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Abstract: Graphical conceptual modeling is an important competency in various disciplines. Its mastery requires self-
practice with tasks that address different cognitive processing dimensions. A large number of such tasks is
needed to accommodate a large number of students with varying needs, and cannot be produced manually.
Current automatic production methods such as Automatic Item Generation (AIG) either lack scalability or fail
to address higher cognitive processing dimensions. To solve these problems, a generalized AIG process is
proposed. Step 1 requires the creation of an item specification, which consists of a task instruction, a learner
input, an expected learner output and a response format. Step 2 requires the definition of a generator for the
controlled generation of items via a configurable generator composition. A case study shows that the approach
can be used to generate graphical conceptual modeling tasks addressing the cognitive process dimensions
Analyze and Create.

1 INTRODUCTION

Conceptual modeling is the process of abstracting a
model from a real or proposed system (Robinson,
2008). The outcome of conceptual modeling is an ab-
straction or graphical representation of the modelled
system in the chosen modeling language (He et al.,
2007; Delcambre et al., 2018; Guarino et al., 2019).
The modality of the conceptual model depends on the
type of modeling language, e.g. textual or graphical.

As laid out by Striewe et al., conceptual modeling
is a core component of the curriculum of Business In-
formatics and neighbouring disciplines (Striewe et al.,
2021) (Soyka et al., 2022). Multiple organizations,
such as the Association for Computing Machinery
(ACM) and the Gesellschaft für Informatik (GI) rec-
ommend including conceptual modeling into the cur-
ricula of various IT-disciplines (ACM, 2021; GI,
2017).

In IT-related disciplines, graphical conceptual
modeling may be applied to construct diagrams for
designing databases and software or business pro-
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cess models to abstract a planned or existing area
of an organization. Beyond that, conceptual model-
ing is broadly applicable in different disciplines, e.g.
mathematical modeling (Dunn and Marshman, 2019),
molecular modeling (Taly et al., 2019) or modeling
schemata in music theory (Neuwirth et al., 2023).

To teach, learn and assess graphical conceptual
modeling, summative and formative assessments are
required (Meike and Constantin, 2023). An assess-
ment is a set of one or many assessment-items (items).
An item refers to a statement, question, exercise,
or task for which the test taker is to select or con-
struct a response, or perform a task (American Ed-
ucational Research Association and American Psy-
chological Association, 2014). Assessments may ad-
dress different cognitive processing dimensions. To
model these cognitive processing dimensions, we uti-
lize the revised Bloom’s taxonomy (Anderson et al.,
2001), due to its popularity for structuring modeling
tasks (Soyka et al., 2022; Bork, 2019; Bogdanova and
Snoeck, 2017).

Striewe et al. further argue, that there is
a large unmet demand for a shift from lecturer-
centered to student-centered teaching. This shift
requires strengthening problem-solving and self-
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learning skills of students. This, in turn, requires the
creation of competence-oriented assessments, partic-
ularly assessments that address higher cognitive di-
mensions. Using traditional multiple choice (MC)
questions or other closed task formats make it chal-
lenging to address these higher cognitive dimensions.
Conceptual modeling is especially affected by this
limitation, as it is the practical application of model-
ing methods and tools that is of importance (Striewe
et al., 2021).

The construction of conceptual modeling tasks is
demanding. This is especially true for conceptual
modeling tasks that address higher cognitive process-
ing dimensions, as they require a meaningful problem
description, instructions and at least a sample solution
model. Thus, only a small amount of tasks is available
to students, which limits their opportunity to exercise
their abilities and therefore hinders their learning pro-
cess.

To solve the problem of insufficient amounts of
conceptual modeling tasks, addressing higher cog-
nitive processing dimensions, we identified 3 ap-
proaches:

1. Traditional item development (Rudolph et al.,
2019), which represents the manual effort of cre-
ating graphical conceptual modeling tasks. This
approach does not scale to a large amount of tasks
to be created, since lecturing staff is a limited re-
source.

2. Automatic item generation (AIG) (Gierl et al.,
2021), which utilizes human-made task-templates
and computer technology, to create many tasks ac-
cording to that template. This approach generally
only applies to closed task formats, that make it
challenging to address higher cognitive process-
ing dimensions.

3. Domain-specific methods (Schüler and Alpers,
2024; Yirik et al., 2021; Ghosh and Bashar, 2018),
which commonly utilize transformation rules, to
transform a (often textual) representation into a
valid model of a formal modeling language. This
approach requires lecturing staff to provide sepa-
rate input for each task to be generated, and thus
does not scale.

