
Automatic Generation of Problem-Solving Assessment Items 
Through Domain Model Variations  

Inga M. Saatz a  
Fachbereich Informatik, University of Applied Sciences and Arts Dortmund, Emil-Figge Strasse 42, Dortmund, Germany 

Keywords: Item Generation, Problem-Solving, Domain Model, Assessment.  

Abstract: In computer science education, variations in the application contexts in modelling and programming tasks 
enhance the development of problem-solving skills. This results in a demand for a vast training and testing 
corpus of open questions with varying domain models usable in online and offline assessments. This paper 
proposes a two-step workflow for the automatic generation of items with varied domain models. First, 
experiences are provided about using the generated test corpora in formative assessments in computer science 
courses in higher education, especially for problem-based questions. 

1 INTRODUCTION 

In an online assessment, an interaction between 
learners during the examinations could not be 
sufficiently excluded, mainly if web-based test tools 
by a learning management system are used or 
programming tasks should be done within the 
examination. One solution is the provision of 
individual assessment tasks for each student of 
similar difficulty levels. This individualised approach 
requires the development and quality assurance of a 
vast pool of test items before the examination.  

In computer science education, however, students 
learn problem-solving skills, such as analysing and 
modelling real-life scenarios, implementing the 
models in computer programs, and testing the 
implemented programs. Subsequently, students show 
their ability to understand and apply their knowledge 
in the context of practical problems by using different 
domains (Ferreira et al., 2018).  

This leads to the research question of how to 
develop items for measuring problem-solving skills 
in computer science education using models for 
multiple domains, which would effectively prevent 
students from cheating in online examinations. 
However, support for varying domain models in 
automatic item generation is missing, especially for 
items addressing problem-solving skills.  

 
a  https://orcid.org/0000-0002-7371-806X 

This paper proposes a two-step workflow for the 
automatic generation of items with varied domain 
models applicable to higher education in computer 
science.  

This paper is structured as follows: The second 
paragraph outlines the related work, whereas the 
following paragraph presents the proposed two-step 
workflow. The fourth paragraph discusses the first 
experiences using the proposed item generation 
workflow, followed by a discussion section. The 
paper concludes with a summary and an outlook.  

2 RELATED WORK 

Closed question types are most frequently used in 
automatic item generation, such as single- and 
multiple-choice, free-text, and fill-in-the-blank 
questions. In contrast, open-ended questions are less 
used in educational assessments (Circi, Hicks, Sikali, 
2023). All these question types consist of a reading 
passage with a context description followed by the 
question to be answered. Furthermore, closed 
question types contain items, distractors, and the 
correct answers (Gierl et al. 2021). In mathematical 
and engineering education, various numerical values 
might be sufficient to create different items. In 
computer science, however, the automatic generation 
of variations in the task’s domain model description  

830
Saatz, I.
Automatic Generation of Problem-Solving Assessment Items Through Domain Model Variations.
DOI: 10.5220/0012753100003693
Paper published under CC license (CC BY-NC-ND 4.0)
In Proceedings of the 16th International Conference on Computer Supported Education (CSEDU 2024) - Volume 1, pages 830-835
ISBN: 978-989-758-697-2; ISSN: 2184-5026
Proceedings Copyright © 2024 by SCITEPRESS – Science and Technology Publications, Lda.



 
Figure 1: Automatic item generation workflow. 

is necessary for programming and modelling tasks, 
especially to address problem-solving skills. 
Foulonneau and Ras (Foulonneau and Ras, 2013) 
generated test questions from Semantic resources in 
the Semantic Web for educational purposes. This 
approach could generate tasks for testing factual and 
contextual knowledge using the content data 
described by the corresponding Resource Description 
Framework (RDF). This leads to question types with 
content variations, for example, in questions for 
naming the capitals of different countries. However, 
typical computer science modelling and 
programming tasks focus on describing structures and 
metadata of the content data and not the content itself. 
The corresponding domain model contains entity and 
condition descriptions, such as ‘A [country] must 
have one [capital]’. Therefore, modelling and 
programming tasks are more related to the higher skill 
levels of application and analysis in Bloom’s revised 
taxonomy (Anderson, Krathwohl, 2001).  

