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Abstract: Although online judge systems are effective in verifying code correctness, they tend to provide only binary 

answers related to code functionality, limiting students’ understanding of errors and opportunities for 

improvement. The development of qualitative feedback system that provides students with more 

comprehensive recommendations and guidance is promising as it fills this gap. That said, this study 

investigates the extent to which novice programming students consider and incorporate feedback suggestions 

into their coding practices, with the aim of evaluating the ability of a feedback system to influence and 

improve the quality of programming learners’ code. To achieve this goal, we examined the correlation 

between certain aspects of code quality raised by the system and the frequency of resubmissions. The results 

revealed a correlation between resubmissions to the system and the presence of code smells related to the 

naming of variables in the students’ codes (r = -0.4718, p < 0.05). These findings reinforce the importance of 

code quality feedback and highlight the need for code quality features in online judging environments.

1 INTRODUCTION 

In the context of programming education, Online 

Judge systems represent and play an important role in 

student assessment and feedback (Zhou et al., 2018). 

These systems provide a virtual environment in which 

students can submit their code and obtain automatic 

results based on test cases (Wasik et al., 2018). 

Although Online Judges are effective in verifying 

the correctness of code, their quantitative approach 

generally does not provide detailed information about 

the qualitative aspects of code (Complexity, Variable 

naming, Refactoring) produced by students. 

Assessment solely focused on binary answers (yes or 

no) can limit students’ understanding of mistakes made 

and opportunities for improvement in their programs. 

In view of the above, motivation arises for the 

development of qualitative feedback to student 

learners. The idea is to provide recommendations and 

guidance that go beyond simple verification of 

correctness, presenting subjective and qualitative 

aspects of programming. 

 The research question guiding this work is: To 

what extent do novice student programmers 

incorporate and apply feedback suggestions into their 

coding practices? The research aims to evaluate the 

ability of a qualitative feedback system to influence 

and improve code quality in this group. 

For the study, a qualitative feedback system 

focused on three aspects of code quality that we 

consider relevant for beginner students was 

developed: Variable names, code complexity and 

refactoring. Feedback related to variable names is the 

main differentiator of this system, since there are few 

approaches in this regard. 

A correlation analysis between the types of code 

smells (complexity, variable names, refactoring) and 

student resubmissions revealed a significant 

correlation between variable names and the number 

of resubmissions. This suggests that the quality of 

variable naming improves with qualitative feedback 

and code refactoring. These results indicate that the 

qualitative feedback system can improve the quality 

of beginning students’ code, especially regarding 

variable names. 

Section 2 presents related work, contextualizing 

the novel aspects and advantages of the present work. 

In Section 3, we detail the tool developed, its purpose 

and its main functionalities and characteristics. Then, 

in Section 4, we present the evaluation of the tool 

regarding the research objectives, including the 

description of the participants, data collection and 
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methods for data analysis. In Sections 5 and 6, we 

present the results and conclusions of the work. 

2 RELATED WORK 

Online Judge have become increasingly prevalent, 

both in programming competitions and in the 

academic and educational setting. In the educational 

context, these systems play the role of tutors, 

providing a quick assessment of the accuracy of 

submitted codes. However, the assessment conducted 

by these environments often do not fully capture the 

complexities present in assessment made by teachers 

(Zhou et al., 2018). 

Code assessment by a teacher goes beyond merely 

checking correctness, covering qualitative aspects 

and specific nuances. However, few comprehensive 

studies have been conducted related to qualitative 

aspects and feedback in Online Judge environments 

(Liu & Woo, 2020). 

The challenge lies in the need to develop and 

improve these systems to incorporate a more 

comprehensive assessment, which goes beyond error 

detection and considers the intrinsic quality of the 

code. Research in this field is crucial to ensuring that 

Online Judges can offer support and assessment as 

thorough as that provided by experienced teachers, 

thus promoting a richer and more effective 

educational environment. 

