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The evolution the Software Product Line processes requires targeted support to address emerging customer
functionals and non functionals requirements, evolving technology platforms, and new business strategies. En-
hancing the features of core assets is a particularly promising avenue in Software Product Line evolution.The
manual configuration of SPLs is already highly complex and error-prone. The key challenge of using feature
models is to derive a product configuration that satisfies all business and customer requirements. However,
proposing a unsupervised learning-based solution to facilitate this evolution is a growing challenge. To address
this challenge, in this paper we use association rules learning to support business during product configuration
in SPL. Based on extended feature models, advanced apriori algorithm automatically finds an optimal product
configuration that maximizes the customer satisfaction. Our proposal is applied on a practical case involving

the feature model of a Mobile Phone Product Line.

1 INTRODUCTION

Software Product Line (SPL), a widely recognized
approach in software engineering (Clements, 2001)
(Ferchichi et al., 2020) (Pohl et al., 2005) involves
generating a range of interconnected products by
blending reusable core elements with custom assets
tailored to each specific product. Demonstrated as
an efficient strategy for leveraging architecture-level
reuse, software product lines have established their
effectiveness in the field. The SPL engineering
framework consists of two main processes: domain
engineering and application engineering. The domain
engineering process begins with domain analysis
to identify both common and variable features.
These features serve as the foundation for designing
and implementing the domain. Through domain
activities, software assets known as core assets are
created. Core assets are reusable components utilized
in developing Product Line (PL) products during the
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application engineering process. These assets can
encompass various elements such as feature models,
architectures, components, or any other reusable
outcomes of domain activities.

One of the key aspects of product lines is variabil-
ity. Variability (Metzger and Pohl, 2014) (Bashroush
et al., 2017) (El-Sharkawy et al., 2019) is defined as
the ability of a software system or artifact to be effi-
ciently extended, changed, customized, or configured
(White et al., 2014) for use in a particular context.

In this paper, we propose an approach for automat-
ically deriving PL configrations based on association
rules learning.

The remainder of this paper is divided into six sec-
tions. in section 2 we present the fundamental con-
cepts of SPL. In Section 3, we present the problem
description. In Section 4, we present related work.
Section 5 describes the proposed advanced apriori al-
gorithms approach for configuration SPL. The experi-
ment and the interpretation of the result are presented
in section 6. We give a conclusion in Section 7.
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2 BACKGROUND

2.1 Feature Model

Variability is expressed in a software variability
model, which such as Feature Model (FM). A FM
(Lee et al., 2002) is a tree or a directed acyclic graph
of features. A FM is organized hierarchically. A
mandatory feature has to be selected if its parent fea-
ture is mandatory or if its parent feature is optional
and has been selected. Mandatory features define
commonalities. Optional, alternative, and ‘or’ fea-
tures define variability in feature models. As a re-
sult, a feature model is a compact representation of all
mandatory and optional features of a software product
line. Each valid combination of features represents a
potential product line application.

In Figure 1, we present a Feature-Oriented Do-
main Analysis (FODA) model associated with the
’Mobile Phone’ SPL. In this model, we identify the
following elements: the root feature ’'Mobile Phone,’
optional features such as ’stores’ and ’Bluetooth,
mandatory features like "keyboard’ and *camera’. The
group_or relationship between ’Connectivity” and its
children *Mobile-Network’, ’Bluetooth’ and *NFC’.
The alternative relationship with cardinality < 1..1
> is represented between the feature ’Sensors’ and
its children ’Indicative’ and ’Capactive’. The inter-
val noted [1..2] which determine the possible number
of instances of a feature *Sim’. Extensions of FMs
can be grouped into three categories: 1) basic fea-
ture models (offering mandatory, alternative and ‘or’
features, as well as ‘requires’ and ‘excludes’ cross-
tree constraints), 2) cardinality-based feature mod-
els (Sreekumar, 2023) and 3) extended feature mod-
els (adding arbitrary feature attributes; e.g., to ex-
press variation in non_functionals requirements such
as quality (Ferchichi et al., 2021).