Because all three approaches have serious disad-
vantages, it is an open research question how to pro-
vide a sufficient amount of graphical conceptual mod-
eling tasks for each cognitive processing dimension of
the revised Bloom’s taxonomy.

Chapter 2 provides a deeper analysis of the re-
search question and defines requirements for potential
solutions. Chapter 3 gives an overview of the current
state of the art and its shortcomings with respect to

the defined requirements. Chapter 4 presents the pro-
posed solution to the defined question. Chapter 5 val-
idates the proposed solution by utilizing a case study
to show that the requirements are met. Chapter 6 pro-
vides a summary of the paper and an overview of open
questions and future research.

2 ANALYSIS

To answer how to provide a sufficient amount of
graphical conceptual modeling tasks for each cogni-
tive processing dimension, one must first define 1.)
what graphical conceptual modeling tasks are, 2.)
how a specific graphical conceptual modeling task ad-
dresses a specific cognitive dimension and 3.) what a
sufficient amount of each graphical conceptual mod-
eling task is.

1.) and 2.) are best answered in conjunction, by
defining a mapping of cognitive process dimensions
to potential types of graphical conceptual modeling
tasks. We utilize the work of (Bork, 2019), which
maps the cognitive processing dimensions to poten-
tial conceptual modeling tasks, and specify a concrete
conceptual modeling task with an item specification
for each dimension. An item specification, akin to
Gierl’s definition of a cognitive model, refers to the
concepts, assumptions and logic to create and the as-
sumptions about how examinees are expected to solve
a content-specific task (Gierl et al., 2021).

Table 1 shows the mapping of cognitive process
dimension to each item specification. The cognitive
process dimensions refer to the 6 dimensions of the
revised Bloom’s taxonomy. A placeholder is signi-
fied by angle brackets. An item specification holds
the information required to perform the task, that is
described by it. An item specification consists of an
instruction template, an input placeholder, an output
placeholder and a response format. The instruction
template specifies what task the learner is expected
to perform, the input placeholder contains the con-
tent that is required to perform the task, the output
placeholder contains an expected solution, and the re-
sponse format governs how the learner’s response is
retrieved.

The placeholders must be filled with a concrete in-
stance of the placeholder type. This can be done man-
ually or via an automated production process. Once
the placeholders are filled, an item-instance is created.

The first row in Table 1 shows an example item
specification of a task that is specified for the dimen-
sion Remember. In this case, it is a selected-response
task, e.g. MC. The instruction guides the learner to
select the correct name of an element of a modeling
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Table 1: Cognitive Process Dimension Mapped to Item Specification of Conceptual Modeling Tasks.

Dimension Item Specification
Instruction
Template

Input
Placeholder

Output
Placeholder

Response
Format

Remember Select the correct name
of the shown syntactical
element in the notation
of 〈MODELING LAN-
GUAGE〉.

〈SYNTACTICAL
ELEMENT〉

〈SOLUTION〉
〈DISTRACTORn〉

Selected-
Response

Understand Select the correct semantic
concept of the shown con-
struct.

〈MODEL CON-
STRUCT〉

〈SOLUTION〉
〈DISTRACTORn〉

Selected-
Response

Apply Use 〈SET OF OPER-
ATIONS〉 to transform
〈PROCESS PART〉 into
〈TRANSFORMED PRO-
CESS PART〉.

〈MODEL〉 〈TRANSFORMED
MODEL〉

Constructed-
Response

Analyze Find and mark syntactical
errors in the shown model.

〈ERRONEOUS
MODEL〉

〈MARKED
MODEL〉

Constructed-
Response

Evaluate Find and mark the inconsis-
tencies between the textual
and graphical model repre-
sentation.

〈MODEL WITH
LABELS〉 〈TEX-
TUAL MODEL
DESCRIPTION〉

〈MARKED
MODEL〉
〈MARKED MODEL
DESCRIPTION〉

Constructed-
Response

Create Create a model from the
given textual description in
the notation of 〈MODEL-
ING LANGUAGE〉.

〈TEXTUAL
MODEL DE-
SCRIPTION〉

〈MODEL WITH
LABELS〉

Constructed-
Response

language, that has yet to be specified. The learner is
presented an input, more precisely a graphical syntac-
tical element of a modeling language. The learner is
then expected to select one of the presented options,
of which one is the solution and the remainder being
distractors.