Furthermore, modifications of the domain model 
affect the task description text. Xiao et al. (Xiao et al., 
2018), for example, reported on automatically 
generated multiple-choice tasks for language learning 
by selecting appropriate prepositions in the stem and 
distractors generation. They created a feature list and 
syntax tree for the example sentences to identify the 
blank’s position and to classify the task’s difficulty. 
However, a domain model modification affects the 
whole task description text. For example, when 
replacing the words in brackets in the condition 
example above with the words ‘woman’ and ‘child’, 
the obligation (‘must’) does not fit. It should be 
changed to an optional condition to fit better into real-
world scenarios. Furthermore, the change of verbs 
and nouns in a sentence may imply changes to the 
word forms, too, especially in languages relying on 
grammatical cases, such as German. Thus, a 
particular language model is needed to provide 
correct grammar and sentence structure. 

In a literature review, Setianwan, Hidayah, and 
Kusumawardami found three kinds of evaluation 
methods (expert-based, student-based, and 
mathematical model-based evaluation) for automatic 
item datasets (Setianwan, Hidayah, and 
Kusumawardami, 2022). In expert-based evaluation, 
the item datasets are evaluated, for example, 
regarding objectivity, answerability, and correctness.   

3 TASK GENERATION FOR 
PROGRAMMING EDUCATION 

3.1 Workflow for the Automatic Item 
Generation  

The proposed approach separates content, domain, 
and layout information to generate multiple question 
types based on various domain models. This resulted 
in a two-step item generation workflow depicted in 
Figure 1.  

In the first step of the workflow, question 
templates are rendered with domain parameters by a 
template engine. Question templates comprise all 
content data needed for creating a question-type item. 
This includes, for example, the reading passages, 
context description, question text, selection items, 
solution texts, and links to figures to be embedded in 
questions or solutions. Furthermore, language 
declination parameters for the domain models could 
be provided. In this example, the language parameters 
could be used to adapt the indefinite articles 
according to the starting character of the domain 
parameter. A rule-based extension of the templating 
engine is used to declinate articles, nouns, and 
adjectives in German text passages. Through this 
templating approach, long and complex sentences 
could be used in the item texts. The output of the first 
step of the generation workflow is a JSON file with 
item parameters, one for each domain model.  

Automatic Generation of Problem-Solving Assessment Items Through Domain Model Variations

831



In the workflow’s second step, the item template is 
rendered with the item and examination parameters. 
The examination parameters comprise the assessment-
specific data, such as date, course, duration, and 
participant data (if necessary). The created output 
depends on the used item template and the purpose of 
the items. For an online assessment, for example, the 
QTI (Question and Test Interoperability specification) 
item template creates an import file for the learning 
management system.  Text item templates are used to 
generate LaTex files for a paper-based assessment. 
Furthermore, separate solution resources could be 
generated to support the faculty staff in evaluating the 
student solutions to the individualised assessment 
tasks. Generated solution hints could consist of lists of 
keywords. These lists are used to check student 
problem-based solutions automatically.  

3.2 Example 1: Modelling Item 

One area of problem-based assessment tasks in 
computer science education is modelling tasks 
according to described scenarios. As an example, the 
question text of a task regarding formulating a 
database query looks like as follows:  
Consider the entities [Word1] and [Word2] 
and the condition  
‘A [Word1] [Obligation] have 
[Cardinality] [Word2]’.  
Implement corresponding relational model 
in SQL with appropriate attributes and 
constraints.  

In this case, the domain parameter file contains a set 
of domain parameters for each domain model, as 
shown in Table 1. 

Table 1: Examples of domain parameters. 

word1 word2 obligation cardinality
country capital  must one
mother child could many

The first item in Table 1 calls for creating one 
relational table with a constraint, which checks the 
presence of a capital name.  The second item in Table 
1 is modelled by creating two relational tables, one of 
which references the other. The resulting (simplified) 
keyword lists are depicted in Table 2. 

Table 2: Example of solution hints. 

Word2 Modelling  Keyword lists
capital one table CREATE TABLE country 

capital NOT NULL
child two tables CREATE TABLE mother 

CREATE TABLE child 
mother REFERENCES

Through this two-step rendering process, 
structurally identical items are generated. The 
difficulty level of each item is similar, depending on 
the domain parameters used. Structural variations 
between the items could be achieved by varying the 
corresponding question templates.  

