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Efficiently categorizing physical system models is crucial for data science applications in scientific and engi-
neering realms, facilitating insightful analysis, control, and optimization. While current methods, often relying
on Convolutional Neural Networks (CNNs), effectively handle spatial dependencies in image data, they strug-
gle with intricate relationships inherent in physical system models. Our research introduces a novel approach
employing Graph Neural Networks (GNNs) to enhance categorization. GNNs excel in modeling complex
relational structures, making them apt for analyzing interconnected components within physical systems rep-
resented as graphs. Leveraging GNNs, our methodology treats entities as system components and edges as
their arrangements, effectively learning and exploiting inherent dependencies and interactions. The proposed
GNN-based approach outperforms CNN-based methods across a dataset of 55 physical system models, elim-
inating limitations observed in CNN approaches. The results underscore GNNs’ ability to discern subtle
interdependencies and capture non-local patterns, enhancing the accuracy and robustness of model categoriza-
tion in a data science framework. This research contributes to advancing model categorization, emphasizing
the application of data science for understanding and controlling complex physical systems. The innovative
use of GNNs opens new avenues for revolutionizing the categorization of intricate physical system models in

scientific and engineering domains.

1 INTRODUCTION

In the dynamic landscape of automotive engineering,
the design of powertrains has evolved exponentially,
marked by the integration of numerous sophisticated
concepts to enhance efficiency, performance, and sus-
tainability (Mirzadeh Phirouzabadi et al., 2020). The
complexity of modern automotive powertrains has
led to many combinations of interconnected subsys-
tems, creating an urgent need for robust modeling
techniques to help engineers understand and opti-
mize these complicated systems. Among the various
modeling approaches, physical system models have
emerged as indispensable tools, providing a compre-
hensive representation of the underlying dynamics
and interactions within physical systems (Wellstead,
1979).

These models capture the nuanced relationships
between components and their dynamic behaviors, of-
fering engineers valuable insights for analysis, con-
trol, and optimization. As the automotive industry
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navigates the realms of hybridization, electrification,
and advanced control strategies (Boulanger et al.,
2011; Conway et al., 2021; Cook et al., 2002), ac-
curate and efficient mastery of these models has be-
come paramount. Throughout this process, various
concepts and, therefore, physical system models are
examined, leading to an increasing number of models
in the database. This paper delves into the signifi-
cance of categorizing physical system models within
the context of automotive powertrain design, empha-
sizing its pivotal role in addressing the growing intri-
cacies of modern vehicle propulsion systems.
Recognizing the limitations of conventional
methodologies, such as Convolutional Neural Net-
works (CNNs) (Grbavac et al., 2023), in effectively
analyzing physical system models, our research pro-
pounds an innovative approach. We advocate for
the application of Graph Neural Networks (GNNs),
which excels in describing, modeling, and analyz-
ing complex relational structures (Hamilton, 2020),
to augment the categorization and analysis of these
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dynamic and interconnected systems. This novel per-
spective extends the current understanding of phys-
ical system models and positions GNNs as promis-
ing tools for unraveling the complexities inherent in
automotive powertrain designs. Through this explo-
ration, we aim to contribute to the ongoing discourse
on advancing engineering methodologies, fostering a
deeper understanding of the intricate dynamics shap-
ing the future of automotive propulsion systems.

The objective of this paper is to address the chal-
lenges and explore novel methods in categorizing
physical system models, a critical task with implica-
tions across various domains. In Chapter 2, we delve
into the background methods of model categorization,
emphasizing the significance of this process and high-
lighting existing challenges faced in accurately cate-
gorizing diverse models. We introduce the concept
of graph representation as a promising approach for
modeling physical systems, setting the stage for our
subsequent exploration. Chapter 3 presents our novel
methodology, leveraging GNNs for model categoriza-
tion. We provide an overview of our approach, detail-
ing how GNNs offer a unique and effective strategy
for this task. In Chapter 4, we undertake a compre-
hensive performance evaluation, beginning with a de-
scription of our dataset and the network parameters
used. We then present our results, analyzing trends in
test accuracy achieved through our proposed method-
ology. Finally, in Chapter 5, we discuss the out-
comes and implications of our study. Our approach
not only outperforms traditional CNN methods but
also exhibits increased capacity in handling diverse
categories of models. Moreover, our method shows
promise for enabling node-level analysis and demon-
strates improved time performance compared to exist-
ing techniques. Through this structured investigation,
we aim to advance the field of model categorization
and contribute to more effective approaches for un-
derstanding and analyzing complex physical systems.