Other tasks include the application of model trans-
formations on a presented model, finding and marking
errors in a erroneous model, finding inconsistencies
between a textual and a graphical representation of a
model and the manual creation of a model, given a
textual description of the model.

The generation of the aforementioned conceptual
modeling tasks require the generation of viable in-
stances of the specified input and output placeholder,
that fit the instruction (Requirement R1).

To answer 3.), what determines the sufficient total
number of items A, we propose the following simpli-
fied model:

Let Ic be the number of items for a cognitive pro-
cessing dimension c, and let IC = ∑

|C|
c=1 Ic be the num-

ber of items for all cognitive processing dimensions
C, that we assume necessary for students exercising
and the assessment of students. Let om be the number
of learning objectives of a module m. The total num-

ber OM of learning objectives for all modules M is
then calculated as OM = ∑

|M|
m=1 om. Let T be the num-

ber of teachers. As teachers may prefer the formu-
lation and style of the items to be conforming to the
rest of their learning material, they each might need
separate items. Thus, we arrive at

A = T ∗OM ∗ IC (1)

for computing the number of items needed. IC
may be broken down further as the sum of the num-
ber of items required in a set S of different scenarios
IC = ∑

|C|
c=1 ∑

|S|
s=1 Ics . Different scenarios may include

(I) the number of items required in the coursework
IcW , (II) the number of items a learner requires for
individual practice IcP or (III) the number of items
for exams IcE . In the case of individual practice, it
may be required to provide a number of personal-
ized items for a number of learners L, resulting in
IcPL

=∑
L
l=1 Icl In the case of exams, it may be required

to provide a.) new items for every exam in order to
avoid memorization and b.) different items per exam-
inee in order to minimize cheating, which introduces
the factor of the number of examinees X and breaks
IcE down further into the sum of required items per
exam IcE = ∑

E
e=1 Ice ∗X .
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In the example of a university course teaching
business process modeling, which deals with 2 dis-
tinct conceptual modeling languages, no item person-
alization, a cohort of 50 students, 2 potential exam
offerings with an initial failure quote of 20% and a
respective participation quote of 100%, we arrive at
T = 1, M = 1, O = 2, IcW = 3, IcP = 10 and IcE =

∑
|C|=3
c=1 2∗50+2∗10 = 460, yielding a required num-

ber of items A = 1∗2∗460 = 920.
The ATOMIC-formula gives the reader a way to

determine an appropriate number for their use case.
To potentially cover all scenarios described above,

a production method for items must address each fac-
tor of the ATOMIC-formula individually and in a
scalable manner (Requirement R2).

3 STATE OF THE ART

3.1 Traditional Item Development

Traditional item development relies on a method in
which a subject matter expert (SME) creates items in-
dividually (Gierl et al., 2021). Under the best condi-
tion, traditional item development is an iterative pro-
cess where highly trained groups of SMEs use their
experience and expertise to produce new items. Then,
after these new items are created, they are edited,
reviewed, and revised by another group of highly
trained SMEs until they meet the appropriate standard
of quality (Haladyna, 2015).

This approach has two major limitations: 1.) Item
development is time-consuming and expensive be-
cause it relies on the item as the unit of analysis (Stark
et al., 2006). Each item in the process is unique and
therefore, each item must be individually written, and
ideally, edited, reviewed, and revised (Gierl et al.,
2021). 2.) The traditional approach to item develop-
ment is challenging to scale efficiently and econom-
ically. When one item is required, one item is writ-
ten by the SME because each item is unique. Hence,
large numbers of SMEs who can write unique items
are needed to scale the process. (Gierl et al., 2021).

As a result, traditional item development does not
meet requirement R2 and can not be considered a fea-
sible method to generate a sufficient amount of con-
ceptual modeling tasks.

3.2 Automatic Item Generation

AIG is the process of using models to generate items
using computer technology (Gierl et al., 2021). Gierl
et al. describe AIG as the three-step process for gener-
ating items depicted in figure 1 (Gierl and Lai, 2016).

Figure 1: Three-step process of AIG (Gierl et al., 2021).

In step 1, the content for item generation is created
in the form of a cognitive model which highlights the
knowledge, skills and problem-solving processes re-
quired to solve the generated task (Gierl et al., 2012).
In step 2, an item model is created, that specifies
which parts and which content in the task can be ma-
nipulated to create new items (Laduca et al., 1986).
The parts include the stem, the options and the aux-
iliary information to generate selected-response items
(e.g. MC) (Gierl et al., 2021). In step 3, all possible
combinations of the created content are placed into
the item model, for which different computer-based
assembly systems are used (Kucharski et al., 2023;
Gierl et al., 2008).

