
Expanding Code Assessment: A Qualitative Feedback System for

Beginning Students

Raimundo Meliana de Carvalho Filho, Carlos de Salles Soares Neto and Davi Viana dos Santos
Departamento de Informática, Universidade Federal do Maranhão, Brazil

Keywords: Qualitative Feedback, Code Quality, Programming Education.

Abstract: Although online judge systems are effective in verifying code correctness, they tend to provide only binary

answers related to code functionality, limiting students’ understanding of errors and opportunities for

improvement. The development of qualitative feedback system that provides students with more

comprehensive recommendations and guidance is promising as it fills this gap. That said, this study

investigates the extent to which novice programming students consider and incorporate feedback suggestions

into their coding practices, with the aim of evaluating the ability of a feedback system to influence and

improve the quality of programming learners’ code. To achieve this goal, we examined the correlation

between certain aspects of code quality raised by the system and the frequency of resubmissions. The results

revealed a correlation between resubmissions to the system and the presence of code smells related to the

naming of variables in the students’ codes (r = -0.4718, p < 0.05). These findings reinforce the importance of

code quality feedback and highlight the need for code quality features in online judging environments.

1 INTRODUCTION

In the context of programming education, Online

Judge systems represent and play an important role in

student assessment and feedback (Zhou et al., 2018).

These systems provide a virtual environment in which

students can submit their code and obtain automatic

results based on test cases (Wasik et al., 2018).

Although Online Judges are effective in verifying

the correctness of code, their quantitative approach

generally does not provide detailed information about

the qualitative aspects of code (Complexity, Variable

naming, Refactoring) produced by students.

Assessment solely focused on binary answers (yes or

no) can limit students’ understanding of mistakes made

and opportunities for improvement in their programs.

In view of the above, motivation arises for the

development of qualitative feedback to student

learners. The idea is to provide recommendations and

guidance that go beyond simple verification of

correctness, presenting subjective and qualitative

aspects of programming.

 The research question guiding this work is: To

what extent do novice student programmers

incorporate and apply feedback suggestions into their

coding practices? The research aims to evaluate the

ability of a qualitative feedback system to influence

and improve code quality in this group.

For the study, a qualitative feedback system

focused on three aspects of code quality that we

consider relevant for beginner students was

developed: Variable names, code complexity and

refactoring. Feedback related to variable names is the

main differentiator of this system, since there are few

approaches in this regard.

A correlation analysis between the types of code

smells (complexity, variable names, refactoring) and

student resubmissions revealed a significant

correlation between variable names and the number

of resubmissions. This suggests that the quality of

variable naming improves with qualitative feedback

and code refactoring. These results indicate that the

qualitative feedback system can improve the quality

of beginning students’ code, especially regarding

variable names.

Section 2 presents related work, contextualizing

the novel aspects and advantages of the present work.

In Section 3, we detail the tool developed, its purpose

and its main functionalities and characteristics. Then,

in Section 4, we present the evaluation of the tool

regarding the research objectives, including the

description of the participants, data collection and

578
Filho, R., Neto, C. and Santos, D.
Expanding Code Assessment: A Qualitative Feedback System for Beginning Students.
DOI: 10.5220/0012741600003693
Paper published under CC license (CC BY-NC-ND 4.0)
In Proceedings of the 16th International Conference on Computer Supported Education (CSEDU 2024) - Volume 1, pages 578-584
ISBN: 978-989-758-697-2; ISSN: 2184-5026
Proceedings Copyright © 2024 by SCITEPRESS – Science and Technology Publications, Lda.

methods for data analysis. In Sections 5 and 6, we

present the results and conclusions of the work.

2 RELATED WORK

Online Judge have become increasingly prevalent,

both in programming competitions and in the

academic and educational setting. In the educational

context, these systems play the role of tutors,

providing a quick assessment of the accuracy of

submitted codes. However, the assessment conducted

by these environments often do not fully capture the

complexities present in assessment made by teachers

(Zhou et al., 2018).

Code assessment by a teacher goes beyond merely

checking correctness, covering qualitative aspects

and specific nuances. However, few comprehensive

studies have been conducted related to qualitative

aspects and feedback in Online Judge environments

(Liu & Woo, 2020).

The challenge lies in the need to develop and

improve these systems to incorporate a more

comprehensive assessment, which goes beyond error

detection and considers the intrinsic quality of the

code. Research in this field is crucial to ensuring that

Online Judges can offer support and assessment as

thorough as that provided by experienced teachers,

thus promoting a richer and more effective

educational environment.