2 BACKGROUND

2.1 Significance of Categorizing Models

Categorizing physical system models is imperative
for harnessing the wealth of data stored within struc-
tured, hierarchical formats like Extensible Markup
Language (XML) as in this paper. These structures
contain information about the architecture of the mod-
els by linking parts together. The parts contain phys-
ical properties and, therefore, specific behavior in the
system (Wellstead, 1979). This holds significant im-
portance in unlocking the wealth of knowledge stored

278

within databases, enabling engineers to leverage past
experiences and insights effectively. In engineering
and simulation domains, where the landscape is rich
with diverse models and simulations, the ability to
categorize and retrieve relevant models efficiently is
paramount. However, this process often proves to be
time-consuming and labor-intensive, hindering engi-
neers from fully capitalizing on the wealth of knowl-
edge accumulated from past projects.

One of the challenges engineers face is the ar-
duous task of searching for similar simulation mod-
els amidst vast databases. Without a systematic cat-
egorization framework in place, engineers must sift
through an extensive array of models, consuming
valuable time and resources. Engineers on an expert
level benefit in general from their long term experi-
ence, whereas beginners rely on input to work effi-
ciently and learn the physical systems fast.As signifi-
cant fluctuations occur and the demand for new career
entrants increases in response to employee shortages
(Akyazi et al., 2020), the imperative for implement-
ing such tools intensifies. The lack of efficiency not
only impedes productivity but also limits the ability
to derive meaningful insights and solutions from past
projects. As a result, valuable knowledge and expe-
rience remain underutilized, preventing organizations
from maximizing the return on investment in simula-
tion and modeling efforts.

Regarding the machine learning approach, data
scientists encounter the challenge of dealing with
small numbers of physical system models that con-
tain specific concepts or architectures. Unlike other
machine learning applications where training sets are
often abundant, the availability of models containing
particular architectures or configurations may be lim-
ited in engineering domains. In some cases, data sci-
entists may only have access to one or two models
that encompass a specific architecture, posing signifi-
cant challenges for training and validation purposes.

The scarcity of relevant training data compounds
the difficulty of developing accurate and robust cate-
gorization models, as traditional machine learning al-
gorithms as proposed in (Grbavac et al., 2023) may
struggle to generalize effectively with limited samples
(Raudys et al., 1991).

In summary, the significance of categorizing mod-
els lies in its ability to streamline knowledge dis-
covery, enhance productivity, and facilitate informed
decision-making in engineering and simulation do-
mains. By overcoming the challenges associated with
database searchability and data scarcity, engineers can
harness the full potential of model data, driving inno-
vation and advancement in their respective fields.
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2.2 Existing Challenges in Model
Categorization

Despite the abundance of information encoded in
XML structures, much of it remains untapped, repre-
senting a reservoir of valuable insights waiting to be
unlocked. Efficiently categorizing models based on
this data becomes crucial for comprehensive model
analysis and leveraging metadata for various applica-
tions, such as search engines and predictive modeling.

Presently, there exists a prevalent approach that
utilizes CNNs to categorize these models (Grbavac
et al., 2023). However, this method encounters limita-
tions when confronted with models that exhibit mul-
tiple branches. If parts of a model, that are charac-
teristic for a specific category, are spread over multi-
ple branches, the pre-processing of the approach us-
ing CNNs, by design, struggles to capture the rela-
tionships within a model. This leads to incomplete
categorization and compromised analysis.