With this in mind, Araujo et al. (2016) propose a 

set of measures to capture code quality and generate 

useful feedback for novice programmers. The 

proposed measures are based on traditional software 

quality metrics and can be obtained automatically, as 

long as there is a reference solution. The research 

discusses the qualitative aspects of code that 

instructors typically evaluate in programming 

assignments. The set of proposed measures is 

evaluated through a case study and an experiment. 

The results show that the use of software metrics can 

improve the feedback provided to students and 

instructors.  

In the work presented by Urell and Wallace 

(2019), the authors show WebTA, a feedback system 

focused on programming style anti-patterns in the 

early stages and with different forms of identification 

and automatic treatment of these anti-patterns. 

WebTA takes the promising parts of student 

submissions and suggests more meaningful fixes than 

typical compiler error messages. The study highlights 

the importance of providing tailored automated 

feedback to novice programmers, addressing 

programming anti-patterns at early stages. 

Keuning et al. (2020) present a tutoring system for 

programming that focuses on teaching students how 

to refactor functionally correct code, with an 

emphasis on method-level refactorings, control flow 

expressions, and language structures. The system 

provides automated feedback and layered tips to 

support students in their learning process. The study 

of 133 students using the system provides insights 

into how students approach exercises and how they 

use feedback and tips to refactor code.   

Orr’s (2020) work presents a rule-based system 

aimed at evaluating student programs for design 

quality and providing personalized, accurate 

feedback to assist in their improvement. By 

implementing this online system, students were 

empowered to receive quick feedback and make 

necessary refinements before submitting their 

assignments. The study’s findings revealed a 

significant reduction in design quality flaws across 

multiple assignments, highlighting the system’s 

positive impact on improving the overall quality of 

student submissions.  

In the work of Jiang et al. (2020), the authors 

present CompareCFG, a system that provides 

automated visual feedback on code quality through 

control flow graphs (CFGs). CompareCFG generates 

visualizations of students’ submissions and allows 

them to compare their own code with less complex 

submissions. The system also provides actionable 

feedback by identifying specific issues that can 

reduce code complexity. The tool was used by 5 

software engineering students to evaluate its usability 

and the impact generated by the feedback on the 

students. Statistical analyzes from the pilot study 

show that CompareCFG provides useful feedback 

and helps students improve code quality and 

complexity. 

Birillo et al. (2022) present Hyperstyle, a code 

analysis tool that evaluates the quality of 

programming solutions in the educational context. 

Hyperstyle focused on various categories of code 

quality, as it aggregated several professional tools. 

The study compares Hyperstyle with another 

educational code analysis tool (Tutor) in terms of 

number of errors before and after using the tools, 

showing that Hyperstyle results in an improvement in 

the quality of the code submitted by students. The tool 

also proves to be useful an impactful in the 

educational context, offering support for several 

programming languages. 

In a study by Liu and Woo (2020), an Online 

Judge system was developed that evaluates not only 

the correctness, but also the quality of the code 

submitted by students. The quality detection module 
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was developed using SonarQube 1functionalities and 

tested on a set of 2.000 python codes from 

undergraduate students to verify its practical 

usefulness. As a result, the study presents the most 

frequent errors, commonly made by beginners, 

obtained using the tool. 

Research stands out for presenting a qualitative 

feedback system, focused on offering suggestions 

related to practices for choosing variable names and 

managing code complexity and refactoring. Unlike 

conventional approaches, which often focus only on 

detecting errors, our system seeks to increase the 

intrinsic quality of the code, promoting good 

programming practices. Although other works address 

aspects such as correctness, general design, readability, 

maintainability and efficiency of the code, the present 

work differentiates itself by bringing suggestions 

related to the choice of variable names, a challenge 

faced and emphasized by other works (Chren et al., 

2022; Orr, 2020). In general, the focus is on identifying 

code smells associated with the need for refactoring, 

improved suggestions for more descriptive variable 

names, and strategies for managing complexity, 

considering nuances that often escape automatic 

detection. Code smells refer to symptoms or 

indications that the source code may be poorly 

structured or in need of refactoring Fowler (1999). 

