
Feature Extraction, Learning and Selection in Support of Patch
Correctness Assessment

Viktor Csuvik a, Dániel Horváth b and László Vidács c

Department of Software Engineering, University of Szeged, Hungary

Keywords: Automated Program Repair, Patch Assessment, Overfitting Patch, Code Features, PCC.

Abstract: Automated Program Repair (APR) strives to minimize the expense associated with manual bug fixing by
developing methods where patches are generated automatically and then validated against an oracle, such as
a test suite. However, due to the potential imperfections in the oracle, patches validated by it may still be
incorrect. A significant portion of the literature on APR focuses on this issue, usually referred to as Patch
Correctness Check (PCC). Several approaches have been proposed that use a variety of information from
the project under repair, such as diverse manually designed heuristics or learned embedding vectors. In this
study, we explore various features obtained from previous studies and assess their effectiveness in identifying
incorrect patches. We also evaluate the potential for accurately classifying correct patches by combining
and selecting learned embeddings with engineered features, using various Machine Learning (ML) models.
Our experiments demonstrate that not all features are equally important, and selecting the right ML model
also has a huge impact on the overall performance. For instance, using all 490 features with a decision tree
classifier achieves a mean F1 value of 64% in 10 independent trainings, while after an in-depth feature- and
model selection with the selected 43 features, the MLP classifier produces a better performance of 81% F1.
The empirical evaluation shows that this model is able to correctly classify samples on a dataset containing
903 labeled patches with 100% precision and 97% recall on it’s peak, which is complementary performance
compared to state-of-the-art methods. We also show that independent trainings can exhibit varying outcome,
and propose how to improve the stability of model trainings.

1 INTRODUCTION

The concept of Automated Program Repair (APR),
which involves the automated resolution of software
bugs, has gained significant traction alongside the
growing prevalence of software usage. The pre-
dominant focus of APR research revolves around
Generate-and-Validate (G&V) approaches, wherein
patch candidates are generated (e.g., via genetic al-
gorithm, heuristics, or learned code transformations)
and subsequently verified against an oracle. If the or-
acle is the test suite (which is usually), the approach is
referred to as test-suite-based program repair. Despite
facing criticism on multiple occasions, these methods
still shape the trajectory of APR research (Kechagia
et al., 2022). A notable obstacle encountered in test-
suite-based repair is the potential to create a patch that
enables the entire test suite to pass, yet remains in-

a https://orcid.org/0000-0002-8642-3017
b https://orcid.org/0000-0001-8855-921X
c https://orcid.org/0000-0002-0319-3915

correct. This phenomenon is commonly referred to
as the overfitting patch problem (Wang et al., 2021)
and the goal of Patch Correcness Check (PCC) is to
determine the actual correctness of a patch, without
additional manual effort. We call a patch overfitting,
if it only passes the test suite, but it does not fix the
program. The expectation from a correct patch is that
(1) the test suite passes, (2) it fixes the original fault
and (3) does not introduce new bugs.

The generation of overfitting patches leads to the
generation of program repair patches with limited
utility, thereby substantially affecting the practical ap-
plicability of program repair. It also makes develop-
ers less confident in APR tools, thus reducing their
widespread use. The use of data-augmentation tech-
niques (Xin and Reiss, 2017a; Ye et al., 2021), and
repair operator curation (Wen et al., 2018) can lead
to more correct patches, but at the time of writing
this paper, the classification of generated patches is
the most popular research direction. Among these re-
cent studies have introduced static methods for detect-

Csuvik, V., Horváth, D. and Vidács, L.
Feature Extraction, Learning and Selection in Support of Patch Correctness Assessment.
DOI: 10.5220/0012746900003753
Paper published under CC license (CC BY-NC-ND 4.0)
In Proceedings of the 19th International Conference on Software Technologies (ICSOFT 2024), pages 23-34
ISBN: 978-989-758-706-1; ISSN: 2184-2833
Proceedings Copyright © 2024 by SCITEPRESS – Science and Technology Publications, Lda.

23

ing overfitting patches, mainly because of their ease
and speed of use. Xin et al. (Xin and Reiss, 2017b)
defined 2 static features in ssFix, while 3 static fea-
tures are leveraged in S3 (Le et al., 2017) and 202
in ODS (Ye et al., 2019). Another approach is the
use of source code embeddings either directly (Lin
et al., 2022) or by calculating similarity in the em-
bedded vectors (Csuvik et al., 2020). Most of these
works operate on distinct datasets, and approaches are
in competition with each other and not complemen-
tary. In this work, our aim is to handle all of these
crafted knowledge as features for a machine learning
model and select which of these are the most useful
in the PCC domain.

In our research, we used 903 patches generated by
APR tools in Defects4J (Just et al., 2014) and previ-
ously labeled by researchers (Wang et al., 2021). For
these patches we mapped features achieving state-of-
the-art results in previous works: hand-crafted fea-
tures (Xin and Reiss, 2017b; Le et al., 2017; Wen
et al., 2018), static code features (Ye et al., 2019),
embedding vectors (Lin et al., 2022) and similarity
metrics (Csuvik et al., 2020) - thus forming a feature
vector of 490 dimension. On this set, we first per-
formed a feature selection process, which resulted in
a 43-dimensional feature vector. The selected features
served as the basis for our model selection, in which
we trained Machine Learning (ML) models and se-
lected MLP (Multi-Layer Perceptron) that yielded the
overall best performance. In Deep Learning (DL) ap-
proaches, stability is essential because only reporting
good DL performance may threaten the experimental
conclusions (Liu et al., 2021a). To this end, we pub-
lish the training dataset along with fixed seeds and re-
port the random effects of the initialization along with
our results. We also propose a technique that can im-
prove the stability of model trainings. The following
points summarize our main contributions:

• Evaluation on a Unified Benchmark: previous
works are evaluated on distinct datasets, and now
we bring these to a common ground.

• Feature selection and Combination: ap-
proaches are handled complementary, here the
best features are selected from previous works.

• Reproducible ML Model Trainings: ML mod-
els are selected and trained in a reproducible man-
ner to achieve competitive performance.

2 RESEARCH OBJECTIVES

We organize our experiment around the following re-
search questions:
RQ1. Which features are the most useful for PCC?
RQ2. What ML models are the most promising?
RQ3. How can we further enhance the performance
and stability of predictions?

The source code and detailed experimental data
can be found in the online appendix of this paper (onl,
2024).

3 BACKGROUND

Traditionally, a patch is deemed correct if it success-
fully passes all the test cases, unfortunately practi-
cal test suites often fail to guarantee the accuracy of
generated patches. Consequently, patches that pass
all tests (referred to as plausible patches) may incor-
rectly address the bug, fail to fully fix the issue, or
disrupt intended functionalities, thus becoming over-
fitting patches (Lutellier et al., 2019). This work
investigates the usefulness of features proposed in
previous works to tackle the problem of identifying
correct patches among incorrect and plausible APR-
generated patches. We first provide the necessary
background on the used engineered and learned fea-
tures.