2.2 Non_Functional Requirements

Non_Functional requirements (NFR) are classified as
quantitative when they involve measurable informa-
tion (e.g., cost) and qualitative when the information
lacks measurability (e.g., customer preference level)
as discussed by (Gérard et al., 2007). FMs with Car-
dinalities address the challenges of SPL by modeling
the variability in terms of choices in Features. The
variability in the product family is represented by Fea-
ture cardinality, a cardinality group of features.

The concepts of configuration and configuration
processes were initially used in the fields of artificial
intelligence (Kumar, 2017) and problem-solving in
operational research, primarily to enable the config-

uration of physical products. (Faltings and Freuder,
1998) introduced a special issue of ’Intelligent Sys-
tems and their Applications’ focused on configuration
processes. The two authors define this configuration
process as a means of customizing parts of products to
meet specific consumer needs. They particularly em-
phasize three criteria that a configuration must meet:
(i) it must be correct so that the company can deliver
the product; (ii) it must be produced quickly to avoid
losing the customer to the competition; (iii) it must be
optimal to convince the consumer. They also note that
these criteria strongly favor the automation of the con-
figuration process, and the progress of e-commerce
tends to amplify this trend. In SPL,the configuration
process is a major activity in application engineering,
involving the selection of desired features within the
PL before the product is realized. A FM represents
all possible product configurations in an SPL defined
in Figure 1 . As an example, the mobile phone fea-
ture model can generate up to 1232 different product
variants (configurations). A sample product configu-
ration for the mobile phone product line is illustrated
in Figure 2 with FeatureIDE (Kaur and Kumar, 2014).

In SPLs, a significant hurdle is the task of toggling
features within a feature model to craft new software
product configurations (Machado et al., 2014). As the
number of features increases in the model, so does the
array of potential product options. This process re-
sembles an optimal feature selection challenge within
an Extended Feature Model (EFM) when configur-
ing products within an SPL. However, without auto-
mated assistance, optimizing this selection becomes
cumbersome. It involves addressing various objec-
tives concurrently, such as aligning with user pref-
erences and maximizing feature selection. Identify-
ing the “optimal’ products within these vast and con-
strained parameter spaces exceeds human intuition.
Thus, automated techniques for feature selection are
essential to streamline configuration efforts.

3 PROBLEM DESCRIPTION

The primary concern with SPL is determining how
to configure an optimized feature set that meets the
customer’s requirements. In Figure 1, features cor-
respond to the functional requirements of the Mobile
Phone SPL. However, features may also be linked to
non-functional requirements. (Ferchichi et al., 2021),
have highlighted the importance of considering non-
functional requirements. For example, in the con-
text of the Mobile Phone SPL, it’s possible to iden-
tify non-functional requirements associated with each
feature, such as quality. This implies that every prod-
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Figure 1: A Feature Model of the Mobile Phone SPL.

uct differs not only in terms of its functional features
but also due to its non-functional requirements.

Therefore,in our previous work (Ferchichi et al.,
2021), we proposed an extension of feature models
with non-functional requirements in the quality
aspect.

Figure 3 illustrates the non-functional require-
ments to extend the FM of Figure 1. In Figure 3, all
features have the quality attribute (see table 1). As a
motivating example, given a Mobile Phone PL that in-
cludes a variety of varying features, what is the prod-
uct that best meets the customer requirements limited
by a given quality? The challenge is that with hun-
dreds or thousands of features, it is hard to analyze
all different product configurations to find an optimal
configuration.

When it comes to manually configuring extensive
features of interdependent SPLs, it might become im-
possible, especially if numerous features and depen-
dencies between features are involved. Additionally,
the configuration process must be reiterated when-
ever the configuration or implementation of an SPL
changes.

Ideally, a user should only have to configure a SPL
that encompasses the entire application scenario. The
user should not need to be concerned with the imple-
mentation details of underlying SPLs.

In this papier, we will discuss association rules,
a fundamental concept in data mining that allows us
to identify relationships among elements in a dataset.
We will explain the basic principles of association
rule mining, the various measures used to evaluate
association rules, as well as the different algorithms
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Table 1: Non functionals requirements.

Quality attribute

Refers to the physical components
of a mobile phone, such as the pro-
cessor, memory, display, battery,
cameras, speakers, ports

Refers to the programs, applica-
tions, and operating systems that
run on a mobile phone, enabling
various functions and features be-
yond the hardware components.
Refers to feature designed to en-
hance the security of a system, de-
vice, application, or component
Refers to a feature or attribute of a
system, organism, or entity that per-
tains to its behavior or the way it
acts or operates.