3.3 Example 2: Programming Item  

In computer science education, programming tasks 
are used to test problem-solving skills. Fill-in-the-
blank question types could be used to test knowledge 
about the programming syntax while providing parts 
of the problem solution, as shown in the following 
item template example.  
Given are the relational tables 
[mother](id, name) and 
[child](id,[child]name,[mother]).  
Fill in the gap in the SQL Statement to 
select the [name]s of the [child]ren 
and the corresponding [mother].  
SELECT [child]name, [mother] FROM 
[child] WHERE _______; 

Asking to formulate an SQL Statement would address 
a higher level of problem-solving skills in this 
example. Therefore, an open (free-text) question type 
is more appropriate for testing programming 
problem-solving and programming skills. However, 
the description of scenarios with domain parameters 
increases the complexity of the question templates to 
ensure the readability of the resulting item templates. 
For instance, the domain parameter [child] occurs in 
singular, plural, and a combined variation. 
Furthermore, conditions such as ‘name starts with the 
letter L’ must apply to all domain models.  

The generation of solution hints has to consider 
different problem-solution approaches. Student 
solutions to this example question may contain 
aliases, permutated attribute lists, or alternative 
condition formulation, such as:   
SELECT c.childname, m.name   
FROM child c NATURAL JOIN mother m 
 
SELECT childname, mother   
FROM child  
WHERE mother IN (SELECT id FROM mother) 

However, using keyword lists was insufficient for a 
fully automated evaluation of student solutions. For 
this example, a parser for SQL could be used to 
automatically evaluate the correctness of student 
solutions, as the author proposed (Saatz 2017).  
 
 

AIG 2024 - Special Session on Automatic Item Generation

832



3.4 Example 3: Programming Item 

Item generation for imperative or object-oriented 
programming tasks is even more challenging as the 
solution requires a sequence of decisions. The 
following generated item, taken from an examination, 
measures the skills in programming in imperative 
(PL/SQL) programming languages.  
Consider the following relation: 
[enrolment] ([modulid], 
[studentnumber], [status], 
[enrolmentdate]) 
It should be ensured that a [enrolment] 
to a [module] can only be [deleted] if 
the [status] is "[enrolled]" and the 
[deletion] is done within [14 days] 
after the [enrolment date].  
Implement this rule in Oracle and 
provide test cases to validate it. Pay 
attention to structured programming. In 
case of failure, meaningful error 
messages should be displayed. 

In contrast to the second example task, this example 
question describes a real-world scenario calling for 
implementing a rule in an imperative database 
program. However, the question does not state what 
kind of database program (stored function, stored 
procedure or trigger) has to be implemented or how 
the implemented program has to be tested. To test the 
database program, the students must formulate data 
manipulation statements. Further constraints, for 
example, structured programming and meaningful 
error messages, are added to the question text to 
ensure similar difficulty levels for evaluation 
purposes. Although solution hints for such 
programming tasks could be created according to the 
domain model, the generated solutions do not cover 
all possible structural solution variations.  

4 FIRST EXPERIENCES  

Since 2021, the author has used the two-step 
workflow for the automatic generation of items with 
varying domain models. The generated items have 
been used in formative assessments of a database 
course since 2021 at the author's university. In each 
year, 148+/-6 students participate in the formal 
assessment. In the first examination in 2021, question 
templates were used, each covering sequenced tasks 
in declarative (SQL) and imperative (PL/SQL) 
programming languages. In 2021, 5 question 
templates covering a whole examination were used 
together with 18 domain models. Thus, 90 assessment 

items were assigned individually to the participants in 
an open-book examination. Each question template 
contained problem-solving tasks, such as 
implementing a database scheme, queries, and views 
and implementing and testing a database program.  
However, solutions to generated items according to at 
least two question models seemed to have been 
exchanged between the participants during the 
examination due to similarities in the student 
solutions.  