3.1 Features

Generally, within machine learning, a feature repre-
sents a distinct and measurable attribute or character-
istic of a phenomenon, while a feature vector refers
to numbers (can be binary (0-1), integer or real) in
an n-dimensional space, consisting of features (Sei-
del et al., 2017). Features are widely used in software
engineering for diverse tasks including just-in-time
quality assurance (Kamei et al., 2013), fault localiza-
tion (Kim et al., 2019), vulnerability prediction (Dam
et al., 2021) and others. In this work, we focus on
optimal feature selection in the domain of Patch Cor-
rectness Check.

3.1.1 Hand-Crafted Features

Manually crafting features so that a classifier can pri-
oritize correct patches over overfitting ones is not un-
common in the literature. We adapt the features of
ssFix (Xin and Reiss, 2017b), S3 (Le et al., 2017) and
CapGen (Wen et al., 2018), as their implementation is
available and because these values are available in the
seminal work of Wang et al. (Wang et al., 2021). The

ICSOFT 2024 - 19th International Conference on Software Technologies

24

Table 1: PCC features used in this study.

Category Feature Origin Description # dim

Token- Strct/Conpt ssFix (Xin and Reiss, 2017b) Structural & conceptual token similarity obtained from the buggy code and the generated patch. 2
Hand-crafted AST/Variable- Dist S3 (Le et al., 2017) Number of the AST changes and distances between the vectors representing AST patch nodes. 4

Var/Syn/Sem- Simi CapGen (Wen et al., 2018) Similarity between variables / syntactic structures / contextual nodes affected by the change. 3

Code descriptor ODS (Ye et al., 2019) Describe the characteristics of code elements (operators, variables, statements, AST operations) 155
Engineered Repair pattern ODS (Ye et al., 2019) Repair patterns based on the work of Sobreira et al. (Sobreira et al., 2018) as binary features. 38

Contextual Syntactic ODS (Ye et al., 2019) Describe the scope, parent and children’s similarities of modified statements. 24

Dynamic Embedding Cache (Lin et al., 2022) Dimensions of the embedded patch. 256
Similarity (Csuvik et al., 2020) Similarity metrics measured between the embeddings of the patch and the original program. 8

490

features introduced in S3 quantify both syntactic and
semantic disparities between a candidate solution and
the original buggy code. Subsequently, these features
are used to prioritize and discern correct patches. In
ssFix, authors employ token-based syntax represen-
tation of code to pinpoint syntax-related code frag-
ments, aiming to generate accurate patches. CapGen
has proposed three context-aware models - the geneal-
ogy model, variable model, and dependency model,
respectively - to prioritize correct patches over over-
fitting ones.

3.1.2 Engineered Features

In this study, we used ODS (Ye et al., 2019) to ex-
tract metrics from the source code. It performs static
analysis of the differences in AST between the buggy
and patched programs; these differences are encoded
as feature vectors. The authors grouped the ODS
features into three categories: code description fea-
tures, repair pattern features, and contextual syntac-
tic features. We extracted these features using Com-
ing 1, an open source commit analysis tool. Due to
space limitations, we do not describe all of the fea-
tures here (they are available in the original study),
just an overview in Table 1.

3.1.3 Code Embeddings and Patch Similarity

Mapping source code into vector space can be ben-
eficial in many ways, it can grasp aspects of the pro-
gram that other metrics cannot. In the domain of patch
correctness assessment, these techniques assess patch
correctness by embedding token sequences extracted
from the changed code of a generated patch (Lin et al.,
2022). Then these embeddings can be used in various
ways; we consider two scenarios in our study.

1. Use the generated embeddings directly, as if a
dimension of the embedded vector is a feature.
Thus, each dimension is treated as a metric mea-
sured on the patch.

2. Measure the vector distance between the embed-
ded vector of the patch and the original program.

1https://github.com/SpoonLabs/coming

The intuition here is that correct patches are usu-
ally simpler (i.e. more similar to the original pro-
gram) than overfitting ones. Note that in previous
studies (Csuvik et al., 2021) authors used a pre-
defined threshold to classify patches as correct or
overfitting ones, while in this study the threshold
is learned dynamically.

One can use diverse embedding architectures,
some of which are more resource intensive than oth-
ers. In this study we used the Doc2Vec (Le and
Mikolov, 2014) implemented in Gensim (Rehurek
and Sojka, 2010). The choice is motivated by sev-
eral factors: (1) ease of use and availability; (2) have
history in the PCC domain (Csuvik et al., 2021) and
(3) advanced embedding techniques did not surpass it
by a large margin despite being more complicated and
resource intensive (Csuvik et al., 2020). Doc2vec is
derived from Word2vec (Mikolov et al., 2013), which
is an artificial neural network, which can transform
(embed) documents into vector space. The main idea
of it is that the hidden layer of the network has fewer
neurons than the input and output layers, thus forcing
the model to learn a compact representation.

3.2 Dataset

Wang et al. (Wang et al., 2021) published a cu-
rated dataset comprising 902 labeled patches from
Defects4J bugs, generated by 19 repair tools. We used
this data set, which encompasses 654 patches labeled
as overfitting and 248 patches labeled as correct by
the respective authors. The dataset is still actively
maintained, easily available, and popular to this day.
In their online appendix 2, authors have also published
the measured hand-crafted features on this dataset
which we used directly from there. ODS features are
calculated using their tool, while dynamic features are
calculated using our implementation available in the
attached repository (onl, 2024).

2https://github.com/claudeyj/patch_correctness/

Feature Extraction, Learning and Selection in Support of Patch Correctness Assessment

25

f1 f2 … fh fh+1 fh+2 … fe fe+1 fe+2 … fs fs+1 fs+2 … fl

. . .

f1 f2 … fh fh+1 fh+2 … fe fe+1 fe+2 … fs fs+1 fs+2 … fl

Hand crafted Engineered Distances Code embedding

Feature selection

f1 f2 … fl’-1 fl'

. . .

f1 f2 … fl’-1 fl'

l’ < l

Training models

Probability of a

patch being correct
Correct /

Overfitting

correct

overfitting

f1 f2 … fs fs+1 fs+2 … fl'

f1 f2 … fs fs+1 fs+2 … fl'

Selected

embedding dims

Selected static

features

Dense layers Dense layers

Cocatenation

Dense layers

0 - 1

(a) Naïve Vector Concatenation (b) Deep Representation Model

Figure 1: A high level overview of the used features and their optimization for PCC. On part (a) all features are concatenated
then the most descriptive ones are selected to teach several ML models. On (b) static features (Hand-crafted, Engineered and
Distances) and embeddings are first fed into dense layers and the neural network concatenates them, allowing it to learn a
dynamic representation.