Refers to a feature or attribute of an
object, system, or entity that per-
tains to its physical or organiza-
tional structure.

Hardware

Software

Security

Behavioral

Structural

used to generate these rules.

Therefore, the main goal of the papier is to pro-
pose an automatic product configuration approach
(see Figure 4) based on unsupervised learning.

Based on the association rule learning, our ap-
proach derives all the valid configurations of a PL,
which is modeled by an extended feature model. Then
the user can fix some fucntional and non-fucntional
requirements and automatically the most satisfying
configuration of a product is extracted.
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Figure 3: Extended FM by non-functional requirements.

4 RELATED WORK

Many past works were devoted to automatic configu-
ration of SPL In this section, we present approaches
related to our proposal.

(Batory, 2004) outlines AHEAD, a method for
configuring Software Product Lines (SPLs) employ-
ing step-wise refinement, where configurations are
iteratively refined. Our approach shares similari-
ties, as it also involves selecting additional features
across multiple steps to achieve a desired configura-
tion (Hubaux et al., 2012)

introduced a formalism for establishing the work-
flow necessary to configure a feature model in sev-
eral steps. The MUSCLES approach also emphasizes
configuring a model through multiple steps. Never-

theless, (Hubaux et al., 2009)’s study does not explore
feature model drifts or the automated derivation of a
configuration path from an initial to a final configu-
ration. Additionally, MUSCLES includes support for
optimizations.

Various techniques for configuring and validating
feature models in a single step have been proposed
((Benavides et al., 2013) (Heradio et al., 2022) (Be-
navides et al., 2005) (Ochoa et al., 2019))

These approaches leverage Constraint Satisfaction
Problems (CSPs) and propositional logic to generate
feature model configurations in a single stage and en-
sure their validity. Such techniques are valuable in
addressing the high complexity associated with deter-
mining a valid feature selection for a feature model
that satisfies a set of intricate constraints.
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Figure 4: Overview of the Approach of Automatic generation of Product Configurations.

(Elsner et al., 2010) have examined variability
over time and the challenges associated with under-
standing the relationships between variability points.
MUSCLES concentrates on automating three essen-
tial tasks identified by Elsner et al. for managing vari-
ability over time. Specifically, MUSCLES offers ca-
pabilities for automating and optimizing tasks termed
by Elsner et al. as: (1) proactive planning, (2) track-
ing, and (3) analysis. While Elsner et al. focus on the
general identification of issues in managing variabil-
ity over time, MUSCLES provides a framework for
automating the specific tasks outlined by Elsner et al.
as necessary in this context.

(Machado et al., 2014), present the SPLConfig, to
support business during product configuration in SPL.
Based on feature models, SPLConfig automatically
finds an optimal product configuration that maximizes
the customer satisfaction.

In their studies, (Berger et al., 2013) and (Men-
donca et al., 2009) utilized propositional logic to au-
tomate the validation of FM, depict staged feature
configurations, and offer assistance for manual fea-
ture selection. Nevertheless, their methods offer only
semi-automatic support for product configuration, re-
lying solely on Feature Properties (FPs). Further-
more, these methodologies rely on exact exponential-
time algorithms such as Satisfiability (SAT) or bi-
nary decision diagrams, which are unsuitable for SPL.
applications due to their extensive computational re-
quirements and cumbersome nature.

Our proposal is defined by an approach for auto-
matically deriving PL configurations based on the as-
sociating rule learning. From the generated configu-
rations the user can choose the quality attribute to be
considered in the configuration of his need. In fact,
based the quality attributes defined in the extended
feature model, the extracted configuration, from all
the derived configurations, may satisfy the user.
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S AUTOMATIC
CONFIGURATIONS OF SPL

In Figure 4, we present an approach of deriving auto-
matically all the valid configurations of a PL defined
by an extended feature model, as a first step. We note
that the extended FM is a FM enriched with quality
steretypes. Having all the configurations enables the
automatic detection of dead features and falsely op-
tional ones. It’s important to note that a feature is
considered dead if it doesn’t appear in any configura-
tion of the SPL. A configuration is considered falsely
optional if it appears in all configurations even though
it’s optional. With all the configurations of an SPL,
if these situations occur, the evolution process auto-
matically initiates the removal of the dead feature and
changes the optionality (from optional to mandatory)
of the falsely optional feature.

