
IRatePL2C: Importance Rating-Based Approach for Product Lines
Collaborative Configuration

Sihem Ben Sassi a

RIADI Lab., National School of Computer Science, Manouba University, Tunisia

Keywords: Product Lines, Collaborative Configuration, Conflict Resolution, Feature, Importance Scoring.

Abstract: The core of any proposed approach in the context of collaborative configuration of product lines focuses
on how conflictual situations are resolved. Few works consider stakeholders preferences in their resolution
strategy while allowing a free order configuration process. However, to generate a valid solution satisfying
all constraints, they generally rely on a solution of exponential complexity. In this work, we propose the
IRatePL2C approach, which resolution strategy relies on importance degrees assigned by the stakeholders to
their initial configuration choices. IRatePL2C starts by merging stakeholders’ configurations and then detect-
ing and resolving the conflicts according to their type: explicit or implicit in sequential steps. Finally, domain
constraints are propagated and the process is reiterated to reach a final valid configuration. An illustrative ex-
ample is presented to evaluate the approach. The complexity of IRatePL2C is polynomial which an important
advantage compared with previous works.

1 INTRODUCTION

Collaborative configuration of product lines refers to
a coordinated process in which a set of stakehold-
ers share the configuration activities based on their
areas of expertise in order to decide about features
that should be included in the final product (Edded
et al., 2019). It has appealed the interest of several
researchers, such as (Czarnecki et al., 2005), (Men-
donca et al., 2007), (Pereira, 2017), (Edded et al.,
2020), (Le et al., 2022) and (Ben Sassi et al., 2023).
The mainspring of the proposed approaches is to man-
age conflictual situations that may arise when in-
volved stakeholders in the configuration have con-
tradictory choices regarding the final product. The
prevailing means to represent product lines is fea-
ture model (Raatikainen et al., 2019), in which fea-
tures are related with mandatory, optional, alternative
(XOR) and OR relationships; and domain constraints
are expressed through inclusion (require) and exclu-
sion (exclude) relationships (Benavides et al., 2010).
Product configuration consists in selecting a set of
features that meet individual requirements toward the
desired product. When the configuration is made by
a single stakeholder, it is easy to ensure its confor-
mance to the product line model with its domain con-

a https://orcid.org/0000-0002-1925-4989

straints, thanks to constraints propagation (Czarnecki
and Kim, 2005). However, when several stakeholders
are involved in this process, their requirements may
be contradictory or do not comply with the product
model; such situations of inconsistency are referred
to as conflicts (Osman et al., 2009). In this context,
stakeholders requirements are better captured by al-
lowing them to choose the undesired features (¬Fj)
that should not be present in the final product as well
as the desired ones (Fi) (Stein et al., 2014), (Le et al.,
2022), (Ben Sassi et al., 2023). According to (Ed-
ded et al., 2020), a conflict may be (i) explicit when
the same feature is explicitly desired by a stakeholder
and undesired by another; (ii) implicit when configu-
ration choices of the stakeholders violate the product
line feature model constraints. Two cases are distin-
guishable: (ii-1) two alternative features (related with
XOR) are desired by different stakeholders; and (ii-2)
domain constraint propagation makes the configura-
tion not valid because it requires to include/exclude
a feature that is already un/desired by another stake-
holder.

Obtaining a valid configuration from the differ-
ent stakeholders’ configuration choices requires to re-
solve any detected conflict by eliminating one or more
configuration choices involved in the conflict. Exist-
ing approaches tackle this issue by (1) supporting ei-
ther workflow-based process imposing a predefined

784
Ben Sassi, S.
IRatePL2C: Importance Rating-Based Approach for Product Lines Collaborative Configuration.
DOI: 10.5220/0012742900003687
Paper published under CC license (CC BY-NC-ND 4.0)
In Proceedings of the 19th International Conference on Evaluation of Novel Approaches to Software Engineering (ENASE 2024), pages 784-791
ISBN: 978-989-758-696-5; ISSN: 2184-4895
Proceedings Copyright © 2024 by SCITEPRESS – Science and Technology Publications, Lda.

configuration order, or a flexible one allowing a free
order configuration; and (2) implementing a conflict
resolution method adopted from social science like
negotiation and predefined priority, or more technical
one such as range fixes. The reader may refer to (Ed-
ded et al., 2019) for a comprehensive view character-
izing collaborative configuration approaches. Actu-
ally, few works propose a flexible configuration pro-
cess that takes into account stakeholders preferences
in conflict resolution, namely (Stein et al., 2014),
(Ochoa et al., 2015), (Le et al., 2022) and (Ben Sassi
et al., 2023). However, either they do not generate
a solution that takes into account the preferences of
all stakeholders, and/or they implement an expensive
computation process.