This differentiated approach reinforces the 

importance of a comprehensive assessment that goes 

beyond traditional parameters, thus contributing to 

the training of more skilled programmers who are 

aware of the quality of their codes. 

3 COSMOMENTOR 

Cosmo is an internal educational and multitasking 

platform from Universidade Federal do Maranhão, 

developed and maintained by the Telemidia 

laboratory, dedicated to programming exercises for 

an introduction to Algorithms course. Its 

characteristics for solving programming activities are 

similar to traditional Online Judges. For a given 

activity, a user submits an algorithm as a solution and 

receives an answer about the functional correctness of 

that submission based on a battery of test case. 

To complement the approach already offered by 

the Cosmo environment with qualitative feedback 

suggestions related to the students’ codes, 

CosmoMentor was developed, which was developed 

in Python language as a Web Service and integrated 

into Cosmo environment. 

 
1 https://www.sonarsource.com 

CosmoMentor is a tool for code quality analysis 

and feedback. It provides suggestions related to code 

quality aspects and is specifically designed to capture 

code quality issues from beginner programming 

students. 

Within its functionalities, CosmoMentor enables 

the detection of code smells related to variable 

naming, complexity and refactoring and, thus, 

suggesting refactoring alternatives to the student in 

the form of suggestions. Its approach involves both 

static code analysis and natural language processing. 

3.1 Static Analysis 

For the static analysis, some of the functionalities 

present in the pylint, radon and mccabe libraries were 

used. The pylint library was used to detect deviations 

from python coding standards. Pylint was used to 

detect functional but unusual code snippets that often 

have a more common and accepted alternative in the 

context of python. Among these deviations, chaining 

comparison, variable swap, use of enumerate, number 

of Boolean expressions on the same line and line 

length. 

The radon and mccabe libraries were used to 

measure the number of lines, Halstead metrics and 

cyclomatic complexity, respectively in both the 

students’ codes and in a reference code for each 

question. A reference code is provided so that it is 

possible to compare the student code metrics with the 

reference ones and then generate suggestions for the 

students, similar to the approach found in the work of 

Araujo et al. (2016). 

3.2 Variable Analysis 

To improve the generation of automated feedback on 

variable naming, employ natural language processing 

techniques. The objective of this approach is to 

evaluate the relevance of variable names in the 

student’s code, highlighting inappropriate names and 

proposing more appropriate alternatives. This is done 

by involving both an analysis of the variables present 

in the student’s code in relation to a reference set, 

formed by the combination of both variables 

extracted from the question statement and a set of pre-

defined reference variables. 

Initially, a set of variables is extracted with natural 

language processing from the question statement text. 

Next, variables are extracted from the reference code 

for the question. These two sets are then combined to 

form a more robust reference set, as it captures the 
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context of the question along with the tutor’s 

expertise in naming variables. 

A similar approach is taken with the student code 

to identify and normalize its variables, which makes 

it possible to compare them with those in the 

reference set. 

Student variables that do not match the reference 

set are cataloged as inappropriate. These variables are 

also subjected to a more trivial analysis to check 

conformities and conventions of the python language, 

being classified as inadequate if they diverge from 

these standards. 

Then, for each inappropriate variable, a syntactic 

and semantic similarity analysis carried out in relation 

to the variables in the reference set, generating a list 

of variables with their respective similarity scores. 

The selection of substitute variables is defined 

based on the configuration of a pre-defined threshold; 

candidate variables that meet or exceed this threshold 

are chosen as appropriate surrogates. If no candidate 

variable meets the threshold criteria for a given 

unsuitable variable, all reference variables are 

considered as replacement options. As result, each 

unsuitable variable will have a set of substitute 

variables.  

