa c and Arthur-Jozsef Molnar d

Faculty of Mathematics and Computer Science, Babeş-Bolyai University, Cluj-Napoca, Romania

Keywords: Static Code Analysis, Formal Concept Analysis, Bad Practices, SonarQube.

Abstract: Static code analysis tools have been widely used as a resource for early error detection in software develop-
ment. This paper explores the use of SonarQube together with Formal Concept Analysis, used for detecting
data clusters, in enhancing source code quality among junior developers by facilitating the early detection
of various quality issues and revealing dependencies among detected issues. We analyze the distribution of
bad-practice issues in junior developers’ projects and show where the main problems occur, as well as the
associations of bad practice issues with other types of issues. We conclude the analysis with a comparison be-
tween Python and Java projects with respect to the mentioned aspects. While focusing the analysis on issues
related to bad practices in both Java and Python projects, the paper aims to to uncover challenges faced by
junior developers in Java and Python projects, promoting awareness of code quality.

1 INTRODUCTION

As the complexity and size of software systems con-
stantly increase, their quality must be an essential ob-
jective through entire life cycle. Quality of the pro-
duced source code should be a primary concern to all
developers, junior and senior all together. Observing
and assessing coding guidelines and best practices in
junior developers’ projects can be a tedious and time
consuming task.

This study shows how static analysis tools can be
successfully used to assess quality aspects in junior
developers’ projects. The main features of such tools
allow early automatic detection of several types of
quality issues, allowing in depth analysis of bad prac-
tices patterns. Code review tools based on static anal-
ysis have been widely adopted by industry, such as
SonarQube which is used in this study, and proved to
be a useful resource to improve quality (McConnell,
2004; Avgeriou and o., 2021).

Data generated by these tools can be further sub-
ject to analysis to detect programmers behavior, com-
mon mistakes or programming concepts misunder-
standing. We have chosen to use Formal Concept

a https://orcid.org/0000-0002-8208-6949
b https://orcid.org/0000-0003-1440-3786
c https://orcid.org/0000-0003-4403-9946
d https://orcid.org/0000-0002-4113-2953

Analysis (FCA) for data analysis given previous ap-
plications of this method to similar educational prob-
lems (Duquenne, 2007; Priss, 2013; Priss, 2020;
Cristea et al., 2021).

Both Java and Python are programming languages
intensively used in software development in indus-
try. Python became more and more popular in the
last years due to its versatility, efficiency and strong
support for AI/ML application development, so it is
desirable to also have specific quality gates.

The goal of our study is to investigate the results
of static analysis related to bad practices. For this pur-
pose, we designed and carried a case study on student
projects, developed in Java and Python, and the find-
ings can be used to detect dependencies between the
issues detected by static analysis tools, respectively to
observe common mistakes in programming behavior.

The methodology that we apply in our study com-
bines quantitative observations with the strengths of
FCA in order to produce a more precise understand-
ing of the dependencies at code level.

2 THEORETICAL BACKGROUND

Static Analysis Tools. The existing static analysis
tools have undergone a significant transformation by
using the abstract syntax tree (AST) to perform source
code analysis and compute several metrics. This has a

752
Motogna, S., Cristea, D., Şotropa, D. and Molnar, A.
Uncovering Bad Practices in Junior Developer Projects Using Static Analysis and Formal Concept Analysis.
DOI: 10.5220/0012739500003687
Paper published under CC license (CC BY-NC-ND 4.0)
In Proceedings of the 19th International Conference on Evaluation of Novel Approaches to Software Engineering (ENASE 2024), pages 752-759
ISBN: 978-989-758-696-5; ISSN: 2184-4895
Proceedings Copyright © 2024 by SCITEPRESS – Science and Technology Publications, Lda.



Table 1: SonarQube rules tagged as bad practice for Java in our extended quality profile, as described in (SonarSource, 2024)
(note that Java rule id’s are prefixed with java: (e.g., java:S1215)).