The remainder of this paper is structured as fol-
lows: Section 2 is dedicated to the proposed approach.
Section 3 illustrates IRatePL2C with a full example.
Section 4 discusses the solution. Section 5 concludes
the paper.

2 THE IRatePL2C APPROACH

The proposed IRatePL2C approach is based on the
following principles and hypotheses: H1: each stake-
holder freely configures the product line; there is
no predefined order between stakeholders during the
configuration process. H2: each stakeholder makes
a configuration decision by specifying the un/desired
features to be absent/present in the product. H3: a
prior agreement between stakeholders to express to
which extent they desire a configuration choice i.e.
a (un)desired feature (not) to be included in the fi-
nal configuration. H4: each stakeholder assigns an
importance degree (ideg) to each of his/her explicit
configuration choices. H5: a five scale-based score is
used to express the configuration choice ideg, 5 means
that the choice is very important to be considered in
the final configuration; 4: fairly important; 3: impor-
tant; 2: slightly important; and 1: not at all impor-
tant. H6: idegs are only assigned to the explicit ini-
tial choices made by the stakeholder. In other words,
features that should be included in the configuration
because of the constraints propagation to ensure its
validity do not receive scores. H7: each stakeholder
is aware that potential conflicting choices will be re-
solved based on the idegs, and assigns consciously
scores to the configuration choices he/she makes.

Figure 1 shows the main steps of IRatePL2C ap-
proach: it starts by (1) merging the initial configura-
tion choices made by each stakeholder. Second (2),
the merged configuration is analyzed to identify ex-
plicit conflicts; these latter are resolved and the con-

figuration is accordingly updated. Third (3), the new
configuration is analyzed to identify and resolve im-
plicit conflicts resulted from XOR constraints; the
configuration is updated accordingly. Fourth (4), the
product line domain constraints are checked to propa-
gate them on the configuration when applicable. The
configuration is afterward checked. If it is valid, it
will be returned as final configuration. When the con-
figuration is not valid, it is question to compare it with
the one of the previous iteration in order to decide to
reiterate the process starting from Step -2- in the case
the two configurations are different, or hand over to
the product line manager in order to apply the rule
he/she advocates to resolve remaining conflicts. This
rule may be for example one of the substitution rules
proposed in (Edded et al., 2020) and (Ben Sassi et al.,
2023), that resolves conflicts, among others, by favor-
ing ”the most complete product“, or by prioritizing
”the explicit choices made by a given stakeholder“.

Algorithm 1 summarizes the core process of
IRatePL2C. It requires the feature model of the prod-
uct line to configure as a tree (PL FM), the set of con-
straints related to that model including XOR, include
and require ones (PL ConstraintsList), as well as the
list of stakeholders involved in the collaborative con-
figuration (Stk List). As result, it ensures a valid con-
figuration as a list of features deduced from stakehold-
ers’ configuration choices (FinalConfig). Statements
(St.) 6-8 allow to collect stakeholders’ configurations.
IRatePL2C’s step -1- is reflected by St. 9 which in-
vokes MergeCon f igs() procedure. The while loop
encompasses the three next steps implemented thanks
to the ResolveExplicitCon f licts() procedure (St. 13)
for Step -2-, ResolveXORCon f licts() procedure (St.
16) for Step -3-, and the PropagateConstraints()
function (St. 19) for Step -4-. The two procedures
have as output a list of configuration choices to re-
move from the current configuration CurrentCon f ig
in order to resolve the related identified conflicts (St.
14 and 17). The function determines the features to
add to the current configuration (St. 20) and updates
the configuration choices idegs accordingly (St. 21).
The while loop exits either with a valid configuration,
in such case it represents the FinalCon f ig to return,
or with a configuration that still has some remaining
conflicts where idegs cannot help in their resolution;
in such case, the product manager takes a decision and
final configuration is returned to stakeholders.