3.3 Feedback 

Once the inappropriate variables in the student’s code 

and the candidates for replacements have been 

identified, suggestions regarding the code are then 

generated, which are then forwarded to Cosmo to be 

presented to the students. The student may or may not 

consider them when refactoring their solution. Figure 

1 and 2 shows some messages and how they are 

arranged for the student. 

The messages can be presented in two ways, 

which refer to the location where the messages will 

be displayed. These forms are related to the scope of 

respective code smell. Code smells that refer to a 

specific construction or declaration on a line are 

marked with icons indicating their severity and 

importance. These include code smells related to 

variable names, code structure, language best 

practices, and are mapped directly onto the code 

itself. The other form has broader scope and 

coverage, relating to code complexity, whether it’s 

cyclomatic complexity, number of lines, or Halstead 

metrics, compared to reference code, and they are 

displayed just below, outside the coding area. 

The code smells mentioned related to the line 

scope receive symbols and colors referring to their 

severity and importance and can be of three types: 

 

Red – Indicates problems related to language 

standards/conventions, especially in relation to 

variable names (snake_case, camelCase, upper and 

lower case). These problems are strongly 

recommended for refactoring. 

 

Yellow – Represents warnings related to community 

standards regarding the use of code constructs and 

language design It is also associated with suggesting 

more descriptive and representative variable names. 

These are problems that require attention, and 

refactoring is advisable. 

 

Blue – Provides information related to additional tips 

and guidance. It works mainly to reinforce the use of 

general and recurring good coding practices. 

4 EVALUATION 

To investigate student behavior in relation to 

feedback generated by CosmoMentor, we adopted a 

predominantly quantitative approach, centered on the 

analysis of objective data. To do this, we collected 

467 log data from 36 students while the tool for 4 

weeks and performed statistical analyzes and graphs 

to verify the relationships between the variables 

involved. 

4.1 Participants 

The research involved 36 students enrolled in the 

Algorithms I discipline in a Computer Science course 

during the second semester of 2023. 

Regarding the academic profile, the sample 

includes first-year students. Most participants had 

little to no experience in programming and 

algorithmic logic. This intentional characteristic of 

the sample sought to capture the usage pattern of the 

tool by beginner students. 

Data collection took place through a voluntary 

approach, where students were invited to participate 

in the research during regular classes in an Algorithm 

discipline. This recruitment method sought to 

guarantee a representative sample of the specific 

academic context, minimizing possible selection 

biases. 

4.2 Dataset 

The data was collected by recording students’ 

interactions with the feedback tool as they submitted 

their solutions to questions in the Cosmo environment 
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Figure 1: Cosmo code editor integrated with messages generated by CosmoMentor for salary bonus calculation code. 

 

Figure 2: Messages for line nine regarding the description and representation of the “sal” variable, in addition to suggestions 

related to the construction of the comparison structure between operations. 

over 4 weeks. Each interaction was captured,  

including the set of feedback messages provided for 

each feedback class and the students’ solutions. 

The analysis was carried out on this subset 

because the research intention was to evaluate 

whether students take into consideration the 

qualitative feedback suggestions provided by 

CosmoMentor in solving the activities, even after 

achieving functionally correct solutions, improving 

their code beyond the functional aspect. 

4.3 Data Analysis Methods 

In order to achieve the research objectives, we  

conduct statistical analyzes that include both 

correlation tests between variables and their 

visualization for a more in-depth understanding of the 

results. 

Before conducting the mentioned procedures, we 

initially performed a visualization of the number of 

student resubmissions, and subsequently identified 

the associated outliers and removed them from the 

correlation analysis. Figures 3 and 4, respectively, 

show these visualizations. 

To investigate the relationship between variables in 

our study, we chose to use Spearman correlation 

instead of other correlation measures such as Pearson 

correlation. This decision was based on specific 

considerations related to the nature of the data. 

Spearman’s correlation is a non-parametric measure 

of association between two variables that does not 

require the assumption of normal data distribution, 

which is exactly what we have in figure 3. 