Rule Id Description Type Severity
S1215 Execution of the Garbage Collector should be triggered only by the JVM Code Smell Critical
S2077 Formatting SQL queries is security-sensitive Security Hotspot Major
S5976 Similar tests should be grouped in a single Parameterized test Code Smell Major
S2925 ”Thread.sleep” should not be used in tests Code Smell Major
S1607 JUnit4 @Ignored and JUnit5 @Disabled should be used to disable tests and should provide a

rationale
Code Smell Major

S1181 Throwable and Error should not be caught Code Smell Major
S1161 ”@Override” should be used on overriding and implementing methods Code Smell Major
S1214 Constants should not be defined in interfaces Code Smell Critical
S1123 Deprecated elements should have both the annotation and the Javadoc tag Code Smell Major
S106 Standard outputs should not be used directly to log anything Code Smell Major

S4838 An iteration on a Collection should be performed on the type handled by the Collection Code Smell Minor
S3066 ”enum” fields should not be publicly mutable Code Smell Minor
S1319 Declarations should use Java collection interfaces such as ”List” rather than specific imple-

mentation classes such as ”LinkedList”
Code Smell Minor

S1301 ”switch” statements should have at least 3 ”case” clauses Code Smell Minor
S1199 Nested code blocks should not be used Code Smell Minor
S1132 Strings literals should be placed on the left side when checking for equality Code Smell Minor

Table 2: SonarQube rules tagged as bad practice for Python in our extended quality profile, as described in (SonarSource,
2024) (note that Python rule id’s are prefixed with python: (e.g., python:S5754)).

Rule Id Description Type Severity
S5754 ”SystemExit” should be re-raised Code Smell Critical
S5712 Some special methods should return ”NotImplemented” instead of raising ”NotImplemented-

Error”
Code Smell Critical

S2077 Formatting SQL queries is security-sensitive Security Hotspot Major
S5806 Builtins should not be shadowed by local variables Code Smell Major
S5706 Special method ” exit ” should not re-raise the provided exception Code Smell Major
S1607 A reason should be provided when skipping a test Code Smell Major

direct impact on the entire development time and also
on the time to fix issues in code (Boehm and Papaccio,
1988; Boehm and Basili, 2001).

SonarQube is one of the most popular and widely
used static analysis tools, providing continuous in-
spection in order to deliver clean code. One of the
reasons for its extensive use is the support offered for
more than 30 programming languages, and integra-
tion with different IDEs. As a functioning principle,
once the code is transformed into an AST, analysis
rules are applied to the tree structure. These rules en-
compass a set of predefined patterns, best practices,
and coding standards that are used to identify poten-
tial issues classified in: code smells, bugs, vulnerabil-
ities or security hotspots.

SonarQube also assigns a severity level to each
issue: Info, Minor, Major, Critical, and Blocker.
Blocker and Critical detrimentally influence the sys-
tem. Blocker issues should be handled with higher
priority and considered to have a greater impact. Ma-
jor issues can considerably affect a developer’s pro-
ductivity, while Minor and Info are considered as hav-
ing a reduced impact.

In this study we focus on rules tagged as ”bad

practice”, which, according to SonarQube documen-
tation (SonarSource, 2024), means that they incorpo-
rate a bad design decision. This category is important,
especially for junior developers, since it establishes
some guidelines for making the code easier to under-
stand, update, and maintain over time.

Table 1 comprises the rules tagged with ”bad prac-
tice” defined for Java language, while Table 2 those
for Python, together with their category and severity
level.
Formal Concept Analysis. provides a theoretical
model for clustering data based on lattice theory
(Ganter and Wille, 1999) . The fundamental struc-
tures of FCA are the formal context, i.e. a dataset
containing objects, attributes and a relation between
them, and formal concepts, i.e. maximal clusters of
objects having certain attributes. The concept lattice
provides a visual representation of all concepts of a
context. In the triadic case, FCA additionally contains
conditions as a third dimension (Lehmann and Wille,
1995). The triadic context does not always have a vi-
sual lattice representation. However, when projecting
on one of the dimensions the data can be visualized as
a dyadic lattice. The projection can then be changed

Uncovering Bad Practices in Junior Developer Projects Using Static Analysis and Formal Concept Analysis

753



in order to continue the data exploration ((Rudolph
et al., 2015b)).
Answer Set Programming for FCA. It is known that
FCA has some scalability issues regarding comput-
ing concepts in larger contexts ((Khaund et al., 2023),
(Slezak, 2012)). Most tools cannot compute the con-
cepts of a very large dataset or generate the corre-
sponding lattice. In order to deal with this scalability
issue, we use Answer Set Programming (ASP) (Geb-
ser et al., 2012), which is a declarative approach to
solve NP-hard problems in a time efficient manner.
For this purpose we use the ASP encoding for FCA
(Rudolph et al., 2015a) and the Potsdam answer set
solving collection, Potassco (Potassco, 2024).