One alternative approach proposes enhancing the
CNN methodology by dissecting each pathway within
the model, from its inception to termination nodes.
By scrutinizing individual paths and calculating
cross-correlations along each path, it becomes possi-
ble to identify overlaps and therefore branches within
the model. However, this approach introduces com-
putational challenges, notably the time-consuming
nature of cross-correlation calculations, which exhibit
a computational complexity of O(n*m), where n rep-
resents the number of different paths and m denotes
their average length (Hale, 2006). Despite its poten-
tial, this method’s efficiency is hindered by its compu-
tational demands, necessitating further exploration of
alternative techniques for scalable model categoriza-
tion.

2.3 Introduction to Graph
Representation of Physical System
Models

As introduced in (Wellstead, 1979), physical sys-
tem models are intricate constructs that abstract real-
world systems into interconnected components, such
as mechanical, thermal, fluid, magnetic, electrical ele-
ments, or equations of state, mathematical operations
and physical properties. Each component, or object,
within these models possesses distinct properties and
behaviors, representing various physical, chemical,
and mathematical elements.

Conceptually, these models can be viewed as
graphs, where nodes represent individual compo-
nents, and edges denote the connections or interac-

tions between them. As properties flow between in-
terconnected components, the graph evolves dynam-
ically, reflecting the propagation of information and
the exchange of attributes within the system. Through
this interconnected network of nodes and edges, phys-
ical system models encapsulate the complex relation-
ships and dependencies inherent in real-world sys-
tems.

By representing physical system models as
graphs, we can leverage graph-based methodologies
to analyze and categorize these models effectively.
Graphs provide a natural abstraction for capturing
the structural and functional aspects of physical sys-
tems, enabling us to explore their intricate intercon-
nections and emergent behaviors in a systematic man-
ner (Hamilton, 2020).

3 THE NOVEL APPROACH

3.1 Graph Neural Networks in Model
Categorization

GNNs offer a powerful framework for analyzing
and categorizing graph-structured data, making them
well-suited for addressing the complexities inher-
ent in physical system models. Unlike traditional
machine learning approaches that operate on fixed-
dimensional data representations, GNNs can directly
operate on graph-structured data, preserving the spa-
tial and relational information encoded within the
graph (Hamilton, 2020).

GNNs excel in learning representations of nodes
within a graph by aggregating information from their
neighboring nodes iteratively. Through a process
known as message passing, GNNs propagate informa-
tion through the graph, updating node representations
based on both local and global context. This enables
GNNs to capture the hierarchical structure and de-
pendencies present in physical system models, allow-
ing them to discern intricate patterns and relationships
that may be overlooked by conventional methods. A
more detailled overview can be found in (Hamilton,
2020).

By leveraging the rich structural information em-
bedded within graphs, the novel approach examines if
GNNss can categorize physical system models based
on their inherent properties and interconnections, and
facilitate more accurate and robust categorization out-
comes.
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3.2 Methodology Overview

The proposed methodology for categorizing physical
system models can be divided in three key steps: data
extraction and pre-processing, model building, and
training and validation:

1. Extraction of Data from XML Files and
Labelling.

The simulation model files often store much in-
formation, including parameters, setups, or ob-
ject definitions. This information has to be fil-
tered. The extraction process in this methodology
involves parsing the XML files to retrieve parts
with their specific IDs and types and the links be-
tween them. A part is an element such as pipes,
compressors, actuators, or valves as depicted in
Figure 1. These extracted components and the
links between them serve as the basis for con-
structing the graph representation of the physical
system model. On top, each model is labeled with
its corresponding multiclass categories. Pairing
these two leads to a fundamental dataset to train
the neural network.

[] category

Figure 1: Example of a physical system model of a com-
bustion engine including its periphery. Parts are connected
with each other via links and form a graph of physical enti-
ties. The categories of the model (framed in green) contain
a subgraph of the model (Grbavac et al., 2023).

2. Building a Graph Representation.

Using the extracted parts as nodes and the links as
connections, a graph representation of the phys-
ical system model is constructed. Each node in
the graph corresponds to a specific part of the
model, while the edges represent the connections
between these parts. The nodes can have various
features, with template IDs being utilized in this
methodology to represent object types or behav-
iors inherent in the simulation model.