Therefore, since 2022, the learning management 
system has been used to assign randomly generated 
test items from 13 item pools to the students. In this 
examination, modelling items comprise the creation 
of installation scripts with more constraints for up to 
three relations, structurally comparable to example 1. 
The items testing the skills in declarative 
programming have had a higher difficulty level than 
provided by example 2 due to more complex 
solutions containing join and set operations, nested 
queries, or the definition of views. The imperative 
programming items are comparable to the given 
example 3 above. Due to the limitations of the 
Learning Management System, assigning each 
student individual tasks as intended was impossible. 
Therefore, 18 domain models were combined with six 
up to nine question templates for each task assigned 
randomly to the examinees. Thus, each participant got 
items according to varying domain models in this 
examination. The assessments comprised up to 35% 
of closed questions (single- and multiple-choice) and 
open free-text questions problem-based questions. 
However, using generated assignment tasks with 
individual assigned domain models does not prevent 
students from exchanging solutions during the online 
examination. Two malpractice cases occurred where 
students submitted the exact solution to open 
questions corresponding to another domain model or 
template. Typical student errors could explain some 
other instances of similarities between solutions. 
Differences in the difficulty level did not appear, 
apart from two cases of readability issues due to 
grammatical flaws in the reading text.  

The assurance of the item template’s quality is 
essential for successfully generating items using the 
proposed two-step workflow. Overall, reviewing the 
question templates is more demanding than reading 
plain text, as descriptions in question templates are 
more abstract. Therefore, an expert-based evaluation 
has been carried out on the test corpora instead of a 
student-based or model-based evaluation. The model-
based and the student-based evaluation methods are 
not applicable due to the absence of a mathematical 
model when varying the domain context. In this 

Automatic Generation of Problem-Solving Assessment Items Through Domain Model Variations

833



expert-based evaluation, the templates and the 
generated documents must be read carefully to spot 
any semantic, syntax, or language errors. After that, 
the expert must decide whether to change one of the 
parameter lists (semantic), the templates (semantic, 
syntax, language), or the corresponding word 
conjugation list (language).  

5 DISCUSSION 

Overall, the detection rate seems lower than in online-
supervised examinations performed simultaneously 
at the author's faculty. Therefore, randomly assigning 
automatically generated items with varying domain 
models indicates a way of keeping students from 
exchanging solutions in online assessment.   

The usage of automatic item generation in 
educational assessments promises reduced cost, time 
and effort in creating items for large item pools (Circi, 
Hicks, Sikali, 2023). This central promise of rapid 
item development for large item pools could be 
proven by applying the proposed two-step workflow 
for the automatic generation of items. Four challenges 
according to automatic item generation have been 
identified (Setianwan, Hidayah, and 
Kusumawardami, 2022): 
- Generate various types of question types. 
- Handle long and complex sentences. 
- Dataset availability for non-English languages. 
- Capability to control question difficulty. 
The proposed two-step workflow contributes to all 
these challenges. Item templates were developed for 
single- and multiple-choice, fill-in-the-gaps, and free-
text questions with or without integrated images. 
Extending to further question types or changing the 
learning management system is possible by 
developing new item templates. An item template is 
developed by parametrising a corresponding QTI file.  

The development of further domain models 
requires the addition of domain parameters and their 
corresponding German language parameters. The 
language parameters are used to generate long and 
complex sentences to describe question scenarios and 
contexts based on different domain models.  
Through artificial intelligence-powered tools, 
evaluating the generated test corpora regarding 
syntactical and language errors and even translating 
them to other languages might be possible. However, 
reviewing templates, domain-related parameters, and 
semantic correctness might remain expert-based, as 
understanding the structures, learning goals, and real-
world contexts is necessary to check the correctness 
and readability.  

The advantage of using question templates 
combined with various domain models is that it eases 
the effort of creating examinations of similar 
difficulty levels. Therefore, the question template 
determines the item’s difficulty level. However, the 
used domain model might also influence the item’s 
difficulty level. Chen et al. examined the effect of 
randomly chosen numerical parameters on the 
difficulty of generated questions (Chen et al., 2019). 
Their findings indicate only a limited impact of the 
parameters on the difficulty level in 5% of the 
examined AIGs. However, parameters defining 
domain models might have a more significant effect, 
as the students might be more accustomed to one 
domain model than another, which influences the 
readability of the task descriptions. Therefore, the 
influences of the parameter choices on the difficulty 
level of the generated tasks have to be examined 
further. However, constructing a similarity measure 
for automatically generated problem-solving tasks 
with different domain models is an area of interest in 
further research. Providing all structural solutions of 
open problem-solving tasks, such as programming 
tasks, for an automatically generated question item is 
even more challenging.  