3 PROGRAMMING PRACTICES
ASSESSMENT

Our main objective is to analyze bad practice issues
from the perspective of junior developers in the con-
text of Python and Java software projects. We further
divide the main objective in the following research
questions:
RQ1. Which is the distribution of bad practice issues
in the source code?
RQ2. Are bad practice issues associated with other
issues?
RQ3. Is there any similarity between Python and Java
in terms of issues tagged with bad practice?

In RQ1 we focus on the bad practice issues in
terms of occurrence and severity, and we assess which
issues labeled as bad practice are more frequent and
how often they occur. Then in RQ2 we aim to identify
and understand the dependencies with other issues de-
tected by SonarQube, while in RQ3 we compare bad
practice issues from Java and Python projects.

3.1 Data Collection and Processing

Our case study covers three iterations, namely fall
semester of 2020, 2021 and 2022, of the Formal
Languages and Compiler Design mandatory course,
taken by last year undergratuate students of the Com-
puter Science program at the Babeş-Bolyai Univer-
sity. We assimilate them as being junior developers,
since they have accumulated knowledge in different
programming languages and IDEs, and have spent at
least six weeks at internships in software companies.

As part of laboratory activities, students had to im-
plement two programming assignments (medium size
projects, developed over two to four weeks), using a
language of their choice. Requirements were exactly

the same for all students implementing the same as-
signment. Since most students used either Python or
Java, we focus our case study on the assignments sub-
mitted in these languages.

We configured SonarQube 9.9.0 to employ an ex-
tended quality profile by activating all static analysis
rules for both Java and Python, with the exception of
rules that enforce coding standards (e.g., location of
curly braces in Java), the use of annotations or those
related to tests (e.g., test method discoverability in
Python). This resulted in a Sonar profile having 588
rules for Java and 205 rules for Python.

The static analysis resulted in 25,665 issues, of
which 2,990 are tagged as bad-practice by Sonar-
Qube. The vast majority of them (2,883 issues) were
found in Java code, with only 107 issues targeting
Python. All issues were categorized as code smells
and thus belong to the maintainability domain. With
regards to severity, there were 22 critical issues, 2,131
major issues and 837 minor issues.

3.2 FCA Applied

When interested in an overview of correlations among
issues in the whole dataset, the visual representation
is not essential, hence using the approach described in
section 2 we compute the concepts using ASP.

For an in depth analysis we have an approach that
supports data exploration and is focused on particular
correlations among issues. In this case, both a visual
lattice representation and a triadic FCA approach can
be useful. Therefore, we use FCA Tools Bundle (Kis
et al., 2016), which, to the best of our knowledge,
is the only tool that includes the triadic navigation
paradigm described in section 2 and also uses ASP for
efficiently computing the concepts. For this approach,
we generate a triadic context, where dimensions are
represented by objects, i.e. a collection of projects
with the same requirements denoted 2020-L1, 2021-
L1, 2022-L1, 2020-L3, 2021-L3, 2022-L3, attributes,
i.e. classes from individual projects denoted p1-c1,
p1-c2, etc., p2-c1, p2-c2, etc. (where p1, p2, etc. are
the projects of each collection), and conditions, i.e.
issues. While the analysis is on the whole dataset,
each dyadic projection shows a subset of the data. In
Figure 1 we can see the lattice obtained by projecting
on the collection of projects 2020-L1.

For a better readability of the lattice we use the
sparse representation where each label is represented
only once and we use a functionality of FCA Tools
Bundle that allows hiding a type of labels. In Fig-
ure 1 we hide the object labels represented by classes
of individual projects, since the names of the classes
are not relevant to the analysis. When reading the

ENASE 2024 - 19th International Conference on Evaluation of Novel Approaches to Software Engineering

754



Figure 1: Fragment of dyadic lattice with classes of individual projects as objects and issues as attributes, obtained by pro-
jecting on the collection of projects 2020-L1.

Table 3: SonarQube rules generating bad-practice issues in Java projects.