One of the main limitations of existing AIG-
methods is the simplicity of generated questions, as
most generated questions use closed response-formats
(Kurdi et al., 2020; Falcão et al., 2023), which make it
challenging to target higher cognitive dimensions (be-
yond remember and understand) (Kurdi et al., 2020).
While closed target formats may address the higher
processing dimensions, apply and analyze, even pro-
ponents of these formats agree, that they can’t address
the highest processing dimensions evaluate and cre-
ate (Haataja et al., 2023).

Thus, current AIG-methods fail to meet require-
ment R1 and therefore are not a feasible method to
produce conceptual modeling tasks that address the
highest cognitive processing dimensions.

3.3 Subject Specific Methods

To overcome the limitations of traditional item de-
velopment and AIG-methods, we consider the utiliza-
tion of subject-specific construction methods for pro-
ducing the required inputs and outputs for conceptual
modeling tasks described in section 2. Different sub-
ject matter domains provide methods for transform-
ing a potentially fuzzy model representation, such
as textual descriptions in natural language into po-
tentially many valid representations in the respective
formal modeling language. Examples include the
transformation of business process descriptions into
a graphical modeling language (Schüler and Alpers,
2024), the generation of constitutional isomer chem-
ical spaces from molecular structural formula (Yirik
et al., 2021) or the generation of entity-relationship
diagrams from a set of textual requirements in natural
language. (Ghosh and Bashar, 2018).

Two major limitation of utilizing subject-specific
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production methods are 1.) their lack of generaliza-
tion across subject matter domains and 2.) the need
for lecturing staff to provide separate input, in order
to create item variants.

Thus, subject-specific methods fail to meet re-
quirement R2 and are therefore not a feasible method
to produce sufficient amounts of conceptual modeling
tasks across different subject matter domains.

3.4 Delta to Existing Methods for
Generating Graphical Conceptual
Modeling Tasks

Traditional item development and subject-specific
methods fulfill requirement R1 but fail to address re-
quirement R2. Conversely, current AIG-methods ful-
fill requirement R2 but fail to address requirement R1
fully.

Thus, a solution to the posed research question of
how to generate a sufficient amount of graphical con-
ceptual modeling tasks, for each cognitive dimension
of the revised Bloom’s taxonomy, must fulfill the re-
quirements R1 and R2 simultaneously.

4 APPROACH

Our proposed solution for the AIG for graphical con-
ceptual modeling tasks consists of a two-step process.
The first requires the item-developer to create an item
specification. As shown in table 1, an item specifi-
cation consists of an instruction template, an input
placeholder, an output placeholder and a response for-
mat. The item specification specifies what task the
learner is expected to perform via the instruction tem-
plate, what content is required to perform the task via
the input placeholder, what the expected solution is
via the output placeholder, and how the learner’s re-
sponse is selected via the response format.

The second step requires the item-developer to
specify a generator, that generates instances for the
input and output placeholder of the item specification
specified in the first step. A generator is a function
G(I) =O, that takes an input I and produces an output
O. A generator may consist of multiple other genera-
tors.

The proposed two-step process is a generalization
of AIG as described in subsection 3.2, which will
from here on be called generalized AIG (gAIG). This
generalization uses AIG for generating items address-
ing the first two cognitive dimensions (see item spec-
ification shown in table 2).

To generate a generic single choice question, a

Table 2: Item specification for a generic single choice ques-
tion.

Instruction
Template

Select the correct answer for
the given statement.

Input
Placeholder

〈STEM〉〈OPTIONS〉

Output
Placeholder

〈CORRECT OPTION〉

Response
Format

Selected Response

generator must generate a 〈STEM〉 that formulates
a question, corresponding 〈OPTIONS〉 which consist
of multiple distractors and a 〈CORRECT OPTION〉.

As described by Gierl et al., AIG generates such
〈STEM〉, which contains the content or question the
examinee is required to answer and the 〈OPTIONS〉,
a set of alternative answers with one correct option
and one or more incorrect options (Gierl et al., 2021).
Thus, AIG can be applied as a generator in the second
step of the gAIG-process, that produces the necessary
input and output placeholders of the item specification
described in table 2.