2.1 Configurations Merging

As mentioned earlier, each stakeholder makes a set of
explicit configuration choices expressing the features
he/she desires to be included or not in the final con-

IRatePL2C: Importance Rating-Based Approach for Product Lines Collaborative Configuration

785

Figure 1: The proposed approach process.

figuration; each explicit choice is accompanied by an
ideg ranging from 1 to 5. Only explicit choices made
by the stakeholder are subject to ideg assignment.
Algorithm 2 describes the process of configuration
merging, which consists in obtaining, from the stake-
holders configuration choices LE Con f igStki, two
lists: (1) the set of all explicit configuration choices
including the desired features and non desired fea-
tures without redundancy List EFs (St. 7), and (2) the
set of all explicit configuration choices, where each
one of them is accompanied with an ordered list of
its related idegs expressed by stakeholders who made
that choice List EFsImportance (St. 8 and 10).

2.2 Explicit Conflicts Resolution

This step consists in detecting explicit conflicts, oc-
curring when the same feature is, at the same time, de-
sired by a stakeholder and undesired by another one,
in the merged configuration choices; then resolving
them using idegs comparison of involved configura-
tion choices. If the configuration choice is present
only one time, the same ideg expressed by that stake-
holder is reported. In case that several stakeholders
desired the same state regarding a given feature, the
corresponding ideg is based on the ordered impor-
tance given by the stakeholders related to that fea-
ture. The rationale is to keep what each stakeholder
believes essential to include in the configuration. We
resolve conflicts by keeping the configuration choice
with the highest ideg, and eliminating from the con-
figuration the other one involved in the conflict.

Algorithm 3 describes the explicit conflicts res-
olution steps. It requires as input a configuration
in an intermediate state CurrentCon f ig as well as
List EFsImportance list. It returns two lists; the first
one is the list of configuration choices to delete from

the configuration CurrentCon f ig to resolve the identi-
fied explicit conflicts (toRemoveList); the second one
contains any eventual non resolved explicit conflict
(RemainedExplicitCon f lictsList). St. 10 compares
the idegs of a configuration choice f with those of
its negation ¬ f extracted from List EFsImportance
in St. 8 and 9. The comparison consists in walking
through the two lists degrees; since they are ordered,
the first who has an element of grater value than the
corresponding one in the other list, or who has a
greater number of elements in case of equality is the
winner. The looser is added to toRemoveList (St. 11-
15). In case of equality in values and lists length, the
conflict is added to RemainedCon f lictsList (St. 17).
This process is applied to each configuration choice
in the form of ¬ f in the CurrentCon f ig in order to
detect all conflicts (St. 4-5). The current configura-
tion is afterward updated by removing toRemoveList
from CurrentCon f ig (St. 14 in Algorithm 1).

2.3 Implicit Conflicts Resolution

with XOR) are desired by different stakeholders.
The resolution principle of the XOR implicit con-
flicts, is similar to the used one for the explicit con-
flicts, but applied to features involved in violated
XOR constraints. As illustrated in St. 4-7 of Algo-
rithm 4, it is first question to identify any two fea-
tures participating in a XOR constraint; then, extract
the idegs associated to each one (St. 9-10) to de-
termine which one to remove (St. 11-16), or add
the conflict to RemainedXORCon f lictsList if nec-
essary. The configuration choices in the returned
toRemoveList are removed from the configuration
CurrentCon f ig and the non resolved conflicts are
added to RemainedCon f lictsList (St. 17 and 18 in
Algorithm 1).

ENASE 2024 - 19th International Conference on Evaluation of Novel Approaches to Software Engineering

786

Algorithm 1: Core Process of IRatePL2C Approach.

Data: PL FM: the tree of features representing the product line to configure
PL ConstraintsList: the list of constraints related to the product line
Stk List: the list of stakeholders involved in the configuration
Result: FinalConfig: a valid configuration as a list of features deduced from stakeholders’ choices

1 begin
2 valid← False ;
3 di f f erent← True ;
4 toRemoveList← /0 ;
5 RemainedCon f lictsList← /0 ;
6 foreach (Stki ∈ Stk List) do
7 LE Con f igStki←Con f igure(PL FM) ;