Rule Id Severity Total number of occurrences
No. of classes in which the issues occurred/

Total no. of classes with issues
S106 major 2044 307 / 6606

S1132 minor 613 150 / 6606
S1319 minor 212 98 / 6606
S1199 minor 9 3 / 6606
S1301 minor 3 3 / 6606
S1161 major 2 1 / 6606

Table 4: SonarQube rules generating bad-practice issues in Python projects.

Rule Id Severity Total number of occurrences
No. of classes in which the issues occurred/

Total no. of classes with issues
S5806 major 85 77 / 1023
S5754 critical 22 18 / 1023

elements of a concept in the sparse lattice represen-
tation one must follow the lattice lines up and down
as described in the following. The concept marked
with red in the zoomed in Figure 1 has one dimen-
sion represented by the projection, {2020-L1}, the
next dimension contains all the objects from the lat-
tice reachable when going downward, {p1-c1, p2-c1,
p3-c1, etc.}, and the third dimension contains all the
attributes reachable when going upward in the lattice,
{confusing, pitfall, bad-practice}.

3.3 Results

We analyze the source code in relation with Sonar
rules that generate bad-practice issues and, based on
our results, we provide answers to the formulated re-
search questions.

RQ1: Which is the distribution of bad practice is-
sues in the source code? We aggregated all the
results of running SonarQube on individual source
code, and then summarize the findings: bad-practice
occurs in 122 out of the 126 Java projects, with a total
of 2,883 occurrences, as shown in Table 3. In case
of Python, bad-practice occurs in 75 out of the 228
Python projects, with a total of 107 occurrences, as
shown in Table 4.
Bad Practice Issues in Java: As the Table 3 shows,
there is an overwhelming appearance of rule S106 in
the dataset. Rule S106 refers to ”Standard outputs
should not be used directly to log anything”, and ac-
cording to SonarQube documentation, it is generated
by the fact that the program writes directly to the stan-
dard output, instead of abstracting away the output be-
hind a method. Using standard output does not com-
ply to logging requirements, such as to easily retrieve

Uncovering Bad Practices in Junior Developer Projects Using Static Analysis and Formal Concept Analysis

755



the logs, to record the data or to log securely in case
of sensitive data.

Two rules with minor severity that are worth men-
tioning are: i) S1132 that addresses equality method
calls, recommending to replace foo.equals(”bar”)
with ”bar”.equals(foo), in an attempt to prevent rais-
ing null pointer exceptions; and ii) S1319 that signals
cases when a collection implementation class from
java.util.* is used in different typing context of a pub-
lic method, and mostly related to performance.

Starting with version 8.6, introduced in September
2020, SonarQube also provides information about the
clean code attributes, as defined by (Martin, 2008).
Regarding the distribution of concerns for the identi-
fied bad practice issues in Java, all of the mentioned
issues have an impact on maintainability, while as
clean code attributes affected, they include: adaptabil-
ity (S106), intentionality (S1132), respectively con-
sistency (S1319).
Remark 1: Regarding Distribution of Bad Practices
Issues in Java, junior developers seem to produce
clean code, with the exception of one aspect related
to handling of output operations. This has a relative
small impact to maintainability. Only three out of 16
rules are not respected on a meaningful basis, two of
them being minor, and only one major. One important
remark concerning the diffuseness of rule java:S106
is that it appears in the top 10 most violated rules in
(Baldassarre et al., 2020), in a study that considers a
similar context, being the only rule in the bad practice
category.
Bad Practice Issues in Python: The results of our
analysis are summarized in Table 4. In terms of
severity, the rule python:S5754, namely ”SystemExit”
should be re-raised, has a meaningful appearance in
the experiments. Another rule that appears quite of-
ten, of major severity, is python:S5806, which gen-
erates an issue when a local variable name matches
the builtin name, thus builtin name becoming locally
inaccessible. This might be error-prone.