Then, having the valid configurations implies re-
moving automatically all configurations having dead
and optional features. In the next step, the customer
inserts a set of functional and nonfunctional features
to define his requirements, and automatically he gets
the better configuration satisfying his requirements.

6 SPL CONFIGURATIONS
BASED ON ASSOCIATION
RULE MINING

Association rule mining is one of the most important
application fields of the data mining tasks. Associa-
tion rule is used to find out the dependency of among
multiple domains based on the given degree of sup-
port and confidence.

In this section, we present the unsupervised
Learning approach, and then we present our motiva-
tions to introduce this approach in improving EFM
configuration.

Association Rule Mining (ARM) is a data min-
ing (Saxena and Rajpoot, 2021) technique that aims
to discover interesting relationships or associations
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among variables in large datasets. These associa-
tions are often expressed in the form of rules that de-
scribe the co-occurrence patterns of items or attributes
within transactions.

ARM is unsupervised learning approach and is
a category of machine learning that uses labeled
datasets to train algorithms to predict outcomes and
recognize patterns. In our approach, we used the
advanced apriori algorithms (Suneetha and Krish-
namoorti, 2010) which is based on an association rule
learning.

6.1 Advanced Apriori Algorithms

An advanced apriori algorithm is used for frequent
item set mining and association rule learning over
databases. It proceeds by identifying the frequent in-
dividual items in the database and extending them to
larger and larger item sets as long as those item sets
appear sufficiently often in the database. In classical
Apriori algorithm, when candidate itemsets are gen-
erated, the algorithm needs to test their occurrence
frequencies. The manipulation with redundancy will
result in high frequency in querying, so tremendous
amount of resources will be expended in time or in
space. Therefore advanced algorithm was proposed
for mining the association rules in generating frequent
k-item sets.

Instead of judging whether these candidates are
frequent item sets after generating new candidates,
this new algorithm finds frequent item sets directly
and removes the subset that is not frequent, based on
the classical Apriori algorithm.

6.1.1 Key Metrics for Apriori Algorithm

The potential number of associations can be exten-
sive, particularly with a large number of items. The
challenge lies in determining which associations are
most meaningful. When employing the Apriori algo-
rithm, three essential metrics (Alsanad and Altuwai-
jri, 2022) are used : Support, Confidence and Lift.
They are which are applied on rules.

* Support: The support of a rule or a set of at-
tributes (items) indicates the percentage of records
that satisfy the rule. (see formula 1)

IX&Y|
|BD|

Supp(X =Y) = (1)

We denote:

- |X| : as the number of records containing at-
tributes X in the database (BD)

— |BD] as the total number of records.

e Confidence: The confidence of a rule measures
the validity of the rule: the percentage of exam-
ples that verify the conclusion among those that
verify the premise. (see formula 2)

Conf(X=Y) = |X&Y|/|X| )
Conf(X=Y) = Supp(X&Y)/Supp(X)

 Lift: is a measure that tells us whether the prob-
ability of an item Y increases or decreases given
item X. (see formula 3)

Conf(X =7Y) 3)

Supp(Y)

In this paper we describe the improvement of clas-
sical Apriori algorithm in the following two aspects:
a) Reducing the passes of DB scan. b) Reducing the
unnecessary features generation.

Lift X=Y)=

6.1.2 Advanced Apriori Algorithm

The advanced apriori algorithm we applied in our ap-
proach is defined in the following:

* Algorithm

Input : transactional database D and minimum
support threshold min_sup.

Output: L, frequent item-sets in D.

Method:

1) L= frequent item-set of length 1,

2) Generate power set of L; and named as SPL
initialize with item-set_count=0, it will global for
entire algorithm.

3) For each transaction t in database Do.

a) For each item [ in t Do,

Compare I with L;

If (not match) then delete item from transaction t.
End Do.

b) Generate power set of t and named as items feaure
¢) Compare item-sets of SPL with items feaure

d) If (item-set match) increase the item-set_count by
1 of SPL.