8 MergeCon f igs({LE Con f igStki} i = 1..Nb Stks→ List EFs,List EFsImportance) ;
9 CurrentCon f ig← List EFs ;

10 while (not valid and different) do
11 PreviousCon f ig←CurrentCon f ig;
12 ResolveExplicitCon f licts(CurrentCon f ig,List EFsImportance→

toRemoveList,RemainedExplicitCon f lictsList);
13 CurrentCon f ig← RemoveFromList(CurrentCon f ig, toRemoveList);
14 RemainedCon f lictsList← RemainedCon f lictsList ∪RemainedExplicitCon f lictsList ;
15 ResolveXORCon f licts(CurrentCon f ig,List EFsImportance,PLConstraintsList→

toRemoveList,RemainedXORCon f lictsList);
16 CurrentCon f ig← RemoveFromList(CurrentCon f ig, toRemoveList);
17 RemainedCon f lictsList← RemainedCon f lictsList ∪RemainedXORCon f lictsList ;
18 toAddList← PropagateConstraints(CurrentCon f ig,PL ConstraintsList);
19 CurrentCon f ig← AddToList(CurrentCon f ig, toAddList);
20 List EFsImportance←U pdateFImportance(List EFsImportance, toAddList);
21 di f f erent←CompareCon f igLists(PreviousCon f ig,CurrentCon f ig);
22 valid←CheckValidity(CurrentCon f ig);

23 if valid then
24 FinalCon f ig←CurrentCon f ig;
25 else /* not valid and not different */
26 RemainedCon f lictsList←CheckRemainedCon f licts(CurrentCon f ig,RemainedCon f lictsList) ;
27 FinalCon f ig← ApplyProductManagerRules(CurrentCon f ig,RemainedCon f lictsList);

28 return FinalConfig;

2.4 Constraints Propagation

Resolving implicit conflicts resulting from require
resp. exclude constraints violation amounts to resolv-
ing explicit conflicts as they imply the inclusion of
the second part of the constraint (fi resp. ¬ f j) to
the configuration, which may lead to an explicit con-
flict in case that ¬ fi resp. f j already part of the con-
figuration. Constraints propagation is already dealt
with in the literature (Czarnecki and Kim, 2005), (Be-
navides et al., 2010); it is simply done by walking
through domain (require and exclude) constraints and
updating the configuration by adding a feature or its
negation accordingly. For the purpose of this work,
we need to consider the ideg of any (un)desired fea-
ture added to the configuration in order to keep be-

ing able to resolve conflicts based on idegs. As the
source of any addition is a configuration choice be-
longing to the configuration and causing the require
or exclude constraint to be triggered, we assign to the
added (un)desired feature the highest ideg associated
with the source configuration choice. St. 19 in Al-
gorithm 1 returns the list of (un)desired features to
add to the current configuration (St. 20). This same
list is also used to update the idegs associated with
the configuration choices already made by stakehold-
ers and/or add non existing (un)desired features with
their related idegs (St. 21).

On the other hand, any newly added feature to the
configuration may violate a XOR constraint; this ex-
plains the iterative processing for the conflicts reso-
lution in IRatePL2C approach. Furthermore, it is ob-

IRatePL2C: Importance Rating-Based Approach for Product Lines Collaborative Configuration

787

Algorithm 2: MergeConfigs: Stakeholders initial Configurations Merging.

Data: LE Con f igStki i = 1..Nb Stks: list of initial configuration choices made by each stakeholder
Result: List EFs: a list of features representing the merged stakeholders configuration choices
List EFsImportance: a list of the merged configuration choices along with their idegs

1 begin
2 List EFs← /0 ;
3 List EFsImportance← /0 ;
4 foreach LE Con f igStki i = 1..Nb Stks do
5 foreach e ∈ LE Con f igStki do
6 if not (e.F ∈ List EFs) then
7 List EFs← List EFs∪ e.F ;
8 List EFsImportance← List EFsImportances∪ (e.F,e.I);
9 else

10 List EFs← insertOrderedImportance(List EFs,e.F,e.I);

Algorithm 3: ResolveExplicitConflicts: Determine explicit conflicts and which feature state to remove.

Data: CurrentConfig: a list of features reflecting an intermediate state of a configuration
List EFsImportance: a list of the merged configuration choices with their related importance
Result: toRemoveList: a list of features to remove from CurrentCon f ig to resolve detected conflicts
RemainedExplicitConflictsList: a list of explicit conflicts that has not been resolved

1 begin
2 toRemoveList← /0 ;
3 RemainedExplicitCon f lictsList← /0 ;
4 foreach n f ∈CurrentCon f ig do
5 if nf.charAt[0]=’¬’) then
6 f ← n f .subString(1);
7 if (f ∈CurrentCon f ig) then
8 f ImpList← extract(List EFsImportances, f);
9 n f ImpList← extract(List EFsImportances,n f);