3. Building a GNN Architecture.
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As shown in Figure 2 the GNN architecture
(Gilmer et al., 2017; Chollet et al., 2024) consists
of several key components designed to effectively
extract features from the graph representation of
the physical system model and perform catego-
rization:

(a) Message Passing.

Message passing is performed with a spec-
ified number of steps, involving information
exchange between nodes within a given n-
hop-neighborhood. This iterative process al-
lows nodes to aggregate information from their
neighboring nodes, capturing local and global
context within the graph structure.

(b) Readout.
Following message passing, a readout mecha-
nism is applied to generate graph-level repre-
sentations. This process involves partitioning
the graph into subgraphs. These then follow
padding, multi-head attention with a specified
number of attention heads, projection using se-
quential dense layers, and two-layer normaliza-
tion, followed by average pooling to obtain a
consolidated representation of the graph.

(c) Dense Layer for Categorization.
A dense layer is introduced to further refine the
learned features and prepare them for catego-
rization. This layer facilitates the extraction of
higher-level features that are relevant for distin-
guishing between different categories of physi-
cal system models.

(d) Dense Output for Categories.
Finally, a dense output layer with softmax ac-
tivation is employed to produce probability
distributions over predefined categories. This
layer maps the learned features to the respec-
tive categories, enabling the model to predict
the most likely category for a given physical
system model.

4. Model Evaluation and Validation.

(a) Training and Validation.
The constructed GNN architecture is trained
using a dataset comprising labeled physical
system models. During training, the model
learns to map input graph representations to
their corresponding categories through iterative
optimization of model parameters.

(b) Cross-Validation.
To assess the robustness and generalization ca-
pability of the categorization model, K-Fold
cross-validation is employed. This involves
partitioning the dataset into training sets mul-
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tiple times, iteratively training and evaluating
the model on different subsets of the data.

input | [(None, 2)]
output | [(None, 116)]

node_features | InputLayer

input [ [(None, 2)]
output | [(None, 2)]

bond_features | InputLayer

input | [(None, 2)]
output | [(None, 2)]

pair_indices | InputLayer

|

message_passing | MessagePassing

input | [(None, 49), (None, 2), (None, 2)]
output | [(None, 128)]

input | [(None, )]
output | [(None, )]

pair_indicator

\

transformer_encoder_readout | Readout

l

input | [(None, 128)]
output | [(None, 64)]

InputLayer

input | [(None, 128), (None, )]
output | [(None, 128)]

dense_1 | Dense

input | [(None, 64)]
output | [(None, 49)]

dense_1 | Dense

Figure 2: Scheme of the network architecture used in this
study.

4 PERFORMANCE EVALUATION

4.1 Dataset Description

The dataset used in this study primarily consists of
system models of automotive powertrain systems,
with an overrepresented amount of internal combus-
tion engines. This emphasis on combustion engines
stems from their historical dominance in the automo-
tive industry, resulting in a larger availability of simu-
lation models for such powertrains compared to alter-
native propulsion systems.

The labeling of the dataset focuses on subsys-
tems that are characteristic for powertrain concepts.
One example are turbochargers, which serve as dis-
tinguishing factors between naturally aspirated en-
gines and turbocharged engines. The latter cate-
gory can be further subdivided into single- and two-
staged turbocharged engines, reflecting variations in
turbocharging configurations commonly found in au-
tomotive applications.

Furthermore, the labels in the dataset exhibit vari-
ability in size and variance, leading to differences
in complexity and detail across different categories.
This variation reflects the diverse nature of powertrain

configurations and allows an evaluation of the catego-
rization performance across a spectrum of complexi-
ties.

The dataset comprises 55 GT-POWER simulation
models (Gamma Technologies, 2024), each contain-
ing approximately 50 to 300 objects representing var-
ious components and subsystems of automotive pow-
ertrains. These models capture different aspects of
powertrain design and operation, ranging from basic
configurations to more intricate systems. Based on
these concepts the models are labelled by 49 cate-
gories, ranging from 1 object up to subgraphs of 143
objects.