4 EXPERIMENT SETUP

Figure 1 shows a comprehensive overview of our
study. Our goal is straightforward: find the set of
features and ML models that most effectively detect
overfitting patches. In Figure 1 (a) one can see that
features are concatenated as is and then selected some
of them, while (b) part depicts a deep representation
model where features are fed into a neural architec-
ture, allowing the net to learn the weights and biases
of each feature. The obtained features from previ-
ous studies, described in Section 3.1, form a feature
vector of l=480 dimensions (composing of both static
and dynamic features). Using feature selection tech-
niques, we select l’ features from these (l’ < l) - the
ones that best explain the input data. ML models
are trained and evaluated on this subset to determine
which yields the most optimal results. In our experi-
ments we used a 32-bit Intel(R) Core(TM) i7-10510U
CPU of 1.80GHz to train and evaluate each model and
feature configuration. All of our code runs in Python
3.11.6, using the scikit-learn library version 1.4.0 (Pe-
dregosa et al., 2011). The source code and detailed
experimental data can be found in the online appendix
of this paper (onl, 2024).

4.1 Feature Selection

Feature selection is the process of selecting a subset of
relevant features to be used in model training (Sarangi
et al., 2020). There are many available feature selec-
tion algorithms, from which we used the scikit-learn
implementation of RFECV (RFECV documentation,
2024) to achieve the goal depicted in Figure 1 (a). It

recursively eliminates features with cross-validation
to select the most important features. The number of
features selected is tuned automatically by fitting an
RFE selector to the different cross-validation splits.
We used a RandomForestClassifier as an estimator to
provide information about feature importance mainly
because it is a preferred model in previous PCC stud-
ies (Wang et al., 2021; Ye et al., 2019) and it has eas-
ily accessible coefficients required by the feature se-
lection algorithm. Experiments were carried out in a
Stratified K-Fold setting using 10 splits and the mini-
mum number of features was required to be 10.

4.2 ML Models

The utilization of scikit-learn is motivated by its ac-
cessibility, robust performance, and inclusion of well-
established, reliable models, facilitating the execu-
tion of our experiments with ease and efficacy. The
following 9 models were used in part of our exper-
iments (Figure 1 (a)): DecisionTreeClassifier, Gaus-
sianNB, KNeighborsClassifier, LinearDiscriminant-
Analysis, LogisticRegression, MLPClassifier, Ran-
domForestClassifier, SGDClassifier and SVC. The
description each of these models can be found the of-
ficial documentation of the scikit-learn library (Scikit-
learn documentation, 2024). The concatenated fea-
tures form the input for these models.

To further enhance the performance, in addition
to built-in ML models, we built a neural network us-
ing Pytorch 2.1.2. It is able to combine features with
learned embeddings as suggested by Tian et al. (Tian
et al., 2023). The approach can be observed on Fig-
ure 1 (b). Note that this model operates on the al-

ICSOFT 2024 - 19th International Conference on Software Technologies

26

ready selected features, but treats embeddings dimen-
sions and numeric features separately and concate-
nates them dynamically. The gist of this approach is
that the neural architecture can learn the weighting of
each feature and is able to inference more complex
relations compared to naive concatenation. The im-
plementation of this model is available in the online
appendix of this paper (onl, 2024).

4.3 Evaluation

Previous studies have underscored the importance of
PCC techniques in avoiding the dismissal of correct
patches (as they are quite expensive to generate in the
first place) (Yu et al., 2019). Consequently, we pro-
pose that a PCC technique is deemed effective if it
produces minimal false positives while maintaining a
high recall rate. To quantify our results, we introduce
these metrics in the following:
• True Positive: An overfitting patch is accurately identi-

fied.

• False Positive: A correct patch identified as overfitting.

• False Negative: An overfitting patch identified as correct.

• True Negative: A correct patch identified as correct.

Using the above items, precision, recall, and F-
meaure can be computed. Precision is the propor-
tion between correctly classified overfitting patches
among all the classified instances, while recall is

the proportion between correctly classified overfitting
patches and all relevant items. They are computed as:

precision =
T P

T P+FP
recall =

T P
T P+FN

The F-measure can be defined by the two metrics
above:

Fβ =
(β2 +1)∗ precision∗ recall

β2 ∗ precision+ recall

β signifies the importance of precision or recall. If we
want precision and recall to weigh in with exact the
same importance, we simply assign the value 1 to β.

5 RESULTS

5.1 RQ1: Feature Selection

To examine the effect of each feature, we first car-
ried out 10 independent trainings and executed the
feature selection algorithm described in Section 4.1.
The results of the feature selection can be observed in
Table 2. In the table, the feature set which opts for
the best results (cells of color gray) and the inter-
section of the 10 independent trainings (cells of color
violet) are included. In the performed experiments,

we found that the output of the feature selection algo-
rithm varies greatly due to the effect of random factors

Table 2: Features selected using the RFECV algorithm: features that yield best performance for a single execution
among the 10 feature selections. intersection between all of the features that were selected in the 10 feature optimization
turns.

Hand-crafted Engineered Distances Embeddings
s3-tool patchedFileNo cosine_distance vec_dim_0 vec_dim_62 vec_dim_182
AST-tool addLineNo braycurtis_distance vec_dim_5 . . . vec_dim_183
Cosine-tool rmLineNo canberra_distance vec_dim_6 vec_dim_84 vec_dim_184
s3variable-tool insertIfFalse chebyshev_distance vec_dim_7 . . . vec_dim_185
variable-tool updIfFalse cityblock_distance vec_dim_8 vec_dim_90 vec_dim_186
syntax-tool ifFalse euclidean_distance
semantic-tool dupArgsInvocation minkowski_distance vec_dim_12 vec_dim_108 vec_dim_192
structural_score removeNullinCond seuclidean_distance . . . vec_dim_109 . . .
conceptual_score condLogicReduce vec_dim_21 vec_dim_110 vec_dim_200

insertBooleanLiteral . . . vec_dim_111 . . .
insertNewConstLiteral vec_dim_27 . . . vec_dim_208
UpdateLiteral . . . vec_dim_130 vec_dim_209
wrapsTryCatch vec_dim_31 . . . vec_dim_210
. . . vec_dim_32 vec_dim_144 vec_dim_211
P4J_LATER_MEMBER_VF . . . vec_dim_145 . . .
P4J_LATER_MODIFIED_SIMILAR_VF vec_dim_43 . . . vec_dim_220
P4J_LATER_MODIFIED_VF . . . vec_dim_161 vec_dim_221
P4J_LATER_NONZERO_CONST_VF vec_dim_51
P4J_LATER_OP_ADD_AF vec_dim_52 vec_dim_167 vec_dim_225
.
S6_METHOD_THROWS_EXCEPTION vec_dim_58 vec_dim_243

9 / 7 7 217 / 2 2 8 / 1 0 256 / 33 6 Overall: 490 / 43 15

Feature Extraction, Learning and Selection in Support of Patch Correctness Assessment

27

during the training phase. Despite these differences,
it is clear that most features can be opted out, and
that hand-crafted ones form the most important sub-
set of such features. It is also interesting to observe
that some embedding dimensions hold more valuable
information than others.