Discussing the clean code attributes in relation to
these bad practice issues in Python, they are all related
to intentionality, defined as code being ”clear, logical,
complete, and efficient”. They affect maintainability,
at a high level.
Remark 2: Regarding Distribution of Bad Practices
Issues in Python, junior developers exhibit problems
when dealing with output operations. Two out of eight
rules are broken, but the severity of these rules are of
concern, being critical and major.
RQ2: Are Bad Practice Issues Associated with other
issues? In order to answer this research question, we
explore the lattices and the concepts created through
FCA as explained in section 3.2. The tool we used,

allowed us to detect the association of tag ”bad prac-
tice” with other tags, namely other types of issues.
Another aspect that we were interested in was that the
associations are relevant in terms of appearance, so
we introduced a threshold of 3%.
Associations of Bad Practice Issues in Java: some
remarks can be drawn from the results in Table 5.
Firstly, the occurrences are below 5%, which consid-
ering the target group of junior developers is a good
sign. The next aspect that we notice is that bad prac-
tice issues are mostly associated with issues tagged as
”cwe” and ”owasp” which correspond to security vul-
nerabilities. This was inferred from a similar situation
as the one presented in Figure 1, involving 307 classes
with attributes {bad-practice, cwe, owasp-a3}.

Also, ”cert”, linked to community developed stan-
dard CERT, is quite related to bad practice issue.
Other associations that have a mentionable occur-
rence refer to: brain-overload (signaling high com-
plexity), pitfall (notifying possible future errors) and
error-handling (several code smell and bug issues re-
lated to handling errors in code).
Remark 3: Regarding association of bad practices
issues in Java, although they have a lower occurrence
ratio, some concerns are raised regarding frequent as-
sociation between bad practice and security issues.
Even if bad practice issues are mostly code smells
(see Table 1) their association with security vulner-
abilities, high complexity and standard coding prac-
tices highlights their importance.
Associations of Bad Practice Issues in Python: Ta-
ble 6 summarizes the lattice exploration for Python
projects, in which we also applied a 3% threshold
for meaningful results. The bad practice issues and
associations with other issues are, in our opinion, in
some cases quite high, between 5 to 9.19%. Regard-
ing the different types of associated issues we notice:
”pitfall” (high possibility to generate future error),
”confusing” (denoting code comprehension difficulty,
and in consequence higher maintainability costs) and
”brain-overload” (high complexity indicator). We al-
locate a lower importance to the ”convention” tag, as
it refers to coding conventions.
Remark 4: Regarding association of bad practices
issues in Python, the projects corresponding to ju-
nior developers exhibit a significant link to issues re-
lated to high maintainability costs: pitfall, confusing,
brain-overload. 4.50% of the projects expose associ-
ation of bad practice tags with all three other types of
issues.
RQ3: Is there any similarity between Python and
Java in terms of issues tagged with bad practice?
Our dataset consists of two sets of projects with the
same requirements. Based on the fact that the stu-

ENASE 2024 - 19th International Conference on Evaluation of Novel Approaches to Software Engineering

756



Table 5: Frequent issues associated with bad-practice in Java projects (Number, respective percentage of classes in which the
issues occurred / Total no. of classes with issues).

No. Percentage of classes Tag(s)
308 / 6606 4.66% bad-practice
307 / 6606 4.65% bad-practice, cert, owasp-a3
225 / 6606 3.41% bad-practice, cert, owasp-a3, cwe
216 / 6606 3.27% bad-practice, brain-overload
215 / 6606 3.25% bad-practice, cert, owasp-a3, brain-overload
209 / 6606 3.16% bad-practice, pitfall
208 / 6606 3.15% bad-practice, pitfall, cert, owasp-a3
207 / 6606 3.13% bad-practice, error-handling, cert,owasp-a3

Table 6: Frequent issues associated with bad-practice in Python projects (Number, respective percentage of classes in which
the issues occurred / Total no. of classes with issues).

No. Percentage Tag(s)
94 / 1023 9.19% bad-practice
78 / 1023 7.62% bad-practice, pitfall
77 / 1023 7.53% bad-practice, confusing,pitfall
58 / 1023 5.67% bad-practice, brain-overload
47 / 1023 4.59% bad-practice, brain-overload,pitfall
46 / 1023 4.50% bad-practice, brain-overload,confusing,pitfall
33 / 1023 3.26% bad-practice, convention

dents had to implement the same requirements, thus
using the same algorithms, it allows us to explore if
the type of issues that they introduce using Java and
Python are related in any way.

Our first observations is that the imbalance be-
tween the number of Java and Python rules in our
extended Sonar quality profile (588 and 205, respec-
tively) is maintained after filtering for rules covering
bad practices. As shown in Tables 1 and 2, our ex-
tended ruleset includes 16 rules for Java and 6 rules
for Python covering bad practices. The only common
rule is S2077, which refers to formatting SQL queries
and which did not generate any issues in our dataset.
While some of the rules are platform-specific (e.g.,
java:S1181, java:1319), platform-agnostic rules such
as java:S1215 or java:S1199 do not have a Python
equivalent, even when considering rules that are not
tagged as bad-practice.