Therefore, we performed Spearman correlation 

tests between the key variables that define the classes 

of code smells and the number of student 
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resubmissions. Additionally, we assessed the 

statistical significance of this correlation using the 

associated hypothesis test, with a significance level 

set at α = 0.05. 

 

Figure 3: Number of resubmissions. 

 

Figure 4: Outliers for the number of resubmissions. 

5 RESULTS 

The results of the correlation analysis between the 

types of code smells (complexity, variable names, 

refactoring) and the number of student resubmissions 

revealed significant insights into the relationship 

between code characteristics and the resubmission 

process. 

5.1 Participants’ Behavior 

Our research aimed to investigate whether students 

take into account the qualitative feedback suggestions 

given by CosmoMentor when solving activities. 

Therefore, correlation analysis allowed us to explore 

these relationships and contribute to the 

understanding of the factors that impact the use of the 

tool and the quality of the code. Table 1 shows the 

correlation  coefficients between these variables. 

The correlation analysis revealed a significant 

correlation between the code smells variables related 

to variable name and number of resubmissions (r = -

0.4718, p < 0.05), indicating a negative relationship 

between these variables. 

This suggests that the quality of variables naming 

tends to improve as the student receives qualitative 

feedback and refactors their code. Figure 5 helps us 

see this behavior. 

It is possible to observe that as students resubmit 

their codes, problems related to variable naming tend 

to decrease. This shows that, at least for codes smells 

related to variable names, CosmoMentor is capable of 

influencing and improving the quality of beginner 

students’ code. 

However, some correlation tests did not show 

significant relationships. For example, no significant 

relationship were found between code smells related 

to complexity and the number of resubmissions, nor 

were they found for code smells related to refactoring 

and the number of resubmissions. 

 
Table 1: Correlations between the types of code smells and 

the variables analyzed. 

 

Variable Correlation coefficient (r) 

Complexity -0.0290 

Variable Name -0.4718 

Refactoring -0.0682 

 

 
 

Figure 5: Percentage of code smells for variables by 

resubmission number. 
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These non-significant correlations suggest that 

others unexplored variables may be playing an 

important role in these relationships. Possible 

limitations, such as sample size or lack of control for 

confounding variables, may influence the strength of 

the observed associations. 

One hypothesis for this lack of correlation is the 

possibility that problems related to complexity and 

refactoring are too complex for beginner students to 

solve on their own, or even that the suggestions 

presented for these code smells are not enough for 

students to be able to refactor their codes. 

6 CONCLUSIONS 

In this study, we developed a qualitative feedback 

system and investigated its ability to influence and 

improve the quality of beginning students’ code, 

analyzing the correlation between resubmissions to 

the system and some classes of code smells. Our 

results provide positive insights into the use of the 

system to improve the quality of student codes, 

showing great promise in the task of refactoring 

variable names. 

During the study, we observed a significant 

correlation between the number of resubmissions to 

the system and the number of code smells related to 

the nomenclature of variable names in the students’ 

code. 

Despite the promising results obtained in this 

study, it is important to recognize some limitations 

that may influence our conclusions. Firstly, the 

sample used in this study was restricted to a single 

class of algorithms, which may limit the 

generalization of the results to other populations. 

Furthermore, due to the nature of longitudinal design 

adopted, we can only capture participant behavior 

during this specific period, without the ability to 

observe long-term changes or usage patterns. This 

may limit our understanding of tool usage trends over 

time and its long-term sustainability. Finally, it is 

important to note that external factors, such as 

changes in participants’ individual circumstances or 

unforeseen events, may have influenced the use of the 

tool throughout the study period.  

Ultimately, our study highlights the importance of 

automated qualitative feedback related to code 

quality in online judge environments as a practical 

intervention to promote evaluation of novice 

students’ codes beyond the functional. We hope that 

this study inspires other researchers to contribute 

even more to this still little explored field. 
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