Answer to RQ1. Based on our experiments, on the
used ML models and parameter configurations,
some features are not beneficial - omitting these
does not affect the results negatively, quite the op-
posite, precision and recall improved in best sce-
narios. Overall 43 features have been selected by
a single run and 15 joint features have been iden-
tified across all the 10 independent trainings.

To further investigate each feature subset, 9 classi-
fiers have been trained on each. The results are listed
in Table 3. What we can see is that the MIN and MAX
values vary greatly in all of the feature sets. Despite
the deviations, it is evident that some features can
be opted out without any negative consequences and
that on average the RFECVintersect yielded the best re-
sult in Precision, while RFECVbest in Recall and F1
- thus it is more suitable for PCC. Certain embed-
ding dimensions apear to contain valuable informa-
tion; however, the model fails to encompass all nec-
essary components. Sole reliance on embeddings led
to a decrease in classifier performance. A future re-
search dimension could be to investigate what (if any)
embedding dimension is equivalent to which hand-
crafted/engineered feature.

The selected engineered features rmLineNo and
P4J_LATER_NONZERO_CONST_VF seem to grasp an im-
portant aspect of PCC, as these are selected in all
feature selection attempts. Together with the hand-
crafted features, these form the most essential part of
the features. Table 3 supports this observation, as the
Engineeredplus subset yields only slightly lower F1
values than the optimized sets. However, it should
be noted that Engineered features only bring an addi-
tional absolute growth of 1% on average, which can
also be attributed to random factors. Random inter-
play is reflected in huge differences in performance
in our experiments. This is not unique for PCC, but
for example, if we consider the subset of the distance
metrics, it can be seen that in the worst-case scenario
it achieved 0% precision, while on the best case 100%
precision (but on average quite moderate). We did not
explore the random effects on the embedding model
but hypothesize that they might have a similar impact.
By selecting alternative features, not limited to em-
beddings and distances, one may potentially mitigate
this effect.

Table 3: Measures on various feature subsets.

F1 Prec Recall
All .62 .65 .59
RFECVbest .65 .69 .59
RFECVintersect .58 .58 .50
Distances .00 .00 .00
Embeddings .54 .51 .45
Engineered .56 .52 .55
Engineeredplus .63 .63 .61

MIN

Hand-crafted .17 .35 .10

All .80 .81 .82
RFECVbest .81 .84 .78
RFECVintersect .80 .85 .76
Distances .18 .59 .11
Embeddings .70 .69 .71
Engineered .76 .76 .76
Engineeredplus .77 .77 .78

MEAN

Hand-crafted .42 .57 .35

All .92 .96 .96
RFECVbest .91 1.00 .97
RFECVintersect .91 1.00 .90
Distances .41 1.00 .31
Embeddings .81 .88 .90
Engineered .89 .95 .93
Engineeredplus .90 .96 .93

MAX

Hand-crafted .59 .89 .61
The grouped rows (MIN, MEAN, MAX) indicate the mini-
mum, average and maximum values of each metric we used
in the 10 independent trainings. Each subset contains the
followings: All (all 490 features), RFECVbest (43 features
from the feature selection algorithm), RFECVintersect (the
15 joint feature that were selected in all 10 runs), Distances
(the 8 distance metrics), Embeddings (256 dimension of
the embedded code vectors), Hand-crafted (9 hand-crafted
features from previous studies), Engineered (217 feature
from ODS) and Engineeredplus (static features compris-
ing of hand-crafted and engineered ones -Engineeredplus =
Engineered ∪Hand − cra f ted).

5.2 RQ2: Model Selection

Prior studies on PCC (Ye et al., 2019; Wang et al.,
2021) have exhibited a predilection for Random For-
est as the classifier of choice. Additionally, it has
been widely adopted in addressing various Software
Engineering-related issues due to its demonstrated ef-
ficacy across diverse tasks (Bludau and Pretschner,
2022; Bowes et al., 2018). These experiences drove
our intuition to use Random Forest in feature selec-
tion, but it also raises the question of whether other
classifiers might outperform it. In the subsequent ex-
periment, we trained 9 classifiers 10 times each to ob-
tain the results presented in Table 4. We used the
RFECVbest feature set obtained in the previous sec-

ICSOFT 2024 - 19th International Conference on Software Technologies

28

tion on all observed models. What we can see is that
on average the MLPClassifier is the most harmonic:
the F1 metric reaches highest values here on average.
Also, apart from the GaussianNB classifier (which is
insufficient in terms of Precision), MLP provides the
highest Recall values.

Answer to RQ2. While GaussianNB consistently
produced the highest Recall values, its efficacy in
precisely detecting overfitting patches appears in-
efficient. On the other hand, as previous stud-
ies suggested, RandomForest consistently pro-
vides reliable results, however, our findings indi-
cate that MLPClassifier outperforms it by a small
margin.

Relying only on the MAX values would flaw the
findings of our paper, thus we try to see the whole
picture and are looking for a classifier that works well
in real life scenarios most of the time (even in the
worst case). What we can see in Table 4 is that the
MLPClassifier performs reasonably well compared to
other models in the MIN case, also. On the other
hand, the motivation behind the use of Random Forest
is understandable: it provides a well-explainable out-
put with moderate training costs. The benefit of the
MLPClassifier might lie in its flexibility, as the Multi-
layer Perceptron is a built-in model within scikit-learn
with limited possibilities for customization, building
a neural network from scratch and including domain-
specific knowledge might add additional value to this
model. While in this section we treated every fea-
ture equally and combined them naively (i.e. form-
ing a feature vector which includes all the features of
a subset), in the following we explore the possibility
to combine the selected features dynamically by ex-
panding the MLPClassifier and implementing a Neu-
ral Network in Pytorch.

5.3 RQ3: Potential Improvements

As depicted in Figure 1 (b) and described in Sec-
tion 4.2, we further try to enhance the performance.
In the previous experiments we already identified the
RFECVbest feature set as the 43 features worth train-
ing on and the MLPClassifier due to its flexible na-
ture and reliable outcomes. A Neural Network has
been constructed that learns a deep representation of
the input features; the measured results are shown in
Table 5. Due to space limitations the exact architec-
ture is not detailed here, but the interested Reader
can find it in the online appendix (onl, 2024). The
network has been trained using k-fold cross valida-
tion, when the validation loss became smaller than

a certain epsilon, the training process was stopped
(early stopping) - thus reducing the chance of over-
fitting. Having a Neural Network gives the possibil-
ity to weight input features - apart from filtering un-
necessary features out this approach can give different
weights to features depending on how important they
are. Similarly to the previous experiments, the model
was trained and evaluated 10 times, thus we display
the MIN, MEAN, and MAX values of each metric. It
is evident that the metric values did not improve on
average (or at least not significantly, which cannot
be attributed to random factors). On the other hand,
the stability of the approach improved: the previous
absolute deviation of 30% in the F1 score has been
reduced to 16%, thus making the model much more
reliable than before. These ML predictors are com-
plementary to other state-of-the-art methods and sim-
ilar to them in filtering out patches generated by APR
tools (Tian et al. (Tian et al., 2023) 79%, Wang et al.
(Wang et al., 2021) 87% F1 score).