But, as already discussed in section 2, AIG is
not able to produce the specified graphical conceptual
modeling tasks, that address cognitive levels above
the cognitive processing dimension of Apply, as they
require different input and output placeholders. As a
consequence, different generators are needed.

4.1 Generators for Graphical
Conceptual Modeling Tasks
Addressing Higher Cognitive
Dimensions

In the following we introduce 3 generators, that are
able to produce instances of the required input and
output placeholders, using the following 3 technolo-
gies: 1.) a graph-rewriting system (GRS), 2.) a large
language model (LLM) and 3.) a text-template engine
(TTE).

These technologies were chosen because: 1.) they
can produce the required output modalities, 2.) they
are subject matter domain independent, and 3.) their
generation behavior is configurable.

Figure 2 depicts a simplified model of the
generator-elements. The abstract class GENERA-
TORELEMENT has a generate-method which takes a
generic input I and produces a generic output O. The
generate-method of the GRS receives a GRSINPUT
and produces a GRAPH as output, which consists of
an array of nodes, an array of edges and an array of
subgraphs. The GRSINPUT consists of:
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Figure 2: Simplified class diagram of generators.

• A host graph g, on which all rewriting operations
are performed,

• a set of patterns, where each element consists of
a name and a pattern. Upon calling, a pattern cre-
ates a randomized pattern-instance that conforms
to the pattern-structure, a set of input parameters
and potential constraints.

• An array of rewriting rules, and each rewriting
rule r(g,L,R) contains a pattern graph L and a re-
placement graph R, and an instance of L is to be
replaced with an instance of R in g. A rule is only
applied if an instance of L can be found in g.

• A set of parameters, that guide the application of
the rewriting rules:

– how often each rule must be applied,
– an execution order of the rules, and
– filter options for the selection of potential in-

stances of L found in g, from which a random
instance is then selected for rewriting.

The generate-method of the LLM receives a
LLMINPUT and produces a GRAPH, where each
node, edge and subgraph has been labeled. The
LLMINPUT consists of:

• an input graph, that is to be labelled,

• a set of prompt-templates, that are associated to
patterns and are used to elicit the generation of
labels, and

• an order in which to traverse the elements of the
input graph.

The generate-method of the TTE receives a
TTEINPUT and produces a string. The TTEINPUT
consists of:

• an input graph, that may contain labels and is to
be transformed into text,

• a set of text-templates, that the TTE uses to trans-
form the associated pattern instances and the con-
tained subgraph-, node-, and edge-labels into text,
and

• an order in which to traverse the elements of the
input graph.

In order to generate instances of some of the re-
quired input and output placeholder types, generators
need to be composed into larger generators. E.g. gen-
erating labels for a graph, requires the graph to be
generated first. To assemble the full item according to
the item specification, the generated outputs must be
mapped to the placeholders of the item specification.
These additional requirements are fulfilled by another
component called generator-orchestration service.

4.2 Generator-Orchestration Service

Figure 3: Component diagram of the generator-
orchestration service.
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Figure 3 gives an overview of the generator-
orchestration service. In order to compose genera-
tors, the nested generators must follow an execution
order, the associated inputs have to be specified, and
the intermediate outputs need to be persisted. The ex-
ecution order and the associated inputs of generators
are referred to as generator composition configuration
and must be provided by the item developer. Interme-
diate outputs of nested generators and composed gen-
erators are persisted in a store for future reference.
The input for a nested or composed generator can be
provided by the item developer or previously gener-
ated outputs of other generators. To assemble the
item, the item developer must provide an item specifi-
cation and map the therein contained placeholders to
the data in the data store.

The modularity of the approach allows for reusing
nested and composed generators. Furthermore, it
enables the extensibility of the approach by adding
more types of generators. This increases the poten-
tial for generalization across different subject matters
and multiple task-types beyond graphical conceptual
modeling tasks. Manual efforts for analyzing the item
quality can be drastically reduced since the quality
of the process of the item generation must only be
checked once, as was already pointed out by Stark et
al. (Stark et al., 2006), instead of checking the quality
of each generated item.

5 CASE STUDY

To verify that the solution proposed in section 4 meets
both requirements defined in section 2, we present
a case study that shows the production of multiple
tasks for the subject matter domain of Business Pro-
cess Modeling. Due to its simple and concise syntax,
we utilize Event-Driven Process Chains (EPC) (Keller
et al., 1992) as a process modeling language.

It is crucial to understand the notation of EPCs to
create generators that yield syntactically valid EPCs.
The following provides a short overview of the basic
notation of EPCs that is required to follow along.