10 res← isMoreImportant(f ImpList,n f ImpList);
11 if (v=1) then
12 toRemoveList← toRemoveList ∪n f ;
13 else
14 if (v=2) then
15 toRemoveList← toRemoveList ∪ f ;
16 else
17 RemainedExplicitCon f lictsList← RemainedExplicitCon f lictsList ∪ (f ,n f);

vious that the resolution of a given conflict may re-
sult in the resolution of another conflict. This also
explains the rationale behind the stepped resolution
of conflicts. In each step, conflicts of a certain type
are detected and resolved before dealing with another
type. This also explains why remained non resolved
conflicts need to be checked before passing them to
the product manager in St. 26-27 of Algorithm 1.

3 ILLUSTRATIVE EXAMPLE

We illustrate IRatePL2C through the example of the
Web portal feature model shown in Figure 2, used
in previous works (e.g. (Mendonca et al., 2008) and
(Ben Sassi et al., 2023)). The model contains 3 XOR
relationships, 5 domain constraints of inclusion re-
quirement and 1 exclusion requirement. The config-
uration scenario is summarized in Table 1, where the
ideg is noted as superscript of the related explicit con-

ENASE 2024 - 19th International Conference on Evaluation of Novel Approaches to Software Engineering

788

Algorithm 4: ResolveXORConflicts: Determine XOR conflicts and which feature to remove.

Data: CurrentConfig: a list of features reflecting an intermediate state of a configuration
List EFsImportance: a list of the merged configuration choices with their related importance
PLConstraintsList: the list of constraints related to the product line
Result: toRemoveList: a list of features to remove from CurrentCon f ig to resolve detected conflicts
RemainedXORConflictsList: a list of implicit XOR conflicts that has not been resolved

1 begin
2 toRemoveList← /0 ;
3 RemainedXORCon f lictsList← /0 ;
4 foreach Constrainti ∈ PLConstraintsList do
5 if (TypeOf(Constrainti)=XOR) then
6 for j← 1 to nbFeatures(Constrainti)-1 do
7 for m← j+1 to nbFeatures(Constrainti) do
8 if ((Fj ∈CurrentCon f ig) and (Fm ∈CurrentCon f ig)) then
9 f j ImpList← extract(List EFsImportances,Fj);

10 f m ImpList← extract(List EFsImportances,Fm);
11 v← isMoreImportant(f j ImpList, f m ImpList);
12 if (v=1) then
13 toRemoveList← toRemoveList ∪Fm;
14 else
15 if (v=2) then
16 toRemoveList← toRemoveList ∪Fj;
17 else
18 RemainedXORCon f lictsList← RemainedXORCon f lictsList ∪ (Fm,Fj);

figuration choice made by each of the five involved
stakeholders. Throughout the example description,
and for the sake of clarity and space, we mainly fo-
cus on features susceptible to cause conflicts.

Table 1: Collaborative configuration scenario.

Stakeholder Explicit configuration choices
Stk1 KeyWordSupport(2), DB(4), ¬Active(3), https(5)

Stk2 XML(4), ¬Text(4), ¬Active(5), ms(3)

Stk3 Active(5), Php(2), XML(1), DataTransfer(4)

Stk4 Text(2), Dynamic(5), KeyWordSupport(4), DB(3),
¬https(1), ¬Sec(3)

Stk5 Text(4), Database(5), Active(4), DataTransfer(3)

Step-1: Merging Stakeholders’ Configuration
Choices. As described in the previous section, merg-
ing stakeholders’ configuration choices leads to two
results: (List EFs) and (List EFsImportance) shown
in Table 2. For example, both Stk1 and Stk4 de-
sire KeyWordSupport with an ideg equals to 2 and
4 respectively. The list (4, 2) is therefore asso-
ciated as ordered idegs to the configuration choice
KeyWordSupport.
Step-2: Resolving Explicit Conflicts. Three explicit
conflicts are identified, as mentioned in Table 3. In
the case of the first conflict, htt ps has one ideg which
is 5, while ¬htt ps has 1 as sole ideg; this means that

Table 2: Merged configuration choices results.