Tables 3 and 4 illustrate the prevalence of issues
generated by the considered rules. We observe that
only a small number of the considered rules generate
issues; furthermore, most issues are generated by a
small number of rules, which is in line with the find-
ings in previous research. (Walkinshaw and Minku,
2018) found that most defects were indeed reported
in a limited number of files, while the case study
carried out in (Molnar and Motogna, 2020b) showed
that in the case of open-source software analyzed us-
ing SonarQube, around 80% of reported issues were
grouped under a third of all tags.

In our case, we find the rules generating the ma-
jority of issues across Java and Python projects are
not comparable. We find this to be the result of plat-

form differences combined with the different level of
support these languages have in SonarQube itself.
Remark 5: Regarding the similarity of bad-practice
issues between the studied languages, we believe
that the sound takeaway from a teaching perspec-
tive is to combine the detected issues and adapt ex-
isting teaching techniques in order to mitigate de-
tected bad practices. While python:S5806 highlights
an already well-known bad practice, we can assimi-
late python:S5754 with java:S1181 and highlight the
platform-dependent correct way of handling special
cases of exceptions and program halting.

3.4 Discussion

Understanding and adhering to clean code principles
and best practices, particularly among junior develop-
ers, are essential for producing high-quality software
with improved maintainability and reduced technical
debt. Thus, we consider that investigating bad prac-
tices issues in junior developers code can have a sig-
nificant impact on the way they will evolve and learn.

The findings of the case study reveals that bad
practices vary dependending on the language (in this
case Java, respectively Python), with a reasonable fre-
quency but they can be associated with other issues in
code. As remarks 3 and 4 has pointed out, we suggest
that classes or modules that expose several code is-
sues at the same time should be candidates for a code
review performed by an experienced developer.

We consider our study to be an experiential report
with impact in education. We encourage the adoption
of static analysis tools, such as SonarQube in soft-

Uncovering Bad Practices in Junior Developer Projects Using Static Analysis and Formal Concept Analysis

757



ware engineering discipline, such that students can be
aware of the importance of the quality of the code they
produce.

The practitioners community can also benefit from
our findings, both in adopting SonarQube or similar
tools to inspect and manage code quality from early
stages in the development, but also to pay more at-
tention to code fragments that expose several quality
issues simultaneously.

From a research perspective, we show the
strengths of FCA in investigating software quality is-
sues, based on its capabilities to observe relations and
dependencies among attributes and offering several
perspectives (dyadic and triadic) about the data.

4 RELATED WORK

Technical Debt (TD) has raised the interest of the
research community for over 10 years with a large
number of significant contributions to the domain as
a systematic literature review records (Murillo et al.,
2023). As SonarQube is one of the most used tools in
industry to detect and manage technical debt, there are
studies that focus on investigating the technical debt
as handled by this tool (Molnar and Motogna, 2020a;
Molnar and Motogna, 2020a; Lenarduzzi et al., 2020;
Baldassarre et al., 2020; Lenarduzzi et al., 2020b),

Similar approaches in which the scope of the re-
search study is to investigate how junior developers
deal with technical debt are (Lenarduzzi et al., 2020a),
(Baldassarre et al., 2020) and (Plösch and Neumüller,
2020). In (Lenarduzzi et al., 2020a), the purpose was
to investigate how junior developers (also last year un-
dergraduate students as in our case) deal with TD pri-
oritization during refactoring, concluding that they fo-
cus homogeneously when dealing with different types
of TD and that they appreciate SonarQube as a tool to
handle the code quality. Junior developers were also
involved in the study (Baldassarre et al., 2020) fo-
cusing on diffuseness and remediation time of Sonar-
Qube issues in relation with their type. The first
study (Lenarduzzi et al., 2020a) also considers same
project requirements given to different students as in
our study, while in the second study the junior devel-
opers were asked to address quality issues to a set of
selected open source Java projects. Finally, (Plösch
and Neumüller, 2020) shows that fixing SonarQube
issues significantly depends on the experience level
of students.