4) End Do.

Pruning phase:

5) For each item-set I in SPL Do,

6) If item-set_count of I is less than to min_sup
threshold the delete I

7) End Do,

8) Remaining item-set in SPL will be frequent
item-sets which holds min_sup threshold.

6.1.3 Description of the Algorithm Steps

The adavanced Apriori algo is described by the fol-
lowing steps
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* (step 1): Initializing candidate sets items (cardi-
nality k=1)
* (step 2 ): Filtering: Retain only frequent sets L,

i.e., with cardinality k whose support is > supmin
(fixed)

* (step 3): Joining: Combine all frequent sets of
cardinality k to calculate sets of cardinality k1 -
- Search for frequent items F1 :item-sets1
- Among F1, search for frequent item pairs F2:
item-sets2
- From F2, search for frequent item triplets F3:
item-sets3

* (steps 4) Testing: If the set of sets of cardinality
k+1 is empty, stop; otherwise, k = k+1, return to
step 2."

6.2 Configuration of SPL Based on the
Advanced Apriori Algorithm

In this section, we present the application of the Ad-
vaced apriori algorithm for automatic generation of
SPL configurations. The database D is an Extented
Feature Model (EFM) of a SPL. An item is a feature
defined in the EFM. A rule is defined by a relationship
between two features. The support of a rule is defined
according to the type of the relationship beween two
features(items).

Each relationship bewteen two features indicates
if they can be included in the same configuration or
not, which has an influence on the support value of
associated rule.

* Mandatory

When a sub-feature has a mandatory relationship
with its parent, the configuration cannot exhibit
the child feature unless it also exhibits the parent
feature. The support of this relationship is equal
to 100%. So, every mandatory feature must be in-
cluded in all configurations of the line (see Figure
5).

supp( A = B) = 100

<<Hardware>>
B

Figure 5: Support of the mandatory relationships.

* Optional
In an optional relationship, the feature can either
be chosen or not, so the probability of being cho-
sen is 1/2 and the probability of not being chosen
is also 1/2, thus the supmin=50.

Alternative Group , cardinality group of features
< 1..1 > and Constraint X-or
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Figure 6: Support of the optional relationships.

With in the Basic and Extended Feature Models,
alternative Group, cardinality group of features <
1..1>and Constraint X-OR have the same seman-
tics. In this relation, the minsupp is equal to 1/3,
and we can only choose a single feature, which
implies that we can extract only one rule.

Behavioral>>
ol
(o]

Figure 7: Support of the alternative relationships.
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* Or Group, cardinality group of features <n..m >
and Constraint Or
Within the Basic and Extended Feature Models,
Or Group , cardinality group of features <n..m>
and Constraint have the same semantics. The set
of sub-features C, D, and B are linked to the par-
ent feature A through a multiple-choice relation-
ship if one or more sub-features can be included
in a product presenting the parent feature. In this
example, we will apply in detail all the steps of
the advanced Apriori algorithm .

In this case, the supmin is the support of a feature
equal to 1/3 .We follow the next three steps of the
algorithm to compute the frequent features.

* Searching for Frequent Items F1 Item-Set 1
In this section, we will calculate the support of
each feature which belongs to item-setl. Sup-
port (B)= 1/3, support (C)=1/3 support (D)= 1/3
, Thus, the supmin is 1/3, and we apply the for-
mula support > supmin so F1={B,C,D}

* Among F1, Searching for Frequent Items F2:
Item-Set 2

The itemsets are BC, BD, CD, support(BC)=
2/3, support(BD)= 2/3 ,support(CD)= 2/3, so sup-

A &)

(> <<Seeurity>> WgBehavioral=>
4 [4

Ils] |[e] L[=a]

Figure 8: Representation of the Or Group and cardinality

group of features < n..m > relationships.
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port(BD),support(DC) and support (BC) =2/3 >
1/3 . F2= {BC, BD, CD}.

* From F2, Search for Frequent Item Triplets
Items F3: Item-Set 3

F3= {BCD}, support(BCD)=1 > 1/3.