The EPC notation consists of the following sym-
bols: events, functions, process route signs, logical
connectors (AND, OR, XOR) and connection arrows.
Roles, responsibilities and data are omitted for the
sake of simplicity.

Each process starts and ends with an event. Events
and functions must alternate. Symbols must be con-
nected by directed lines. Splitting connectors must
have one incoming and at least two outgoing arrows.
Conversely, merging connectors must have at least
two incoming and one outgoing arrow. Splitting OR-

and XOR-operators must not follow an event.

5.1 Specification of a GRS to Generate
EPCs

To generate graphical conceptual modeling tasks, we
utilize an instance of the GRS-generator as a founda-
tional step for all tasks. In the following, we specify
the required inputs for the GRS-generator-instance.

Figure 4: Host graph for the production of EPCs.

Given the above notation, we chose the host graph
depicted in figure 4, which consists of two joined
events. Note, that the host graph is not yet compli-
ant with the notation of EPCs.

Figure 5: Three possible patterns to create EPCs.

Then, we formulate the patterns depicted in figure
5. Each pattern is depicted as a process route sign.
The sequence-pattern includes a variable amount of
events and functions, that are alternating and con-
nected by arrows. Its construction function can be
described as Ps(Ep,Ec,N), where Ep is a function to
determine the required element-type to start the se-
quence with, Ec is a function to determine the re-
quired element-type to end the sequence with and N
is the number of nodes to generate between the start-
ing and ending element of the sequence. Ep is de-
scribed in algorithm 1 and receives the parent node of
where the pattern-instance is to be inserted and tra-
verses the chain of parent nodes, until it discovers an
element of either type "Event" or "Function" and then
returns "Function" or "Event". Ec functions similarly,
but additionally receives the result of Ep and traverses
the chain of child elements instead. The parameter N
specifies the overall length of the EPC to be gener-
ated.
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Data: E: Node
Result: T: string
while E.type ̸= "Event" or E.type ̸=
"Function" do

E = E.parent;
end
if E.type = "Event" then

return "Function"
else

return "Event"
end

Algorithm 1: Function EP, that finds the element-type of
the parent-element.

The rhombus-pattern includes a variable num-
ber of branches between the connectors and a vari-
able connector-type. Its construction function can
be described as Pr(N,T ), where N is the number of
branches to be created and T is the connector-type.

The loop-pattern consists of one forward-branch
and one backward-branch with exactly one event be-
tween the connectors, and the connector-type is fixed
to a "XOR"-type.

With those patterns, we formulate a set of
rewriting-rules to be performed on the host graph. A
rule consists of the pattern graph L and the replace-
ment graph R. An instance of L in the host graph is
randomly chosen from a list of found matches. An in-
stance of L is replaced with an instance of L in the host
graph g. The rewrite graph is the resulting graph, af-
ter the rewrite rule has been applied to the host graph,
and the rewrite graph becomes the new host graph.

Figure 6: Rewrite rule 1.

Rule 1, depicted in figure 6, shows how complex
patterns are introduced into the host graph. The rule
selects a pattern graph in the shape of single connec-
tion arrow and replaces it with either a rhombus- or
loop-pattern and an incoming and an outgoing edge.
This rule assumes a random selection of the rhombus-
xor the loop-pattern for simplification purposes.

Rule 2, depicted in figure 7, shows how complex
patterns are instantiated. In the given example, a ran-
domly selected rhombus-pattern is replaced by an in-
stance of a rhombus-pattern. For simplification pur-
poses it is assumed, that a random pattern-instance is

Figure 7: Rewrite rule 2.

Figure 8: Rewrite rule 3.

instantiated.
Rule 3, depicted in figure 8, shows how sequences

are instantiated. In the given example, a randomly se-
lected sequence-pattern is replaced by an instance of a
sequence-pattern. The sequence with the least amount
of nodes is determined by the function EC and EP de-
scribed in algorithm 1 when calling the construction
function P. For simplification purposes, it is assumed
that the number of additional nodes N is 0.

Applying the patterns and rules in a GRS ran-
domly would yield a large amount of vastly dis-
tinct EPCs. To achieve a more controlled generation,
guidance-parameters may be utilized, such as the ex-
act number a rule must be applied, an execution order
of the rules and more restrictive filter operations for
the pattern graph selection, such as the selection of
nested pattern graphs.