Ensemble Learning (Polikar, 2012) and Majority
Voting (Penrose, 1946) are both techniques employed

Table 4: Evaluation of the RFECVbest feature set on 9 ML
classifiers.

F1 Prec Recall
DecisionTree .46 .45 .45
GaussianNB .44 .30 .82
KNeighbors .45 .43 .46
LDA .52 .46 .54

MIN LogRegression .62 .59 .62
MLPClassifier .62 .65 .59
RandomForest .61 .70 .48
SGDClassifier .55 .53 .52
SVC .60 .60 .52

DecisionTree .64 .64 .65
GaussianNB .51 .35 .94
KNeighbors .70 .69 .71
LDA .67 .60 .76

MEAN LogRegression .74 .69 .79
MLPClassifier .80 .81 .82
RandomForest .77 .86 .71
SGDClassifier .71 .68 .75
SVC .76 .74 .79

DecisionTree .79 .81 .89
GaussianNB .56 .39 1.00
KNeighbors .83 .85 .90
LDA .80 .72 .97

MAX LogRegression .88 .89 1.00
MLPClassifier .92 .96 .96
RandomForest .91 1.00 .93
SGDClassifier .84 .89 .93
SVC .89 .88 .97

Feature Extraction, Learning and Selection in Support of Patch Correctness Assessment

29

Table 5: Evaluation of Deep Representation Learning.

F1 Precision Recall
MIN 72.73% 69.70% 68.97%
MEAN 81.92% 80.77% 83.68%
MAX 88.89% 91.67% 96.55%

in ML to enhance predictive performance by combin-
ing the outputs of multiple (usually weak) individual
models. Through the aggregation of predictions, ma-
jority voting leverages the collective wisdom of di-
verse models to make decisions. As decision in a Ran-
dom Forest is obtained by majority voting of the indi-
vidual trees, it alone can be treated as a Majority Vot-
ing approach. However, several recent approaches in-
tegrate the learned models either by Ensemble Learn-
ing or by Majority Voting strategies. To investigate
the performance of such approaches, we also com-
bined the output of the nine observed ML models by
weighting their output. We call this method stack-
ing, and it is based on a StackingRegressor (Scikit-
learn StackingRegressor, 2024). Stacked generaliza-
tion consists of stacking the output of individual esti-
mator and using a regressor to compute the final pre-
diction.

The results of this approach can be observed in Ta-
ble 6. Stacking allows us to use the strength of each
individual estimator by using their output as input of
a final estimator. Although the F1 score and Preci-
sion improved on average, Recall decreased making
this method unsuitable for PCC. Another unfavorable
inspection is that the deviation of all three metrics has
doubled compared to the previous measurement. Dur-
ing the experiment, we noticed that results are close
to the ones obtained with MLP. After further inves-
tigation we found that the algorithm assigns most of
its weights to the MLP (on average 26%), Random
Forest (38%) and SVC (32%) classifiers and relies
only negligibly on other models. The implication of
this observation suggests that machine learning mod-
els exhibit equal confusion regarding the remaining
incorrectly classified samples, whereas the correctly
classified examples are largely identical. The under-
lying reason might be data quality, inaccurate oracle
(human error on classification), imbalanced data, sub-
optimal network architecture and parameterization,
etc. Investigating such a problem might be a separate
research direction for future work.

Table 6: Results showcasing the stacked performance of the
9 ML models.

F1 Precision Recall
Min 64.15% 66.67% 58.62%
Mean 82.38% 85.83% 79.68%
Max 93.10% 96.30% 93.10%

Answer to RQ3: Improvement in stability can
be achieved to a certain extent; however, the
improvements may not suffice to ensure consis-
tently reliable outcomes. Both Deep Representa-
tion Learning and Stacking failed at improving fil-
tering out overfitting patches, although the former
yields similar results with a more reliable stan-
dard deviation.

6 DISCUSSION AND THREATS
TO VALIDITY

In this study, our primary emphasis lay in optimiz-
ing the features utilized within machine learning mod-
els, with a secondary focus on enhancing performance
and stability through deep learning techniques. We
only examined the domain of PCC, however, this
might be a general problem in Software Engineer-
ing research using ML. As we have seen, features
significantly influence both the performance and sta-
bility of the applied machine learning model; how-
ever, careful construction of a neural architecture may
also enhance stability. Through the application of our
method, we contend that improved practices can be
established for the publication of machine learning
applications and the assessment of their stability in
APR and also in the wider domain of Software Engi-
neering.

An interesting insight arises from the study of
Wang et al. (Wang et al., 2021), where they achieved
87.01% Precision and 89.14% Recall using only
Hand-crafted features and a Random Forest classi-
fier, contrasting sharply with our own results of 57%
Precision and 35% Recall on average using the same
features. While these figures closely approximate
Wang et al. ’s results under the best-case scenario
(MAX), they remain unreproducible. Another fac-
tor to consider is the choice of library; the aforemen-
tioned article utilized the Weka app (Weka Webite,
2024), which, by its graphical interface, inadver-
tently undermines reproducibility, unlike our use of
the scikit-learn library. Reproducibility can be sig-
nificantly improved by sharing a reproduction pack-
age; however, the applicability of the proposed model
remains limited without evaluating its stability. No-
tably, the selected feature set RFECVbest yields more
reliable results than previous iterations, and the con-
structed neural networks contribute to the stability
and reproducibility of our study. Additionally, the on-
line appendix of this paper offers full reproducibility
of the experiments conducted (onl, 2024).

A possible threat to the validity of our research re-

ICSOFT 2024 - 19th International Conference on Software Technologies

30

lates to the benchmark we used. We only utilized the
dataset of Wang et al. (Wang et al., 2021) for evalu-
ation; however it is the most complete dataset, to the
best of our knowledge, in the literature for conduct-
ing such studies. We believe that this choice does not
impact the assessment of feature selection. Another
threat might be the effect of random initialization,
which can have a huge impact on the resulting model.
By training the models in a cross-validation setting 10
times with different random seeds and averaging the
results, we tried to mitigate this effect. Due to space
constraints, we did not include the output of all the
trainings, settings, and detailed experiments that were
executed in the paper. However, our online appendix
package (onl, 2024) ensures full reproducibility and
detailed data on the research conducted.