The Figure 9 illustrates the process of extract-
ing frequent itemsets. This involves traversing a lat-
tice and calculating the supports associated with each
combination. The number of configurations quickly
becomes very high, and each configuration would re-
quire scanning the database. It is essential to consider
the minsupp parameter.

6.2.1 The Selected Rules

"Considering all the retained association rules in the
following table based on support calculations. In the
table, we have extracted all frequent rules across the
different relations of the *Group’ or group.

Table 2: Extraction of Association Rules.

N° Rules Confidence
1 A=—B 100%

2 A—~C 100%

3 A=—D 100%

4 A — BC 100%

5 A = BD 100%

6 A= CD 100%

4 A — BCD 100%

The table represents the number of associated con-
figurations for these relationships.

Table 3: Numbers of configurations.

Features| C1 | C2 | C3 | C4 | C5 | C6 | C7
B 1 0 0 1 0 1 1
C 0 1 0 1 1 0 1
D 0 0 1 0 1 1 1

6.2.2 Representation of Lift

The enhanced algorithm is outlined in the following
steps:

Input: Data: a transaction database
Min_sup: the minimum support count threshold

* Initially, each item is considered a member of the
set of feature item-set C1. The algorithm scans
all transactions to count the occurrences of each
item.

e The set of frequent item-sets, L1, is determined
by comparing the feature count with the minimum
support count, containing candidate I-itemsets
satisfying the minimum support.

* To generate the set of frequent item-sets 2, L2,
the algorithm generates a feature set of item-sets
2. Then, the transactions in Data are scanned, and
the support count of each feature item set in C2 is
accumulated, repeating step 2.

¢ C2 is determined from L2.

¢ Generate C3 features from L2 and scan C2 for the
count of each feature, then repeat step 2.

* At the end of the pass, determine which feature
item sets are actually large, and those become the
seed for the next pass.

* This process continues until no new large item
sets are found (see Figure 10).

7 APPROACH EXPERIMENT

In this section, we present an application of the ap-
proach proposed for the Mobile Phone extended fea-
ture model (as depicted in Figure 3). We imple-
mented the approach using Python. Following this,
we demonstrate the application of the advanced Apri-
ori algorithm.

The extended feature model created for the SPL
mobile phone using FeatureIDE is stored in an XML
format. We edit the feature model both graphi-
cally and textually, simultaneously identifying fea-
tures. The feature model is stored in an XML file,
which we then imported into Python. As illustrated in
Figure 11 below.

Subsequently, we tested the algorithm with 6
transactions, selecting the first three features with the
FeatureIDs F, F1, F2. We then applied the algorithm
to extract frequent rules. Through these rules, we aim
to retrieve the possible configurations’ versions.

The Figure 13 depicts a simulation of the example
of EFM with the mandatory relationship between the
three features: MobilePhone (F), Hardware (F1), and
Software (F2). Since the relationship between these
features is mandatory, we have set the support value
and minsup to 1.

So, itemset1 consists of these three features: item-
setl = MobilePhone (F), Hardware (F1), Software
(F2)with cardinality = 1. Subsequently, from item-
setl, the combination of three features yields itemset2
with cardinality = 1. The association rules are gener-
ated with a confidence of 100%, as shown in Figure
12.
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Figure 9: Frequent itemsets extraction.

Data
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TID Ttems Itemset Support
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Figure 10: Example of Generation of feature item set and frequent item-set.

# One-hot encode the items
onehot = df['Items'].apply(pd.Series).stack().str.get_dummies().sun(level-8)
# print(onehot)

# Apply Apriori algorithm
frequent_itemsets = apriori(onehot, min_support=1.8, use_colnames=True)

W bW

# Generate association rules
16 rules = association_rules(frequent_itemsets, metric='confidence’, min threshold=1.8)
11 result = rules[['antecedents’, ‘consequents’, ‘confidence']]

14  print{"Frequent Itemsets:"}|
print(

Figure 11: Example of Generation of feature item set and
frequent item-set.