Regarding comparison dealing with coding prac-
tices and quality issues between Java and Python,
(Tan et al., 2021) perform an empirical study of 44
Python projects from Apache Software Foundation

ecosystem, and compare the remediation effort with
a previous study on Java projects, showing similari-
ties between fixing rates in both languages.

Techniques like FCA, which involve represent-
ing, manipulating, and categorizing data, can be em-
ployed in software engineering to offer solution to
different specific problems such as software reuse
(Godin et al., 1995), reverse engineering and code
inspection (Dekel, 2002), or concept and fault loca-
tion (Poshyvanyk and Marcus, 2007), or program-
ming style (Cristea et al., 2021). This study shows
another approach in which FCA can be used in inves-
tigating quality issues in data from SonarQube.

5 THREATS TO VALIDITY

We addressed potential threats to our study’s valid-
ity by observing existing best practices for empiri-
cal (Paul Ralph (ed.), 2021) and case study research
(Runeson and Höst, 2008). In order to facilitate repli-
cating or extending our work, we created a data pack-
age that includes the SonarQube rule configuration
employed together with the anonymized list of issues
resulting from the analysis (Molnar, 2024).

Internal threats were addressed by carrying out
a manual examination of the source code included in
our study. Our reliance on SonarQube as a static anal-
ysis tool can be construed as an internal threat.

We aimed to limit external threats by including
three course iterations in our study in order to improve
data triangulation (Runeson and Höst, 2008) and help
identify recurring issues or trends. We included both
the complete rule set employed as well as all detected
issues in our open data package (not just those tagged
bad-practice).

Construct threats were mitigated by using
SonarQube, the most widely used static analysis tool
in both academia and the industry (Avgeriou and o.,
2021). We took into consideration existing results ar-
guing for the limited fault-prediction power of indi-
vidual SonarQube rules (Lenarduzzi et al., 2020), and
used detected issues as guidelines that will direct fu-
ture teaching efforts.

6 CONCLUSIONS

Static code analysis is known to provide an important
insight into the quality of software projects. In this pa-
per, we propose an approach that uses FCA as a data
mining technique on the output of SonarQube in or-
der to analyze behavior of junior developers. The cur-
rent analysis focuses on issues related to bad-practice

ENASE 2024 - 19th International Conference on Evaluation of Novel Approaches to Software Engineering

758



in Python and Java projects, since this type of issues
directly impacts the maintainability and reliability of
the source code.

The study shows that junior developers have dif-
ficulties handling output operations both in Java and
Python. Moreover, the results showed that bad prac-
tice issues in Java are often associated to security is-
sues, while bad practice issues in Python are often
associated to issues related to high maintainability
costs.

As future work, we plan to further explore FCA-
based data mining and static analysis tools in software
projects in order to analyze the error-prone behavior
of junior developers and to find ways in which it can
be improved regarding other categories of issues as
well, such as ”brain-overload”.

REFERENCES

Avgeriou, P. and o. (2021). An Overview and Compari-
son of Technical Debt Measurement Tools. IEEE Soft-
ware, PP.

Baldassarre, M. T., Lenarduzzi, V., Romano, S., and Saari-
maki, N. (2020). On the diffuseness of technical debt
items and accuracy of remediation time when using
SonarQube. IST, 128:106377.

Boehm, B. and Basili, V. R. (2001). Software defect reduc-
tion top 10 list. Computer, 34(1):135–137.

Boehm, B. and Papaccio, P. N. (1988). Understanding and
controlling software costs. IEEE Transactions on Soft-
ware Engineering, 14(10):1462–1477.

Cristea, D., Şotropa, D., Molnar, A.-J., and Motogna, S.
(2021). On the use of FCA models in static analysis
tools to detect common errors in programming. In
Proc. of ICCS, pages 3–18.

Dekel, U. (2002). Applications of Concept Lattices to Code
Inspection and Review.

Duquenne, V. (2007). What can lattices do for teaching
math. and education? volume 331.

Ganter, B. and Wille, R. (1999). Formal Concept Analysis -
Mathematical Foundations. Springer.

Gebser, M., Kaminski, R., Kaufmann, B., and Schaub, T.
(2012). Answer Set Solving in Practice. SLAIML.

Godin, R., Mineau, G., Missaoui, R., St-Germain, M., and
Faraj, N. (1995). Applying Concept Formation Meth-
ods to Software Reuse. IJSEKE, 5:119–142.