7 RELATED WORK

Evaluating existing APR approaches is crucial, but as-
sessing APR tools solely on plausible patches is in-
accurate due to the overfitting issue inherent in test
suite-based automatic patch generation. Identifying
the correct patches among plausible ones requires ad-
ditional developer effort. Recently several approaches
have been proposed to tackle the problem of Patch
Correctness Check (Yang et al., 2023).

Feature-Based PCC
Liu et al. (Liu et al., 2021b) proposes eight evalu-
ation metrics for fairly assessing the performance of
APR tools in addition to providing a critical review
on the existing evaluation of patch generation sys-
tems. Authors in (Wang et al., 2021) benchmark the
state-of-the-art patch correctness techniques based on
the largest patch benchmark so far and gather the ad-
vantages and disadvantages of existing approaches.
Tian et al. (Tian et al., 2020) use Doc2Vec, Bert,
code2vec and CC2Vec to investigate the discrimi-
native power of features. They claim that Logistic
Regression with BERT embedding scored 0.72% F-
Measure and 0.8% AUC on labeled dataset of 1,000
patches. Opad (Yang et al., 2017) (Overfitted Patch
Detection) is another tool which aims to filter out
incorrect patches. Opad uses fuzz testing to gener-
ate new test cases and employs two test oracles to
enhance the validity checking of automatically gen-
erated patches. Anti-pattern based correction check
is also a viable approach (Tan et al., 2016). Syn-
tactic or semantic metrics such as cosine similarity
and output coverage (Le et al., 2017) can also be ap-
plied to measure similarity, like in the tool named
Qlose (D’Antoni et al., 2016). A recent study (Is-

mayilzada et al., 2023) presents a new lightweight
specification method that enhances failing tests with
preservation conditions, ensuring that patched and
prepatched versions produce identical outputs under
specific conditions. It also introduces a differen-
tial fuzzer for efficient patch classification, surpass-
ing four state-of-the-art approaches, with a user study
showing preference for the semi-automatic patch as-
sessment method over manual assessment.

Dynamic PCC
Numerous studies (Mechtaev et al., 2015; White
et al., 2019; Tufano et al., 2019) emphasize the im-
portance of simplifying the generated repair patches.
A recent study (Wang et al., 2019) found that 25.4%
(45/177) of correct patches generated by APR tech-
niques differ syntactically from those provided by a
developer. Other methods, such as learning from
human-written code (Le et al., 2016; Kim et al.,
2013), have shown promise but have faced recent
criticism (Monperrus, 2014). In other works (Csu-
vik et al., 2021) candidate patches were ranked ac-
cording to their similarity to the original program
and assessed as a recommendation system. Oth-
ers have also used embedding techniques, but not
only focusing on the changed code, but also taking
into consideration the unchanged correlated part (Lin
et al., 2022) by measuring the similarity between the
patched method name and the semantic meaning of
body of the method (Phung et al., 2022) or based
their approach onthe fact that similar failing test cases
should require similar patches (Tian et al., 2022). The
reliability of automated annotations for patch correct-
ness has also been proposed (Le et al., 2019). Authors
compared them with a gold standard of correctness
labels for 189 patches, finding that although indepen-
dent test suites may not suffice as effective APR or-
acles, they can augment author annotations. Mean-
while, Xiong et al. (Xiong et al., 2018) proposed
leveraging behavior similarity in test case executions
to determine correct patches. By improving test suites
with new inputs and using behavior similarity, they
prevented 56.3% of incorrect patches from being gen-
erated. Ortin et al. (Ortin et al., 2020) achieved better
performance than the existing systems for source code
classification using embeddings, even though it has
not been used for APR. Another work that is highly
utilized these days in ML for source code is Code-
BERT, which has been employed in many different
domains, including APR (Feng et al., 2020).

This Study
In this work, we mainly focused on the optimization
of the features used in ML models and partly with
enhancing the performance with deep learning. We

Feature Extraction, Learning and Selection in Support of Patch Correctness Assessment

31

used data from the study of Wang et al. (Wang et al.,
2021) and the engineered features from ODS (Ye
et al., 2019). Our work is fundamentally different
from these: (1) we do not concentrate on the defi-
nition of features but rather use existing ones, (2) all
available features are treated as complements to each
other, (3) the goal was to achieve a cross-research fea-
ture set which is the most optimal to PCC. In a recent
study, Tian et al. (Tian et al., 2023) already proposed
deep-combination of features, but their approach (1)
does not apply feature selection, (2) no diverse ML
model training is carried out, and (3) the used static
feature set is not as thorough as the ones we have
presented. We also publish the training dataset along
with the fixed seeds and the source code of the ex-
periments (which is only partially true for previous
studies).

8 CONCLUSIONS

In this study, we acquired 490 features, comprising
both engineered features and code embeddings, to ad-
dress Patch Correctness Check. Initially, a feature se-
lection algorithm was used to extract 43 features from
the extensive feature set, indicating the limited infor-
mational contribution of most original features. Sub-
sequently, we conducted training and evaluation of
nine machine learning models to discern the optimal
performer. To counteract random factors, each model
underwent 10 training iterations using different ran-
dom seeds. Our findings suggest better performance
of the models on average when utilizing the selected
feature set in comparison to the entire feature set or
other subsets. Among the models examined, Multi-
Layer Perceptron (MLP) and Random Forest consis-
tently exhibited the most reliable results, achieving
average F1 scores of 0.8 and 0.77, respectively. How-
ever, due to random factors, the MLP score fluctu-
ated to 0.62 in unfavorable cases or peaked at 0.92
in fortuitous circumstances. Employing a more com-
plex neural architecture that integrates learned em-
beddings with other features enabled us to mitigate
this variability, reducing the absolute fluctuation in
the F1 score from 30% to 16%.

Our research underscores two major implica-
tions. First, the development of PCC classifiers re-
quires careful planning of both feature selection and
model construction; While hand-crafted features re-
main paramount, embeddings may also contain useful
information. Second, machine learning methodolo-
gies must prioritize model stability, as it profoundly
influences the validity and significance of results.

ACKNOWLEDGEMENTS

The research presented in this paper was supported
in part by the ÚNKP-23-3-SZTE-435 New National
Excellence Program of the Ministry for Culture and
Innovation from the source of the National Research,
Development and Innovation Fund, and by the Euro-
pean Union project RRF-2.3.1-21-2022-00004 within
the framework of the Artificial Intelligence National
Laboratory. The national project TKP2021-NVA-09
also supported this work. Project no TKP2021-NVA-
09 has been implemented with the support provided
by the Ministry of Culture and Innovation of Hun-
gary from the National Research, Development and
Innovation Fund, financed under the TKP2021-NVA
funding scheme.

REFERENCES

(2024). Supplemental material for "feature extraction,
learning and selection in support of patch cor-
rectness assessment". https://github.com/AAI-USZ/
PCC-2024.

