Optimizing Intensive Database Tasks Through Caching Proxy

Mechanisms

Tonut-Alex Moise' and Alexandra Biicoianu?®?

! Faculty of Mathematics and Computer Science, Transilvania University of Brasov, Brasov, Romania

2 Faculty of Mathematics and Computer Science, Department of Mathematics and Computer Science, Transilvania

Keywords:

Abstract:

University of Brasov, Brasov, Romania

Web, Caching, Proxy, Buffering, Optimization, Squid, Database.

Web caching is essential for the World Wide Web, saving processing power, bandwidth, and reducing latency.
Many proxy caching solutions focus on buffering data from the main server, neglecting cacheable information
meant for server writes. Existing systems addressing this issue are often intrusive, requiring modifications
to the main application for integration. We identify opportunities for enhancement in conventional caching
proxies. This paper explores, designs, and implements a potential prototype for such an application. Our
focus is on harnessing a faster bulk-data-write approach compared to single-data-write within the context of
relational databases. If a (upload) request matches a specified cacheable URL, then the data will be extracted
and buffered on the local disk for later bulk-write. In contrast with already existing caching proxies, Squid,
for example, in a similar uploading scenario, the request would simply get redirected, leaving out potential
gains such as minimized processing power, lower server load, and bandwidth. After prototyping and test-
ing the suggested application against Squid, concerning data uploads with 1,100, 1.000, .. .,100.000 requests,
we consistently observed query execution improvements ranging from 5 to 9 times. This enhancement was
achieved through buffering and bulk-writing the data, the extent of which depended on the specific test condi-

tions.

1 INTRODUCTION

The wide use of the internet by people around the
world has posed scalability challenges for many busi-
nesses and service providers (Datta et al., 2003).
Long response times or even inaccessibility is a factor
that affects the revenues of web-centric companies,
leading to lower earnings (Wessels, 2001), (Datta
et al., 2003). Web caches have been shown to solve
some of the scalability problems. They helped bring
down latencies, bandwidth usage and save processing
power (Maet al., 2015), (Wessels, 2001), (Datta et al.,
2003).

There are generally a few widely used approaches
to caching the data: browser cache, proxy cache and
server cache (Ma et al., 2015), (Wessels, 2001), (Ali
etal.,2011), (Zulfa et al., 2020). The browser cache is
the closest one to the user. It can save, in the memory
of the local computer, static data like images, videos,
CSS and JS code, etc. (Datta et al., 2003). A proxy
cache is a dedicated server that sits between one or

(2 https://orcid.org/0000-0002-1264-3404

Moise, |. and Baicoianu, A.

Optimizing Intensive Database Tasks Through Caching Proxy Mechanisms.
DOI: 10.5220/0012754600003753

Paper published under CC license (CC BY-NC-ND 4.0)

more clients and one or more servers. Compared to
the browser cache, which is tied to a single machine,
a proxy cache can be placed anywhere on the web,
at different levels: ISP (local, regional, national) or
right in front of the primary server (Datta et al., 2003).
Lastly, there is the option to cache your data on the
computer that is running the web server/database, ei-
ther by using your own/a third-party solution or indi-
rectly through the caching system of your operating
system or database.

Research in the field primarily targets cache re-
placement algorithms and prefetching. Crucially,
caching solutions must decide what objects to re-
tain and which to evict due to limited memory space.
Managing the resources incorrectly and keeping un-
used objects cached for long enough, results in what’s
known as cache pollution (Ali et al., 2011), (Mertz
and Nunes, 2017), (Seshadri et al., 2015). Some
of the most popular caching policies include: LFU
(least frequently used), LRU (least recently used),
GDS (greedy dual size), GDS-Frequency and many
more (Ali et al., 2011), (Zulfa et al., 2020), (Ioannou

367

In Proceedings of the 19th International Conference on Software Technologies (ICSOFT 2024), pages 367-374

ISBN: 978-989-758-706-1; ISSN: 2184-2833

Proceedings Copyright © 2024 by SCITEPRESS — Science and Technology Publications, Lda.

ICSOFT 2024 - 19th International Conference on Software Technologies

and Weber, 2016), some of them also using machine
learning to enhance the already used ones (Ali et al.,
2012).

The effectiveness of caching is typically measured
in hit rate or byte hit rate. Hit rates are determined as
the percent of requests that could be satisfied directly
by the cache, while byte hit rate represents the per-
cent of the data (numbered in bytes) that were already
cached before answering the request (Nanda et al.,
2015), (Ma et al., 2018).