To extract the configuration of the SPL Mobile
Phone, we can use the association rules generated by
the advanced Apriori algorithm. Each rule represents
a possible configuration of features. We can filter out
the rules that include the Mobile Phone feature and
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Freguent Itemsets:

support itemsets
@ 1.00 (Hardware)
1 1.06 (MobilePhone)
2 1.90 (Software)
3 1.98 MobilePhone, Hardware)
4 1.88 MobilePhone, Software)
Association Rules:

antecedents consequents confidence
8 (MobilePhane) (Hardware) 1a8%
1 (Hardware) (MobilePhone) lea%
2  (MobilePhone) (Softuware) 188%
3 (Software) (MobilePhone) lag%

Figure 12: Result of implementing the example of Genera-
tion of feature item set and frequent item-set.

extract the corresponding configuration. The Figure
13 represents an excerpt of code from SPLs configu-
ration
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(association_rules):

mobile_phone_configurations = []

rule in association_ru
antecedent, co . confidence = rule
antecedent :
configuration = {}

feature antecedent:

configuration[:

feature

configuration(:
mobile_phene_configurations.append(configuration)
mobile_phone_configurations

association_rules = [
(48 .

(48 1, L

1

mobile_phone_configurations = extract_mobile_phone_configuration(association_rules)
print{ , mobile_phone_configurations)

Figure 13: Code snippet assumes that the configurations.

The Figure 14 represents the SPL configuration
using the advanced Apriori algorithm. If a feature is
present in a configuration, its value is set to 1; other-
wise, it is set to zero.

index Configurations SPL;;;C1;C2;C3;C4;C5:C6;CT;C8;C9:C10;C11
ENamie Iy P i e ey
F:MobilePhone;Root; 1:1;1;1;1;1 % e e o e B B | e e
F1:hardware;<<Hardware>=1;1;1; 1; ;1. .01, 0410115101015
F2:Software;<<Software>>;1;1;1;1;1;1;1;1; 1: 11,111,111, 1.1
F11;camera;<<Structurab>>;1;1;1;1;1;1;1;1;1; 1:4:1;1;1,1:0,0;1;1;0
F12;Keyboad;<<Structural>>;0;1;1;1;1;1;1;1:1;1;1;1;1;11:1:1;1;1;
F13;5ensors;<<Structural>>;0;1;1;1;0:1;1;1;1;1;1;1,1,1;0;1:0:1:0;
F14;Battery;<<Security>>;1;1;1;1;1;1;1,1;1;1;1;1:1;1;0;0;1,0;1;1:1
F15;RAM: <<Security>>;1;1:1;1;1;1;1:1;1:1:1:1;1:1;1;1; ;131515151
F16;Screen;<<Security>>;1;1;1:1;1;1;1;1;1;1:1;1:1;1;0;0;0,0;0;0:C
F17;Processus;<<Structural>>1;1:1:1;1;1;1;1:1:1;1;1;1;1;1;1;1;1;
F18;Sim;<<Behavioral>>;1;1;1;1;1;1;1:1;1;1;1;1;1;1;0;0:0;0;0;0;0;
12 | F121;Touch;<<Behavioral==;0:0;0;0;0;0;0:0;0;0;0;0;0;0;1;1;1;1;0
13 F122:Physical;<<Behavioral>>;0;1:1;1;1:1:1;1;1;1;0:1;0;0:1:1;1:1
14 | F131;Indicative;=<<Behavioral>>;12;0,0;0,0:0;0:1:1;1;1;0;0;1;1;1
15 F132:Capacitive;<<Behavioral=>:0;1;0;0;0:0;0;0:0;0;0:0;0;0;0;0;0

T A I N ]

Bl

Figure 14: Extraction of the SPL Mobile Phone configura-
tion.

8 CONCLUSIONS

Feature model configurations in Software Product
(SPL) Lines still remain problematic and specifically
for Extended Feature models. This paper proposes the
use of an unsupervised learning approach for config-
uration generation. Hence, we use an advanced apri-
ori algorithm for frequent item set minig and asso-
ciation rule. These latters will be able to let feature
model generation in order to derive specific applica-
tions (SPL products). We have exeprimented all the
proposed approach on an extended mobile phone fea-
ture model. This latter is enriched by non functional
requirements, so complicating the configuration. The
obtained results are promising and show that learning
is really an efficient way for product derivations in the

context of Software Product Line. As future work, we
will experiment our approach on more SPL cases and
try to use other learning methods and compare their
results in the context of configuration generations.
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