It is important to note, that this is merely one pos-
sible formulation of a GRSInput to yield syntactically
valid EPCs and that there exist many more. Moreover,
the presented patterns and rules do not cover the entire
space of possible and syntactically correct EPC.

In the following, we demonstrate the proposed
gAIG process. As discussed in section 2, AIG is able
to generate tasks for the cognitive processing dimen-
sions Remember and Understand. As described in
section 4, AIG is a generator that can be directly ap-
plied in our proposed two-step process. As the ap-
proach for AIG has been described many times by
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prior works, we only showcase the solution approach
for newly introduced generators. We do so with the
example of the task types associated with the cogni-
tive process dimensions Analyze and Create.

5.2 Generation of Graphical
Conceptual Modeling Tasks for
EPCs that Address the Cognitive
Process Dimension Analyze

Mapping the task for the cognitive process dimension
of Analyze described in table 1 to the concrete model-
ing language of EPC requires an unlabeled EPC that
includes identifiable error patterns.

Thus, the required generator is a GRS, as de-
scribed in section 5.1 above, with the addition of rules
that introduce error patterns. The addition of error
patterns may be performed in a new GRS or after the
rewriting rules to construct a valid EPC have been ap-
plied. For the sake of simplicity, the following ex-
ample assumes the host graph to be an already valid
EPC.

Figure 9: Common error patterns in modeled EPCs amongst
learners.

We chose three commonly occurring syntactical
errors made by students (Szczęśniak, 2011), depicted
in figure 9, but arbitrarily many error patterns can
be introduced. The error-patterns shown include 1.)
multiple incoming edges to a function, 2.) the use of
a function or a process route sign (as the hidden sub-
process has to start with a function) after a XOR split
connector and 3.) the use of an event before a XOR
split connector.

To introduce these patterns into the graph, another
set of rewriting rules is required.

Error rule 1, depicted in figure 10, shows how er-
ror 1.) is introduced into a valid EPC. As this error
pattern has no variability and thus can not add unex-
pected errors elsewhere, no additional conditions are
needed. The construction function of this pattern is
thus simply its identity function.

Error rule 2, depicted in figure 11, shows how er-
ror 2.) is introduced into a valid EPC. To avoid fur-
ther unintended errors, the construction function of
this error pattern needs to ensure that the following se-

Figure 10: Error rule 1.

Figure 11: Error rule 2.

Figure 12: Error rule 3.

quences remain syntactically correct. This is achieved
by utilizing the same function EC, which is used to
ensure the syntactical validity of the EPC when in-
stantiating a sequence-pattern. Thus, the construction
function of this pattern is Pe2(EC).

Error rule 3, depicted in figure 11, shows how er-
ror 3.) is introduced into a valid EPC. Similarly to
error rule 2, the construction function of this error
pattern needs to ensure the syntactical validity out-
side the error pattern. This is achieved by utilizing
the function EP to ensure the validity for the previ-
ous sequences. Thus, the construction function of this
pattern is Pe3(EP).

Note, that applying multiple error patterns simul-
taneously requires additional constraints to avoid un-
expected errors. A simple way to avoid unexpected
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Figure 13: Analyze-task for graphical conceptual modeling.

errors would be to exclude instances of error-patterns
created by previous rewrite rules in the host graph.

To finally assemble the complete item, the gener-
ated outputs must be associated with the item specifi-
cation. The generated erroneous model is assigned
to the input placeholder 〈ERRONEOUS MODEL〉
and the same generated erroneous model with visu-
alised subgraphs for the error-pattern (i.e. the solu-
tion) is assigned to the output placeholder 〈MARKED
MODEL〉.

5.3 Generation of Graphical
Conceptual Modeling Tasks for
EPCs that Address the Cognitive
Process Dimension Create

Mapping the task for the cognitive process dimension
of Create described in table 1 to the concrete model-
ing language of EPC requires a textual description of
a labeled EPC.

To produce these outputs, a composed generator
is required, which utilizes the GRS, as described in
section 5.1, a LLM and a TTE. For the sake of sim-
plicity and to avoid redundancy, the following exam-
ple assumes an already generated EPC by the GRS as
a starting point.

The LLM then traverses the GRS and applies
prompt-templates to recognized pattern-instances in
the EPC. The starting point is always the first event-
node. For the sake of simplicity, a predetermined path
is assumed.