4.2 Network Parameters

The experimental setup involves exploring a range of
hyperparameters to optimize the performance of the
categorization model. The following parameters are
varied to assess their impact on model performance:

¢ Message Passing Steps. The number of message
steps during message passing ranges from 1 to 16,
allowing for the exploration of different levels of
information propagation through the graph.

* Number of Attention Heads. The number of at-
tention heads in the transformer encoder readout
ranges from 1 to 15, enabling the model to capture
varying degrees of attention and focus on different
aspects of the graph representation.

* Number of Dense Units. The number of units in
the dense layer for categorization ranges from 32
to 1024, influencing the complexity and expres-
siveness of the learned feature representations.

Additionally, to ensure robust evaluation and vali-
dation of the categorization model, the dataset is split
into 10 folds using a K-Fold cross-validation strategy.
A binary cross-entropy loss function is chosen and op-
timized by an Adaptive Momentum (Adam) optimizer
as it acchieves great results with graph classification
(Gilmer et al., 2017).

4.3 Results

The categorization model demonstrates excellent per-
formance overall, achieving an accuracy of over 90%
on the test dataset. This high level of accuracy high-
lights the model’s ability to effectively categorize
physical system models, even when faced with com-
plex categories and variations in model characteris-
tics.

Figure 3 shows the average test accuracy for all
49 classes. These are shown for the parameter com-
bination with the best overall results. Regarding the
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categorization ability for each class, the best results
are achieved with 4 message steps, 10 attention heads,
and 32 dense units. This configuration achieves very
good accuracy for each class, with the exception of
class no. 4 (Single Staged Turbocharged Engine),
which exhibits slightly lower accuracy. However, all
other classes achieve at least 83% accuracy, demon-
strating the model’s strong categorization capabilities
across diverse categories.

Message Steps: 4, Number of Attention Heads: 10, Dense Units: 32

.0

Test Accuracy
4 e
% o

e
3

e
>

0.5
Category

Figure 3: Average accuracy of the 49 categories after a
training with 4 message steps, 10 attention heads and 32
dense units over 10 folds. With an overall accuracy of 98%
this parameter combination forms the best overall results.

Trends of the Test Accuracy.

Several notable trends emerge from the experimental
results, providing insights into the impact of hyperpa-
rameters on categorization performance:

* When using 32 neurons in the categorizing dense
layer, the median of the test accuracy remains con-
sistently high regardless of the number of mes-
sage steps and attention heads (see Figure 4a-c).
However, as shown in (see Figure 4d-f and 4g-i),
with an increasing number of neurons in the dense
layer, the median tends to decrease as the number
of message steps increases.

* As shown in see Figure 4a-c, the number of atten-
tion heads shows a small influence on the mean
accuracy when the network has 32 dense units
in the categorization layer, with hardly better re-
sults observed with a higher number of attention
heads. However, this trend is not consistent when
using a higher number of dense units, indicating a
more complex relationship between these param-
eters (see Figure 4g-i).

* Overall, the number of attention heads has no
significant influence on accuracy, suggesting that
other factors play a more dominant role in deter-
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mining categorization performance.

* However, the variance of accuracy over the k folds
increases with a higher number of dense units in
the categorizing layers ( Figure 4a, d and g) and a
higher number of message steps Figure 4c, f and
1), indicating increased sensitivity to variations in
these hyperparameters.

S DISCUSSION

The results obtained from the experimental evaluation
of the novel GNN based approach for categorizing
physical system models reveal significant improve-
ments over the traditional CNN approach (Grbavac
et al., 2023). Several key points highlight the supe-
riority of the GNNs approach and suggest potential
areas for further enhancement and analysis.

5.1 Superior Performance over CNN
Approach

The performance of the novel GNN-based approach
significantly surpasses that of the CNN approach. The
CNN approach, which extracts paths from start to
end nodes and categorizes them individually, is in-
herently limited in its ability to handle categories that
span multiple branches (see Figure 5). In contrast,
the GNN approach demonstrates superior adaptabil-
ity and robustness in categorizing models with com-
plex structural relationships that extend across multi-
ple branches. This highlights the inherent advantages
of the GNN approach in handling graph data with in-
tricate interconnections.