Bludau, P. and Pretschner, A. (2022). Feature sets in just-in-
time defect prediction: an empirical evaluation. Pro-
ceedings of the 18th International Conference on Pre-
dictive Models and Data Analytics in Software Engi-
neering.

Bowes, D., Hall, T., and Petrić, J. (2018). Software defect
prediction: do different classifiers find the same de-
fects? Software Quality Journal, 26(2):525–552.

Csuvik, V., Horvath, D., Horvath, F., and Vidacs, L. (2020).
Utilizing Source Code Embeddings to Identify Cor-
rect Patches. In 2020 IEEE 2nd International Work-
shop on Intelligent Bug Fixing (IBF), pages 18–25.
IEEE.

Csuvik, V., Horváth, D., Lajkó, M., and Vidács, L.
(2021). Exploring plausible patches using source
code embeddings in javascript. 2021 IEEE/ACM In-
ternational Workshop on Automated Program Repair
(APR), pages 11–18.

Dam, H. K., Tran, T., Pham, T., Ng, S. W., Grundy, J., and
Ghose, A. (2021). Automatic feature learning for pre-
dicting vulnerable software components. IEEE Trans-
actions on Software Engineering, 47(1):67–85.

D’Antoni, L., Samanta, R., and Singh, R. (2016). QLOSE:
Program repair with quantitative objectives. Technical
report.

Feng, Z., Guo, D., Tang, D., Duan, N., Feng, X., Gong,
M., Shou, L., Liu, T., Jiang, D., and Zhou, M. (2020).
Codebert: A pre-trained model for programming and
natural languages.

Ismayilzada, E., Rahman, M. M. U., Kim, D., and Yi,
J. (2023). Poracle: Testing patches under preserva-
tion conditions to combat the overfitting problem of
program repair. ACM Trans. Softw. Eng. Methodol.,
33(2).

ICSOFT 2024 - 19th International Conference on Software Technologies

32

Just, R., Jalali, D., and Ernst, M. D. (2014). Defects4J: A
database of existing faults to enable controlled test-
ing studies for Java programs. In 2014 International
Symposium on Software Testing and Analysis, ISSTA
2014 - Proceedings, pages 437–440. Association for
Computing Machinery, Inc.

Kamei, Y., Shihab, E., Adams, B., Hassan, A. E., Mockus,
A., Sinha, A., and Ubayashi, N. (2013). A large-
scale empirical study of just-in-time quality assur-
ance. IEEE Transactions on Software Engineering,
39(6):757–773.

Kechagia, M., Mechtaev, S., Sarro, F., and Harman, M.
(2022). Evaluating automatic program repair capa-
bilities to repair api misuses. IEEE Transactions on
Software Engineering, 48(7):2658–2679.

Kim, D., Nam, J., Song, J., and Kim, S. (2013). Auto-
matic patch generation learned from human-written
patches. In Proceedings - International Conference
on Software Engineering, pages 802–811. IEEE.

Kim, Y., Mun, S., Yoo, S., and Kim, M. (2019). Pre-
cise learn-to-rank fault localization using dynamic and
static features of target programs. ACM Trans. Softw.
Eng. Methodol., 28(4).

Le, D. X. B., Bao, L., Lo, D., Xia, X., Li, S., and Pasareanu,
C. (2019). On Reliability of Patch Correctness Assess-
ment. In Proceedings - International Conference on
Software Engineering, volume 2019-May, pages 524–
535. IEEE Computer Society.

Le, Q. V. and Mikolov, T. (2014). Distributed Representa-
tions of Sentences and Documents. Technical report.

Le, X.-B. D., Chu, D.-H., Lo, D., Le Goues, C., and Visser,
W. (2017). S3: syntax- and semantic-guided repair
synthesis via programming by examples. In Pro-
ceedings of the 2017 11th Joint Meeting on Founda-
tions of Software Engineering, ESEC/FSE 2017, page
593–604, New York, NY, USA. Association for Com-
puting Machinery.

Le, X. B. D., Lo, D., and Goues, C. L. (2016). History
Driven Program Repair. In 2016 IEEE 23rd Inter-
national Conference on Software Analysis, Evolution,
and Reengineering (SANER), pages 213–224. IEEE.

Lin, B., Wang, S., Wen, M., and Mao, X. (2022).
Context-aware code change embedding for better
patch correctness assessment. ACM Trans. Softw. Eng.
Methodol., 31(3).

Liu, C., Gao, C., Xia, X., Lo, D., Grundy, J., and Yang,
X. (2021a). On the reproducibility and replicability
of deep learning in software engineering. ACM Trans.
Softw. Eng. Methodol., 31(1).

Liu, K., Li, L., Koyuncu, A., Kim, D., Liu, Z., Klein, J.,
and Bissyandé, T. F. (2021b). A critical review on
the evaluation of automated program repair systems.
Journal of Systems and Software, 171:110817.

Lutellier, T., Pang, L., Pham, V. H., Wei, M., and Tan, L.
(2019). ENCORE: Ensemble Learning using Convo-
lution Neural Machine Translation for Automatic Pro-
gram Repair.

Mechtaev, S., Yi, J., and Roychoudhury, A. (2015). Direct-
Fix: Looking for Simple Program Repairs. In 2015

IEEE/ACM 37th IEEE International Conference on
Software Engineering, pages 448–458. IEEE.

Mikolov, T., Sutskever, I., Chen, K., Corrado, G., and Dean,
J. (2013). Distributed Representations of Words and
Phrases and their Compositionality. Technical report.

Monperrus, M. (2014). A critical review of "auto-
matic patch generation learned from human-written
patches": essay on the problem statement and the eval-
uation of automatic software repair. In Proceedings of
the 36th International Conference on Software Engi-
neering - ICSE 2014, pages 234–242, New York, New
York, USA. ACM Press.

Ortin, F., Rodriguez-Prieto, O., Pascual, N., and Garcia, M.
(2020). Heterogeneous tree structure classification to
label java programmers according to their expertise
level. Future Gener. Comput. Syst., 105(C):380–394.

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V.,
Thirion, B., Grisel, O., Blondel, M., Prettenhofer,
P., Weiss, R., Dubourg, V., Vanderplas, J., Passos,
A., Cournapeau, D., Brucher, M., Perrot, M., and
Duchesnay, E. (2011). Scikit-learn: Machine learning
in Python. Journal of Machine Learning Research,
12:2825–2830.

Penrose, L. S. (1946). The elementary statistics of major-
ity voting. Journal of the Royal Statistical Society,
109(1):53–57.

Phung, Q.-N., Kim, M., and Lee, E. (2022). Identifying
incorrect patches in program repair based on meaning
of source code. IEEE Access, 10:12012–12030.

Polikar, R. (2012). Ensemble learning. Ensemble machine
learning: Methods and applications, pages 1–34.