Figure 14 shows the first step of the traversal of
an unlabeled EPC and the application of a prompt-
template that was matched to the traversed pattern.
The start-event is mapped to a corresponding prompt-
template. The prompt-template is structured into four
sentences. The first sentence contains a placeholder
and sets the context for the LLM. As it is the first

Figure 14: Step 1 of labeling an EPC with prompt-templates
and a LLM.

node to be labeled, the context is provided as a start
parameter. The second sentence specifies the shape
of the desired textual output. The third sentence spec-
ifies to generate a prefix before the output, to make
it machine-readable. The fourth sentence specifies to
limit the generated output, to reduce potential noise.

Figure 15: Step 2 of labeling an EPC with prompt-templates
and a LLM.

Figure 15 shows the second step of the traver-
sal and labeling. In this step, the branching AND-
operator is mapped to a corresponding prompt-
template, which describes the start of parallel subpro-
cesses. The placeholders of the prompt-template are
filled with the existing context, the generated start-
event and the extracted branch-amount of the cur-
rently viewed subgraph. The generated output names
the two subprocesses for later reference.

Figure 16 shows the third step of the traversal and
labeling. In this step, the prompt-template is mapped
to a sequence that is nested inside a parallel process.
The placeholders are then filled with the generated
name of the subprocess, the type of subprocess, and
the amount and type of elements in the sequence.
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Figure 16: Step 3 of labeling an EPC with prompt-templates
and a LLM.

To avoid repetition, the remainder of the labeling
process is not explicitly demonstrated. This approach
can be extended to match any graph pattern to a de-
fined prompt-template. The context information is
built-up incrementally by the generator and reused to
generate output that maintains the semantic congruity
of the entire process model.

In a similar fashion to the LLM, the TTE also tra-
verses the graph and applies predefined text-templates
to the mapped patterns. The TTE extracts the la-
bels and additional structural information from the la-
beled graph and fills the current text-template. Once
the graph is traversed, the individually filled text-
templates are joined together to form a textual rep-
resentation of the graph.

Figure 17 shows one instance of a fully labeled
model and a textual representation as an output of
the presented composed generator. The output can
be used to fill the placeholders 〈TEXTUAL MODEL
DESCRIPTION〉 and 〈MODEL WITH LABELS〉 for
the task that addresses the dimension Create.

Figure 17: Instances for the input and output placeholders
of the Create-task.

6 CONCLUSION

Graphical conceptual modeling is an important com-
petency in various disciplines, and its mastery re-
quires self-practice and the exposure to tasks that ad-
dress different cognitive processing dimensions. The
production of such tasks in large numbers is challeng-
ing, and current automatic production methods either
lack scalability or fail to address higher cognitive pro-
cessing dimensions.

This paper proposes a generalized AIG approach
and introduces new generation methods for the pro-
duction of items. The proposed solution is able to
produce graphical conceptual modeling tasks in large
numbers that address all cognitive processing dimen-
sions according to the revised Bloom’s taxonomy, and
thus meets requirement R1. The approach is capable
of controlled generation of items with different de-
grees of complexity and difficulty on the fly, and thus
meets requirement R2. This may facilitate advance-
ments in computerized adaptive testing. Conversely,
the approach also allows for freezing parameters that
govern the complexity and merely alters surface level
features. This allows for the scalable generation of
fair exams, that provide different items for each ex-
aminee and thus reduces the risk of cheating, without
compromising on consistent difficulty levels between
exam instances.

The approach presented makes no assumption re-
garding the presentation and interaction layer for
the task types presented. As the approach targets
mostly task types with open response-formats, such
as constructed-response, future work should consider
unifying technology-enhanced items and AIG. Utiliz-
ing computerized assessment environments allow for
data mining and learning analytics. This may open
the path for future work on how to provide individual
feedback for a solution attempt on an automatically
generated item.
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Szczęśniak, B. (2011). Syntax errors in flat EPC diagrams
made by persons learning the methodology. Zeszyty
Naukowe / Akademia Morska w Szczecinie, nr 27 (99)
z. 2:75–79.

Taly, A., Nitti, F., Baaden, M., and Pasquali, S. (2019).
Molecular modelling as the spark for active learning
approaches for interdisciplinary biology teaching. In-
terface Focus, 9(3):20180065.

Yirik, M. A., Sorokina, M., and Steinbeck, C. (2021). MAY-
GEN: an open-source chemical structure generator for
constitutional isomers based on the orderly generation
principle. Journal of Cheminformatics, 13(1):48.

AIG 2024 - Special Session on Automatic Item Generation

818