Khaund, A., Sharma, A. M., Tiwari, A., Garg, S., and
Kailasam, S. (2023). RD-FCA: A resilient distributed
framework for formal concept analysis. J. Parallel
Distributed Comput., 179:104710.

Kis, L. L., Sacarea, C., and Troanca, D. (2016). FCA Tools
Bundle - A Tool that Enables Dyadic and Triadic Con-
ceptual Navigation. In Proc. of FCA4AI. CEUR.

Lehmann, F. and Wille, R. (1995). A triadic approach to
formal concept analysis. In Proc. of ICCS. Springer.

Lenarduzzi, V., Lomio, F., Huttunen, H., and Taibi, D.
(2020). Are SonarQube Rules Inducing Bugs? In
Proc. of SANER, pages 501–511.

Lenarduzzi, V., Mandić, V., Katin, A., and Taibi, D.
(2020a). How long do Junior Developers take to Re-
move Technical Debt Items? In Proc. of ESEM.

Lenarduzzi, V., Saarimaki, N., and Taibi, D. (2020b). Some
SonarQube issues have a significant but small effect
on faults and changes. A large-scale empirical study.
Journal of Systems and Software, 170:110750.

Martin, R. C. (2008). Clean Code: A Handbook of Agile
Software Craftsmanship. Prentice Hall PTR, USA.

McConnell, S. (2004). Code Complete, Second Edition. Mi-
crosoft Press, USA.

Molnar, A. and Motogna, S. (2020a). Longitudinal evalua-
tion of open-source software maintainability. In Proc.
of ENASE, pages 120–131. INSTICC, SciTePress.

Molnar, A.-J. (2024). Open Data Package. https://doi.org/
10.6084/m9.figshare.25270243.v1.

Molnar, A.-J. and Motogna, S. (2020b). Long-Term Evalu-
ation of Technical Debt in Open-Source Software. In
ESEM 2020. ACM.

Murillo, M. I., Lopez, G., Spanola, R., Guzman, J., Rios,
N., and Pacheco, A. (2023). Identification and Man-
agement of Technical Debt: A Systematic Mapping
Study Update. JSERD, 11(1):8:1 – 8:20.

Paul Ralph (ed.) (2021). ACM Sigsoft Empirical Standards
for Software Engineering Research, version 0.2.0.

Plösch, R. and Neumüller, C. (2020). Does Static Analysis
Help Software Engineering Students? In ICEIT.

Poshyvanyk, D. and Marcus, A. (2007). Combining For-
mal Concept Analysis with Information Retrieval for
Concept Location in Source Code. In Proc. of ICPC.

Potassco (02024). Potassco, the Potsdam Answer Set Solv-
ing Collection.

Priss, U. (2013). Using FCA to analyse how students learn
to program. In Proc. of ICFCA, volume 7880 of
LNCS, pages 216–227. Springer.

Priss, U. (2020). A preliminary semiotic-conceptual analy-
sis of a learning management system. Procedia Com-
puter Science, 176:3702–3709.

Rudolph, S., Sacarea, C., and Troanca, D. (2015a). Mem-
bership Constraints in Formal Concept Analysis. In
Proc. of IJCAI, pages 3186–3192. AAAI Press.

Rudolph, S., Sacarea, C., and Troanca, D. (2015b). Towards
a Navigation Paradigm for Triadic Concepts. In Proc.
of ICFCA, volume 9113 of LNCS. Springer.

Runeson, P. and Höst, M. (2008). Guidelines for conduct-
ing and reporting case study research in software en-
gineering. ESE, 14:131–164.

Slezak, D. (2012). Rough Sets and FCA - Scalability Chal-
lenges. In Proc. of ICFCA, volume 7278 of LNCS.

SonarSource (2024). Sonar source static code analysis.
Tan, J., Feitosa, D., Avgeriou, P., and Lungu, M. (2021).

Evolution of technical debt remediation in Python: A
case study on the Apache Software Ecosystem. Jour-
nal of Software: Evolution and Process, 33(4).

Walkinshaw, N. and Minku, L. (2018). Are 20% of files
responsible for 80% of defects? In Proc. of ESEM.

Uncovering Bad Practices in Junior Developer Projects Using Static Analysis and Formal Concept Analysis

759