Rehurek, R. and Sojka, P. (2010). Software Framework for
Topic Modelling with Large Corpora. Proceedings of
the LREC 2010 Workshop on New Challenges for NLP
Frameworks, pages 45–50.

RFECV documentation (2024). Rfecv documentation.
https://scikit-learn.org/stable/modules/generated/
sklearn.feature_selection.RFECV.html.

Sarangi, S., Sahidullah, M., and Saha, G. (2020). Optimiza-
tion of data-driven filterbank for automatic speaker
verification. Digital Signal Processing, 104:102795.

Scikit-learn documentation (2024). Scikit-learn documen-
tation. https://scikit-learn.org/stable/user_guide.html.

Scikit-learn StackingRegressor (2024). Scikit-learn stack-
ingregressor. https://scikit-learn.org/stable/modules/
generated/sklearn.ensemble.StackingRegressor.html.

Seidel, E. L., Sibghat, H., Chaudhuri, K., Weimer, W., and
Jhala, R. (2017). Learning to blame: localizing novice
type errors with data-driven diagnosis. Proc. ACM
Program. Lang., 1(OOPSLA).

Sobreira, V., Durieux, T., Delfim, F. M., Martin, M.,
and de Almeida Maia, M. (2018). Dissection of
a bug dataset: Anatomy of 395 patches from de-
fects4j. 2018 IEEE 25th International Conference
on Software Analysis, Evolution and Reengineering
(SANER), pages 130–140.

Tan, S. H., Yoshida, H., Prasad, M. R., and Roychoudhury,
A. (2016). Anti-patterns in search-based program re-
pair. In Proceedings of the 2016 24th ACM SIGSOFT
International Symposium on Foundations of Software

Feature Extraction, Learning and Selection in Support of Patch Correctness Assessment

33

Engineering - FSE 2016, pages 727–738, New York,
New York, USA. ACM Press.

Tian, H., Li, Y., Pian, W., Kaboré, A. K., Liu, K., Habib,
A., Klein, J., and Bissyandé, T. F. (2022). Predicting
patch correctness based on the similarity of failing test
cases. ACM Trans. Softw. Eng. Methodol., 31(4).

Tian, H., Liu, K., Kaboré, A. K., Koyuncu, A., Li, L., Klein,
J., and Bissyandé, T. F. (2020). Evaluating representa-
tion learning of code changes for predicting patch cor-
rectness in program repair. In 2020 35th IEEE/ACM
International Conference on Automated Software En-
gineering (ASE), pages 981–992.

Tian, H., Liu, K., Li, Y., Kaboré, A. K., Koyuncu, A.,
Habib, A., Li, L., Wen, J., Klein, J., and Bissyandé,
T. F. (2023). The best of both worlds: Combin-
ing learned embeddings with engineered features for
accurate prediction of correct patches. ACM Trans.
Softw. Eng. Methodol., 32(4).

Tufano, M., Pantiuchina, J., Watson, C., Bavota, G., and
Poshyvanyk, D. (2019). On learning meaningful code
changes via neural machine translation. In Proceed-
ings of the 41st International Conference on Software
Engineering, ICSE ’19, page 25–36. IEEE Press.

Wang, S., Wen, M., Chen, L., Yi, X., and Mao, X. (2019).
How Different Is It between Machine-Generated and
Developer-Provided Patches? : An Empirical Study
on the Correct Patches Generated by Automated Pro-
gram Repair Techniques. In International Sympo-
sium on Empirical Software Engineering and Mea-
surement, volume 2019-Septe. IEEE Computer Soci-
ety.

Wang, S., Wen, M., Lin, B., Wu, H., Qin, Y., Zou, D., Mao,
X., and Jin, H. (2021). Automated patch correctness
assessment: how far are we? In Proceedings of the
35th IEEE/ACM International Conference on Auto-
mated Software Engineering, ASE ’20, page 968–980,
New York, NY, USA. Association for Computing Ma-
chinery.

Weka Webite (2024). Weka webite. https://www.weka.io.
Wen, M., Chen, J., Wu, R., Hao, D., and Cheung, S.-

C. (2018). Context-aware patch generation for bet-
ter automated program repair. In Proceedings of the
40th International Conference on Software Engineer-
ing, ICSE ’18, page 1–11, New York, NY, USA. As-
sociation for Computing Machinery.

White, M., Tufano, M., Martinez, M., Monperrus, M., and
Poshyvanyk, D. (2019). Sorting and transforming pro-
gram repair ingredients via deep learning code sim-
ilarities. In Wang, X., Lo, D., and Shihab, E., edi-
tors, 26th IEEE International Conference on Software
Analysis, Evolution and Reengineering, SANER 2019,
Hangzhou, China, February 24-27, 2019, pages 479–
490. IEEE.

Xin, Q. and Reiss, S. P. (2017a). Identifying test-suite-
overfitted patches through test case generation. In
Proceedings of the 26th ACM SIGSOFT International
Symposium on Software Testing and Analysis, ISSTA
2017, page 226–236, New York, NY, USA. Associa-
tion for Computing Machinery.

Xin, Q. and Reiss, S. P. (2017b). Leveraging syntax-related
code for automated program repair. In 2017 32nd

IEEE/ACM International Conference on Automated
Software Engineering (ASE), pages 660–670.

Xiong, Y., Liu, X., Zeng, M., Zhang, L., and Huang, G.
(2018). Identifying patch correctness in test-based
program repair. In Proceedings - International Con-
ference on Software Engineering, pages 789–799.
IEEE Computer Society.

Yang, J., Wang, Y., Lou, Y., Wen, M., and Zhang, L. (2023).
A large-scale empirical review of patch correctness
checking approaches. In Proceedings of the 31st ACM
Joint European Software Engineering Conference and
Symposium on the Foundations of Software Engineer-
ing, ESEC/FSE 2023, page 1203–1215, New York,
NY, USA. Association for Computing Machinery.

Yang, J., Zhikhartsev, A., Liu, Y., and Tan, L. (2017). Better
test cases for better automated program repair. Pro-
ceedings of the 2017 11th Joint Meeting on Foun-
dations of Software Engineering - ESEC/FSE 2017,
pages 831–841.

Ye, H., Gu, J., Martinez, M., Durieux, T., and Mar-
tin, M. (2019). Automated classification of over-
fitting patches with statically extracted code fea-
tures. IEEE Transactions on Software Engineering,
48:2920–2938.

Ye, H., Martinez, M., and Monperrus, M. (2021). Auto-
mated patch assessment for program repair at scale.
Empirical Softw. Engg., 26(2).

Yu, Z., Martinez, M., Danglot, B., Durieux, T., and Mon-
perrus, M. (2019). Alleviating patch overfitting with
automatic test generation: a study of feasibility and ef-
fectiveness for the nopol repair system. Empir. Softw.
Eng., 24(1):33–67.

ICSOFT 2024 - 19th International Conference on Software Technologies

34