Merged configuration choices
KeyWordSupport, DB, https, XML, ms, Active, Php, ¬https, Data-
Transfer, Text, Dynamic, Database, ¬Text, ¬Active, ¬Sec

Configuration choices with importance degrees

Feature degree Feature degree
https 5 ¬https 1
Active 5, 4 ¬Active 5, 3
Text 4, 2 ¬Text 4
ms 3 ¬Sec 3
XML 4, 1 PHP 2
DataTransfer 4, 3 Dynamic 5
KeyWordSupport 4, 2 Database 5
DB 4, 3

htt ps is retained and ¬htt ps has to be removed. As
to Active and ¬Active, both of them have 5 as first
ideg; the following degree should therefore be consid-
ered. The second ideg is respectively 4 and 3, which
means to keep Active in the configuration and remove
¬Active. Regarding Text and ¬Text, both have 4 as
first ideg; however ¬Text has only one ideg while
Text has two ones. This means that Text is retained
and ¬Text should be removed. The configuration is
updated accordingly as reported in Table 3.
Step-3: Resolving Implicit XOR Conflicts. The
XOR constraint between XML and Database is not

IRatePL2C: Importance Rating-Based Approach for Product Lines Collaborative Configuration

789

Figure 2: Web Portal Feature Model.

Table 3: Explicit conflicts resolution results.

Detected conflict Retained choice To Remove choice
(https, ¬https) https ¬https
(Active, ¬Active) Active ¬Active
(Text, ¬Text) Text ¬Text

Updated configuration
KeyWordSupport, DB, https, XML, ms, Active, Php,
DataTransfer, Text, Dynamic, Database, ¬Sec

respected. Importance degrees determined in Step-1
and shown in Table 2 are used to decide which feature
to remove. The idegs associated with XML are 4 and
1. Even though Database has only one ideg, it wins
as its ideg, which is 5, is greater than 4. XML should
therefore be eliminated from the configuration. The
resulted configuration is therefore:
(KeyWordSupport,DB,htt ps,ms,Php,Text,
Dynamic,¬Sec,Database,Active,DataTrans f er)
Step-4: Propagating Constraints. The full
list of added (un)desired features to the con-
figuration as consequence of constraint propaga-
tion are clarified in Table 4. The idegs as-
sociated with the configuration choices and the
newly (un)desired added features is updated accord-
ingly. The new resulted configuration is as follows:
(KeyWordSupport,DB,htt ps,¬ms,ms,Php,Text,
Dynamic,¬Sec,Database,Active,DataTrans f er)

Table 4: Constraints propagation results.

Constraint (Un)desired feature ideg
(KeyWordSupport⇒ Text) Text 4
(DB⇒ Database) Database 4
(https⇒¬ ms) ¬ ms 5
(Dynamic⇒ Active) Active 5
(DataTransfer⇒ https) https 4

In the second iteration, (i) explicit conflicts res-
olution reveals that the conflict (ms,¬ms) is re-
solved by keeping ¬ms since the latter has 5 as
ideg vs. 3 for ms; (ii) all XOR constraints are re-
spected; (iii) constraints propagation does not alter

the configuration obtained from the previous step;
(iv) the validity is checked and verified. The pro-
cess stops and returns the following final configura-
tion. (KeyWordSupport,DB,htt ps,¬ms,Php,Text,
Dynamic,¬Sec,Database,Active,DataTrans f er)

4 DISCUSSION

Satisfaction results for the scenario example (c.f. Ta-
ble 5) that 4 configuration choices among 5 that were
assigned 5 as ideg and 5 among 7 with 4 as ideg were
retained in the final configuration. Besides, no con-
figuration choice with 1 as ideg was retained, which
makes sense. The weighted satisfaction shows that
the final configuration globally satisfied 72% of the
stakeholders configuration choices. When each stake-
holder is taken separately, we find that Stk5 is fully
satisfied (100%), while Stk2 is not satisfied at all
(0%) even though he/she assigned the highest idegs
to his/her configuration choices (5, 4 and 3). The sce-
nario example was deliberately chosen to show that
the retained configuration choices depend not only on
what the stakeholder assigns, but also on what the
other stakeholders chose and what idegs they assigned
to their choices. After all, the IRatePL2C approach
is based on the awareness of stakeholders about how
conflicts are resolved.

Regarding the complexity, the proposed solution
is polynomial. Each of its sub-processes relies on
walking through lists and constructing new lists. It
depends on the number of involved stakeholders, the
number of features of the product model, the num-
ber of related constraints and the number of features
per constraint. Previous works that may be compared
to ours, i.e. focusing on collaborative configuration
of product lines and allowing a free-order process
and taking into account stakeholders preferences in
the conflicts resolution, namely (Stein et al., 2014),

ENASE 2024 - 19th International Conference on Evaluation of Novel Approaches to Software Engineering

790

Table 5: Satisfaction results for the scenario example.