With this in mind, Araujo et al. (2016) propose a

set of measures to capture code quality and generate

useful feedback for novice programmers. The

proposed measures are based on traditional software

quality metrics and can be obtained automatically, as

long as there is a reference solution. The research

discusses the qualitative aspects of code that

instructors typically evaluate in programming

assignments. The set of proposed measures is

evaluated through a case study and an experiment.

The results show that the use of software metrics can

improve the feedback provided to students and

instructors.

In the work presented by Urell and Wallace

(2019), the authors show WebTA, a feedback system

focused on programming style anti-patterns in the

early stages and with different forms of identification

and automatic treatment of these anti-patterns.

WebTA takes the promising parts of student

submissions and suggests more meaningful fixes than

typical compiler error messages. The study highlights

the importance of providing tailored automated

feedback to novice programmers, addressing

programming anti-patterns at early stages.

Keuning et al. (2020) present a tutoring system for

programming that focuses on teaching students how

to refactor functionally correct code, with an

emphasis on method-level refactorings, control flow

expressions, and language structures. The system

provides automated feedback and layered tips to

support students in their learning process. The study

of 133 students using the system provides insights

into how students approach exercises and how they

use feedback and tips to refactor code.

Orr’s (2020) work presents a rule-based system

aimed at evaluating student programs for design

quality and providing personalized, accurate

feedback to assist in their improvement. By

implementing this online system, students were

empowered to receive quick feedback and make

necessary refinements before submitting their

assignments. The study’s findings revealed a

significant reduction in design quality flaws across

multiple assignments, highlighting the system’s

positive impact on improving the overall quality of

student submissions.

In the work of Jiang et al. (2020), the authors

present CompareCFG, a system that provides

automated visual feedback on code quality through

control flow graphs (CFGs). CompareCFG generates

visualizations of students’ submissions and allows

them to compare their own code with less complex

submissions. The system also provides actionable

feedback by identifying specific issues that can

reduce code complexity. The tool was used by 5

software engineering students to evaluate its usability

and the impact generated by the feedback on the

students. Statistical analyzes from the pilot study

show that CompareCFG provides useful feedback

and helps students improve code quality and

complexity.

Birillo et al. (2022) present Hyperstyle, a code

analysis tool that evaluates the quality of

programming solutions in the educational context.

Hyperstyle focused on various categories of code

quality, as it aggregated several professional tools.

The study compares Hyperstyle with another

educational code analysis tool (Tutor) in terms of

number of errors before and after using the tools,

showing that Hyperstyle results in an improvement in

the quality of the code submitted by students. The tool

also proves to be useful an impactful in the

educational context, offering support for several

programming languages.

In a study by Liu and Woo (2020), an Online

Judge system was developed that evaluates not only

the correctness, but also the quality of the code

submitted by students. The quality detection module

Expanding Code Assessment: A Qualitative Feedback System for Beginning Students

579

was developed using SonarQube 1functionalities and

tested on a set of 2.000 python codes from

undergraduate students to verify its practical

usefulness. As a result, the study presents the most

frequent errors, commonly made by beginners,

obtained using the tool.

Research stands out for presenting a qualitative

feedback system, focused on offering suggestions

related to practices for choosing variable names and

managing code complexity and refactoring. Unlike

conventional approaches, which often focus only on

detecting errors, our system seeks to increase the

intrinsic quality of the code, promoting good

programming practices. Although other works address

aspects such as correctness, general design, readability,

maintainability and efficiency of the code, the present

work differentiates itself by bringing suggestions

related to the choice of variable names, a challenge

faced and emphasized by other works (Chren et al.,

2022; Orr, 2020). In general, the focus is on identifying

code smells associated with the need for refactoring,

improved suggestions for more descriptive variable

names, and strategies for managing complexity,

considering nuances that often escape automatic

detection. Code smells refer to symptoms or

indications that the source code may be poorly

structured or in need of refactoring Fowler (1999).

This differentiated approach reinforces the

importance of a comprehensive assessment that goes

beyond traditional parameters, thus contributing to

the training of more skilled programmers who are

aware of the quality of their codes.

3 COSMOMENTOR

Cosmo is an internal educational and multitasking

platform from Universidade Federal do Maranhão,

developed and maintained by the Telemidia

laboratory, dedicated to programming exercises for

an introduction to Algorithms course. Its

characteristics for solving programming activities are

similar to traditional Online Judges. For a given

activity, a user submits an algorithm as a solution and

receives an answer about the functional correctness of

that submission based on a battery of test case.