5.2 Increased Capacity for Handling
Categories

The GNN approach exhibits a much higher capac-
ity for handling categories compared to the CNN ap-
proach. While the categories in the CNNs paper are
limited to a maximum of 15 objects, the novel ap-
proach extends this limitation significantly, accom-
modating categories consisting of up to 143 objects.
This expansion not only increases the breadth of cat-
egories that can be considered but also enhances the
complexity of these categories, allowing for more nu-
anced and detailed categorization of physical system
models.
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Figure 4: Investigation of parameter variations on the test accuracy of the GNN model. The boxplots represent the K-Fold
distribution for different parameter combinations. The box plot highlights the median, quartiles, and outliers, providing
insights into the variability and central tendencies of the test accuracy.

Category X

connection

Model paths:
1-2-3-4-7-10-13-14
1-2-3-5-8-11-13-14
1-2-3-6-9-12-13-14

object

start-node

HEC].

end-node

Figure 5: Example of a branched graph and the extraction of
the model paths based on the CNN approach. To categorize
all elements of the category X, the paths have to be catego-
rized based on a characteristic length in each path. Other-
wise an intersection has to be calculated via cross-entropy
(Grbavac et al., 2023).

5.3 Potential for Node-Level Analysis

To further analyze the differences in accuracies result-
ing from different parameter combinations, the novel
approach can be extended to enable node-level anal-
ysis. By examining embeddings on a node level and
comparing them with node-level labeling, the perfor-
mance of the GNN can be assessed in greater detail.
This extension would provide insights into how effec-
tively the GNN model captures and utilizes informa-
tion at the level of individual nodes, shedding light on
its performance beyond the graph level.

5.4 Improved Time Performance

In addition to its superior categorization performance,
the novel GNN approach also outperforms the CNN
approach in terms of time efficiency. The CNN ap-
proach’s preprocessing phase is significantly more
time-consuming due to its large recursive search
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through the graph and the training process involving
a substantial number of extracted paths. In contrast,
the GNN approach achieves comparable categoriza-
tion accuracy with approximately ten times faster pro-
cessing times, making it a more practical and efficient
solution for real-world applications.

6 CONCLUSIONS

Tthe present study has demonstrates the effective-
ness of a novel GNN based approach for categoriz-
ing physical system models, particularly focusing on
automotive powertrain systems. Through rigorous ex-
perimentation and analysis, several key findings have
emerged, highlighting the significant advancements
achieved by the proposed methodology.

Firstly, the GNN approach shows superior perfor-
mance compared to traditional CNN methods, par-
ticularly in handling complex graph structures with
branched pathways. While the CNN approach strug-
gles with categorizing models that span multiple
branches, the GNN approach, leveraging message
passing, exhibits remarkable adaptability and robust-
ness in capturing the intricate interconnections within
the graph.

Furthermore, the GNN approach indicates an in-
creased capacity for handling a wider range of cat-
egories, including those with higher complexity and
variance. By extending the limitations imposed by
previous CNN-based methods, the novel approach en-
ables more refined categorization of physical system
models, thereby enhancing the depth of analysis and
insights derived from the categorization process.

Moreover, the potential for node-level analysis
presents exciting opportunities for further refinement
and optimization of the GNN approach. By examin-
ing embeddings at the node-level it can provide valu-
able insights into its effectiveness in capturing infor-
mation at a granular level.

Finally, the improved time efficiency of the GNN
approach gives a significant practical advantage over
traditional CNN methods. With processing times
approximately ten times faster than CNN-based ap-
proaches, the GNN approach offers a more efficient
and scalable solution for real-world applications.

In summary, the findings from this study under-
score the promising potential of GNN-based method-
ologies for advancing the field of system model cat-
egorization. As we continue to refine and optimize
these approaches, we can expect further advance-
ments in our ability to analyze and understand com-
plex physical systems, ultimately driving innovation
and progress in engineering and simulation research.
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ACRONYMS

Adam Adaptive Momentum.

CNN Convolutional Neural Network.
GNN Graph Neural Network.

XML Extensible Markup Language.