(Ochoa et al., 2015), (Le et al., 2022) and (Ben Sassi
et al., 2023) have exponential complexity since they
build a set of combinations based on a given set of
features (e.g. SAT solvers, MCS computing); such
problems are known to be NP-complete.

5 CONCLUSION

In this paper, we presented a new approach to re-
solve conflicts in the context of collaborative config-
uration of product lines. Its process allows stake-
holders to freely configure the product line model
and takes into account their preferences to resolve
conflicts expressed through an importance degree as-
signed to each explicit configuration choice. To reach
its aim, IRatePL2C proceeds in steps; in each step,
conflicts are detected, resolved and the intermediate
configuration is updated accordingly before starting
the following step. This allows to reduce the num-
ber of conflicts and reach easier to a valid solution.
The approach does not prevent to have a completely
dissatisfied stakeholder (i.e. all his/her configuration
choices are not included in the final configuration), as
the solution depends on the choices of all stakehold-
ers regarding the features to include exclude and the
importance degrees they assign. Further empirical in-
vestigation is needed to reveal some “tips” to avoid
such situations. This is the subject of our future work.

REFERENCES

Ben Sassi, S., Edded, S., Mazo, R., Ben Ghezala, H.,
and Salinesi, C. (2023). Colla-config: A stakehold-
ers preferences-based approach for product lines col-
laborative configuration. Journal of Syst. and Soft.,
197:111586.

Benavides, D., Segura, S., and Ruiz-Cortés, A. (2010). Au-
tomated analysis of feature models 20 years later: A
literature review. Information Systems, 35:615–636.

Czarnecki, K., Helsen, S., and Eisenecker, U. (2005).
Staged configuration through specialization and mul-
tilevel configuration of feature models. In Software
Process: Improvement and Practice.

Czarnecki, K. and Kim, C. H. P. (2005). Cardinality-
based feature modeling and constraints: A progress
report. In International Workshop on Software Facto-
ries, pages 16–20. ACM San Diego, California, USA.

Edded, S., BenSassi, S., Mazo, R., Salinesi, C., and
BenGhezala, H. (2019). Collaborative configuration
approaches in software product lines engineering: A
systematic mapping study. Journal of Syst. and Soft.,
158:110422.

Edded, S., BenSassi, S., Mazo, R., Salinesi, C., and
BenGhezala, H. (2020). Preference-based conflict
resolution for collaborative configuration of product
lines. In 15th Int. Conf. on Evaluation of Novel Ap-
proaches to Software Engineering, pages 297–304.

Le, V.-M., Tran, T. N. T., and Felfernig, A. (2022).
Consistency-based integration of multi-stakeholder
recommender systems with feature model configura-
tion. In 26th ACM Int. Systems and Software Product
Line Conference, page 178–182.

Mendonca, M., Bartolomei, T., and Cowan, D. (2008).
Decision-making coordination in collaborative prod-
uct configuration. In ACM symposium on applied
computing, pages 108–113.

Mendonca, M., Cowan, D., and Oliveira, T. (2007).
Process-centric approach for coordinating product
configuration decisions. In 40th Hawaii Int. Conf. on
System Sciences, pages 1–10.

Ochoa, L., González-Rojas, O., and Thüm, T. (2015). Using
decision rules for solving conflicts in extended fea-
ture models. In ACM SIGPLAN Int. Conf. on Software
Language Engineering, pages 149–160.

Osman, A., Phon-Amnuaisuk, S., and Ho, C. K. (2009).
Investigating Inconsistency Detection as a Validation
Operation in Software Product Line, pages 159–168.
Springer Berlin Heidelberg.

Pereira, J. A. (2017). Runtime collaborative-based configu-
ration of software product lines. In 39th Int. Conf. on
Software Engineering Companion, pages 94–96.

Raatikainen, M., Tiihonen, J., and Männistö, T. (2019).
Software product lines and variability modeling: A
tertiary study. Journal of Syst. and Soft., 149:485–510.

Stein, J., Nunes, I., and Cirilo, E. (2014). Preference-based
feature model configuration with multiple stakehold-
ers. In 18th Int. Software Product Line Conf., pages
132–141.

IRatePL2C: Importance Rating-Based Approach for Product Lines Collaborative Configuration

791