To complement the approach already offered by

the Cosmo environment with qualitative feedback

suggestions related to the students’ codes,

CosmoMentor was developed, which was developed

in Python language as a Web Service and integrated

into Cosmo environment.

1 https://www.sonarsource.com

CosmoMentor is a tool for code quality analysis

and feedback. It provides suggestions related to code

quality aspects and is specifically designed to capture

code quality issues from beginner programming

students.

Within its functionalities, CosmoMentor enables

the detection of code smells related to variable

naming, complexity and refactoring and, thus,

suggesting refactoring alternatives to the student in

the form of suggestions. Its approach involves both

static code analysis and natural language processing.

3.1 Static Analysis

For the static analysis, some of the functionalities

present in the pylint, radon and mccabe libraries were

used. The pylint library was used to detect deviations

from python coding standards. Pylint was used to

detect functional but unusual code snippets that often

have a more common and accepted alternative in the

context of python. Among these deviations, chaining

comparison, variable swap, use of enumerate, number

of Boolean expressions on the same line and line

length.

The radon and mccabe libraries were used to

measure the number of lines, Halstead metrics and

cyclomatic complexity, respectively in both the

students’ codes and in a reference code for each

question. A reference code is provided so that it is

possible to compare the student code metrics with the

reference ones and then generate suggestions for the

students, similar to the approach found in the work of

Araujo et al. (2016).

3.2 Variable Analysis

To improve the generation of automated feedback on

variable naming, employ natural language processing

techniques. The objective of this approach is to

evaluate the relevance of variable names in the

student’s code, highlighting inappropriate names and

proposing more appropriate alternatives. This is done

by involving both an analysis of the variables present

in the student’s code in relation to a reference set,

formed by the combination of both variables

extracted from the question statement and a set of pre-

defined reference variables.

Initially, a set of variables is extracted with natural

language processing from the question statement text.

Next, variables are extracted from the reference code

for the question. These two sets are then combined to

form a more robust reference set, as it captures the

CSEDU 2024 - 16th International Conference on Computer Supported Education

580

context of the question along with the tutor’s

expertise in naming variables.

A similar approach is taken with the student code

to identify and normalize its variables, which makes

it possible to compare them with those in the

reference set.

Student variables that do not match the reference

set are cataloged as inappropriate. These variables are

also subjected to a more trivial analysis to check

conformities and conventions of the python language,

being classified as inadequate if they diverge from

these standards.

Then, for each inappropriate variable, a syntactic

and semantic similarity analysis carried out in relation

to the variables in the reference set, generating a list

of variables with their respective similarity scores.

The selection of substitute variables is defined

based on the configuration of a pre-defined threshold;

candidate variables that meet or exceed this threshold

are chosen as appropriate surrogates. If no candidate

variable meets the threshold criteria for a given

unsuitable variable, all reference variables are

considered as replacement options. As result, each

unsuitable variable will have a set of substitute

variables.

3.3 Feedback

Once the inappropriate variables in the student’s code

and the candidates for replacements have been

identified, suggestions regarding the code are then

generated, which are then forwarded to Cosmo to be

presented to the students. The student may or may not

consider them when refactoring their solution. Figure

1 and 2 shows some messages and how they are

arranged for the student.

The messages can be presented in two ways,

which refer to the location where the messages will

be displayed. These forms are related to the scope of

respective code smell. Code smells that refer to a

specific construction or declaration on a line are

marked with icons indicating their severity and

importance. These include code smells related to

variable names, code structure, language best

practices, and are mapped directly onto the code

itself. The other form has broader scope and

coverage, relating to code complexity, whether it’s

cyclomatic complexity, number of lines, or Halstead

metrics, compared to reference code, and they are

displayed just below, outside the coding area.

The code smells mentioned related to the line

scope receive symbols and colors referring to their

severity and importance and can be of three types:

Red – Indicates problems related to language

standards/conventions, especially in relation to

variable names (snake_case, camelCase, upper and

lower case). These problems are strongly

recommended for refactoring.

Yellow – Represents warnings related to community

standards regarding the use of code constructs and

language design It is also associated with suggesting

more descriptive and representative variable names.

These are problems that require attention, and

refactoring is advisable.