6 CONCLUSION AND OUTLOOK 

A two-step workflow for automatic item generation 
can provide items with domain model variations for 
problem-solving exercises in computer science 
assessments. The generated corpora are useable in 
formative assessments in computer science 
education, providing individual assignment tasks to 
the students. To maintain and extend the corpora, 
additional templates and domain models should be 
developed for each examination period in the future.  

One drawback of the proposed two-step workflow 
is that the information used to generate an item is 
scattered throughout various resources. Therefore, a 
database application should be used to maintain 
items, templates, and parameters more efficiently. 
Furthermore, the influence of domain models on the 
item’s difficulty level has to be explored in more 
detail. Even more challenging is generating feedback 
for problem-based items, such as programming tasks, 
with various correct solutions. One possible solution 
might be integrating an artificial intelligence-
powered tool in the proposed workflow to ensure the 
generated items' readability and to generate more 
specific feedback according to typical student errors.  

AIG 2024 - Special Session on Automatic Item Generation

834



ACKNOWLEDGEMENT 

The author thanks Melanie Beutel for assistance with 
developing item templates for the learning 
management system ILIAS.  

REFERENCES 

Anderson, L.W., Krathwohl, D.R. (2001). A Taxonomy for 
Learning, Teaching, and Assessing: a Revision of 
Bloom’s Taxonomy of Educational Objectives. 
Longman, New York. 

Circi, R., Hicks, J., Sikali, E. (2023). Automatic item 
generation: foundations and machine learning-based 
approaches for assessments. In Frontiers in Education. 
8:858273. doi: 10.3389/feduc.2023.858273  

Chen, B., Zilles, C., West, M., Bretl, T. (2019). Effect of 
Discrete and Continuous Parameter Variation on 
Difficulty in Automatic Item Generation. In AIED 
20219, LNAI 11625, pp. 71-83. Springer Nature 
Switzerland AG. 

D. J. Ferreira, A. P. Ambrósio, T. Nogueira, M. R. D. 
Ullmann and T. F. N. Melo, "Students’ Perceptions of 
Applying Real-world Problem Solving in Computer 
Science Education : Case Study in Interaction Design," 
2018 IEEE Frontiers in Education Conference (FIE), 
San Jose, CA, USA, 2018, pp. 1-8, doi: 
10.1109/FIE.2018.8658458 

Foulonneau, M., Ras, E. (2013). Using Educational Domain 
Models for Automatic Item Generation Beyond Factual 
Knowledge Assessment. In EC-TEL 2013, LNCS 8095, 
pp. 442-447. Springer-Verlag Berlin Heidelberg. 

Gierl, M. J., Lai, H., & Tanygin, V. (2021). Advanced 
methods in automatic item generation.  Taylor & 
Francis eBooks. Routledge. 
https://doi.org/10.4324/9781003025634 

Gierl, M. J., Matovinovic, D., Lai, H. (2019). Creating 
Content for Educational Testing Using a Workflow 
That Supports Automatic Item Generation.  In EAI 
International Conference on Technology, Innovation, 
Entrepreneurship and Education, Lecture Notes in 
Electrical Engineering 532. Springer Nature 
Switzerland AG.  

Grammarly (2024). Grammar checker. Available at: 
www.grammarly.com/grammar-check (Last Accessed: 
28.02.2024). 

Setianwan, H., Hidayah, I., Kusumawardani, S. (2022). 
Automatic Item Generation with Reading Passages: A 
Systematic Literatur Review. In: 8th International 
Conference on Education and Technology (ICET). 
IEEE. 

Saatz, I. (2017). Wo steckt nur der Fehler in der SQL-
Anfrage? Semantische Prüfung von Lösungen.  

      3. Workshop Automatische Bewertung von 
Programmieraufgaben (ABP 2017), Potsdam, 
Germany. Available at: https://ceur-ws.org/Vol-

2015/ABP2017_paper_06.pdf (Last Accessed: 
20.03.2024). 

Xiao, W., Wang, M., Zhang, C., Tan, Y., Chen, Z. (2018). 
Automatic Generation of Multiple-Choice Items for 
Prepositions Based on Word2vec. In ICPCSEE 2018, 
CCIS 902, pp. 81-95. Springer Nature Singapore Pte 
Ltd. 

 

Automatic Generation of Problem-Solving Assessment Items Through Domain Model Variations

835