Blue – Provides information related to additional tips

and guidance. It works mainly to reinforce the use of

general and recurring good coding practices.

4 EVALUATION

To investigate student behavior in relation to

feedback generated by CosmoMentor, we adopted a

predominantly quantitative approach, centered on the

analysis of objective data. To do this, we collected

467 log data from 36 students while the tool for 4

weeks and performed statistical analyzes and graphs

to verify the relationships between the variables

involved.

4.1 Participants

The research involved 36 students enrolled in the

Algorithms I discipline in a Computer Science course

during the second semester of 2023.

Regarding the academic profile, the sample

includes first-year students. Most participants had

little to no experience in programming and

algorithmic logic. This intentional characteristic of

the sample sought to capture the usage pattern of the

tool by beginner students.

Data collection took place through a voluntary

approach, where students were invited to participate

in the research during regular classes in an Algorithm

discipline. This recruitment method sought to

guarantee a representative sample of the specific

academic context, minimizing possible selection

biases.

4.2 Dataset

The data was collected by recording students’

interactions with the feedback tool as they submitted

their solutions to questions in the Cosmo environment

Expanding Code Assessment: A Qualitative Feedback System for Beginning Students

581

Figure 1: Cosmo code editor integrated with messages generated by CosmoMentor for salary bonus calculation code.

Figure 2: Messages for line nine regarding the description and representation of the “sal” variable, in addition to suggestions

related to the construction of the comparison structure between operations.

over 4 weeks. Each interaction was captured,

including the set of feedback messages provided for

each feedback class and the students’ solutions.

The analysis was carried out on this subset

because the research intention was to evaluate

whether students take into consideration the

qualitative feedback suggestions provided by

CosmoMentor in solving the activities, even after

achieving functionally correct solutions, improving

their code beyond the functional aspect.

4.3 Data Analysis Methods

In order to achieve the research objectives, we

conduct statistical analyzes that include both

correlation tests between variables and their

visualization for a more in-depth understanding of the

results.

Before conducting the mentioned procedures, we

initially performed a visualization of the number of

student resubmissions, and subsequently identified

the associated outliers and removed them from the

correlation analysis. Figures 3 and 4, respectively,

show these visualizations.

To investigate the relationship between variables in

our study, we chose to use Spearman correlation

instead of other correlation measures such as Pearson

correlation. This decision was based on specific

considerations related to the nature of the data.

Spearman’s correlation is a non-parametric measure

of association between two variables that does not

require the assumption of normal data distribution,

which is exactly what we have in figure 3.

Therefore, we performed Spearman correlation

tests between the key variables that define the classes

of code smells and the number of student

CSEDU 2024 - 16th International Conference on Computer Supported Education

582

resubmissions. Additionally, we assessed the

statistical significance of this correlation using the

associated hypothesis test, with a significance level

set at α = 0.05.

Figure 3: Number of resubmissions.

Figure 4: Outliers for the number of resubmissions.

5 RESULTS

The results of the correlation analysis between the

types of code smells (complexity, variable names,

refactoring) and the number of student resubmissions

revealed significant insights into the relationship

between code characteristics and the resubmission

process.

5.1 Participants’ Behavior

Our research aimed to investigate whether students

take into account the qualitative feedback suggestions

given by CosmoMentor when solving activities.

Therefore, correlation analysis allowed us to explore

these relationships and contribute to the

understanding of the factors that impact the use of the

tool and the quality of the code. Table 1 shows the

correlation coefficients between these variables.

The correlation analysis revealed a significant

correlation between the code smells variables related

to variable name and number of resubmissions (r = -

0.4718, p < 0.05), indicating a negative relationship

between these variables.

This suggests that the quality of variables naming

tends to improve as the student receives qualitative

feedback and refactors their code. Figure 5 helps us

see this behavior.

It is possible to observe that as students resubmit

their codes, problems related to variable naming tend

to decrease. This shows that, at least for codes smells

related to variable names, CosmoMentor is capable of

influencing and improving the quality of beginner

students’ code.

However, some correlation tests did not show

significant relationships. For example, no significant

relationship were found between code smells related

to complexity and the number of resubmissions, nor

were they found for code smells related to refactoring

and the number of resubmissions.

Table 1: Correlations between the types of code smells and

the variables analyzed.

Variable Correlation coefficient (r)

Complexity -0.0290

Variable Name -0.4718

Refactoring -0.0682

Figure 5: Percentage of code smells for variables by

resubmission number.

Expanding Code Assessment: A Qualitative Feedback System for Beginning Students

583

These non-significant correlations suggest that

others unexplored variables may be playing an

important role in these relationships. Possible

limitations, such as sample size or lack of control for

confounding variables, may influence the strength of

the observed associations.

One hypothesis for this lack of correlation is the

possibility that problems related to complexity and

refactoring are too complex for beginner students to

solve on their own, or even that the suggestions

presented for these code smells are not enough for

students to be able to refactor their codes.

6 CONCLUSIONS

In this study, we developed a qualitative feedback

system and investigated its ability to influence and

improve the quality of beginning students’ code,

analyzing the correlation between resubmissions to

the system and some classes of code smells. Our

results provide positive insights into the use of the

system to improve the quality of student codes,

showing great promise in the task of refactoring

variable names.

During the study, we observed a significant

correlation between the number of resubmissions to

the system and the number of code smells related to

the nomenclature of variable names in the students’

code.

Despite the promising results obtained in this

study, it is important to recognize some limitations

that may influence our conclusions. Firstly, the

sample used in this study was restricted to a single

class of algorithms, which may limit the

generalization of the results to other populations.

Furthermore, due to the nature of longitudinal design

adopted, we can only capture participant behavior

during this specific period, without the ability to

observe long-term changes or usage patterns. This

may limit our understanding of tool usage trends over

time and its long-term sustainability. Finally, it is

important to note that external factors, such as

changes in participants’ individual circumstances or

unforeseen events, may have influenced the use of the

tool throughout the study period.

Ultimately, our study highlights the importance of

automated qualitative feedback related to code

quality in online judge environments as a practical

intervention to promote evaluation of novice

students’ codes beyond the functional. We hope that

this study inspires other researchers to contribute

even more to this still little explored field.

ACKNOWLEDGMENTS

We would like to acknowledge CAPES for the

financial support.

REFERENCES

Araujo, E., Serey, D., & Figueiredo, J. (2016, October).

Qualitative aspects of students' programs: Can we make

them measurable?. In 2016 IEEE Frontiers in

Education Conference (FIE) (pp. 1-8). IEEE.

Birillo, A., Vlasov, I., Burylov, A., Selishchev, V.,

Goncharov, A., Tikhomirova, E., ... & Bryksin, T.

(2022, February). Hyperstyle: A tool for assessing the

code quality of solutions to programming assignments.

In Proceedings of the 53rd ACM Technical Symposium

on Computer Science Education-Volume 1 (pp. 307-

313).

Chren, S., Macák, M., Rossi, B., & Buhnova, B. (2022,

June). Evaluating code improvements in software

quality course projects. In Proceedings of the 26th

International Conference on Evaluation and

Assessment in Software Engineering (pp. 160-169).

Fowler, M. (1999). Refactoring: improving the design of

existing code. Addison-Wesley Professional.

Jiang, L., Rewcastle, R., Denny, P., & Tempero, E. (2020,

June). Comparecfg: Providing visual feedback on code

quality using control flow graphs. In Proceedings of the

2020 ACM Conference on Innovation and Technology

in Computer Science Education (pp. 493-499).

Keuning, H., Heeren, B., & Jeuring, J. (2020, November).

Student refactoring behaviour in a programming tutor.

In Proceedings of the 20th Koli Calling International

Conference on Computing Education Research (pp. 1-

10).

Liu, X., & Woo, G. (2020, February). Applying code

quality detection in online programming judge.

In Proceedings of the 2020 5th International

Conference on Intelligent Information Technology (pp.

56-60).

Orr, J. W. (2020, novembro). Automatic assessment of the

design quality of student python and java programs. J.

Comput. Sci. Coll., 38(1), 27-36.

Ureel II, L. C., & Wallace, C. (2019, February). Automated

critique of early programming antipatterns.

In Proceedings of the 50th ACM Technical Symposium

on Computer Science Education (pp. 738-744).

Wasik, S., Antczak, M., Badura, J., Laskowski, A., &

Sternal, T. (2018). A survey on online judge systems

and their applications. ACM Computing Surveys

(CSUR), 51(1), 1-34.

Zhou, W., Pan, Y., Zhou, Y., & Sun, G. (2018, May). The

framework of a new online judge system for

programming education. In Proceedings of ACM turing

celebration conference-China (pp. 9-14).

CSEDU 2024 - 16th International Conference on Computer Supported Education

584