The majority of the developed solutions for web
caching are dedicated towards storing data generated
by a server. Few of them offer a solution for buffering
the incoming information that is meant to be stored
by the SQL/NoSQL database. Indeed, Redis, Mem-
cached, Apache Kafka, RabbitMQ and others offer
the possibility to achieve this goal, but it is done intru-
sively, meaning that the underlying main server needs
to suffer modifications to accommodate these solu-
tions. This paper approaches the implementation of
RcSys (Resource Caching System), a proxy / surro-
gate server specifically engineered to cache both in-
coming (upload) and fetched data in order to allevi-
ate the load across the network and database server.
The application uses multi-threading for request pro-
cessing and data buffering, implementing a one-tiered
cache replacement policy. Fundamental to our solu-
tion is the configuration file, where the administra-
tor can customize important aspects of the proxy like
maximum allocated disk memory, thread pool size,
cacheable paths (with support for regex), data valida-
tion, and more. After describing the architecture, we
will compare RcSys to Squid and observe the opti-
mization gains that it can bring.

The structure of the paper is divided into five
sections, the Infroduction being followed by a short
presentation of Squid-cache in Materials and Meth-
ods. The Proposed System Architecture section is
the longest section, focusing on our main engineering
choices and their benefits. In Strengths and Short-
comings of the Solution section are highlighted the
conducted tests for comparing RcSys and Squid, how
the performance-related data was collected, and what
benefits RcSys offers, but also the downsides. In the
Conclusions section, we present this study’s findings
and the benefits it has yielded.

2 MATERIALS AND METHODS

Before delving into the construction and testing of
the proposed solution, it is imperative to provide an
overview of its counterpart. This would be Squid,
https://www.squid-cache.org/, a proxy server solution

368

that is most often used as a caching proxy. It is a pop-
ular application used for caching and managing both
static and dynamic content generated as a response
by a web server for a user’s request, supporting proto-
cols such as HTTP, HTTPS, FTP, and more. To save
bandwidth, speed up load times, and conserve com-
puting power, hundreds of Internet providers employ
Squid in addition to thousands of standalone websites,
as stated in the official documentation.

Squid is a battle-hardened application. It pro-
vides a powerful configuration file with the ability
to create very complex distributed caching infrastruc-
tures. It can deploy on multiple computers and create
a caching hierarchy consisting of Parents, Kids and
Coordinators, all communicating with each other for
better buffering and cache management to save band-
width, processing power and lower latencies. Be-
sides that, Squid also offers administrators the pos-
sibility to configure both Memory and Disk caches
independently, each with its own replacement policy
like LRU, heap GDSF, heap LFUDA, and heap LRU.

Trying to match the power that Squid provides
would be a very tedious and long process. Thus, we
will try to optimize only a small chunk of it. Our fo-
cus falls on how Squid handles requests that upload
data. As of now, Squid will redirect those to the main
server. This approach may be improved. Instead of
redirecting the request, we could extract the data (if its
URL is marked as cacheable in the configuration file)
and store it locally into a buffer till the caching time
expires, sending it all at once afterward. This way, if
the data is meant to be written in a relational database,
the time it takes to execute for a single, multiple rows
insertion query is far lower than overall multiple sin-
gle rows insertions. The following sections will ex-
plore the concept further and present a viable solu-
tion.

3 THE PROPOSED SYSTEM
ARCHITECTURE

The proposed application, referred to as RcSys (Re-
source Caching System), functions as a caching proxy
for handling both user upload and download requests.
Before a detailed technical examination of the sys-
tem’s architecture, a general schematic overview of
its operational flow will be presented.

The diagram from Figure 1 illustrates three pri-
mary actors: clients, the RcSys server, and the main
server. All communication between these compo-
nents occurs through HTTP(S). The interaction com-
mences as a client initiates a request over the inter-
net, either for uploading (e.g., sending emails, cre-

Optimizing Intensive Database Tasks Through Caching Proxy Mechanisms

No -> Redirect

Is URL's

cache @(Pireo(
or doesn't
exists?

Client <°

Proxied Server

Serdk bubfered dator

from server

Figure 1: RcSys flow.

ating posts) or downloading (e.g., reading messages,
shopping). Upon reaching RcSys, a rapid evaluation
occurs to determine if the requested resource should
be cached. This decision relies on details outlined in
a configuration file created by the administrator, spec-
ifying the paths designated for caching.

If the requested URL is not known, then it gets
redirected to the main server. If it is known and is
of type upload, it will be stored in a buffer and later,
when the specified amount of caching time expires,
it will be written to the main server (along with the
other data that share the same URL). If the accessed
resource is of type download, the system first checks
whether it exists or is expired (if so, it calls for the
updated version to the main server) and then replies
to the client.

3.1 Multi-Thread Request Processing

Regarding the architecture of RcSys, a notable tech-
nical aspect involves request processing. It em-
ploys a dedicated Server thread for managing the web
server and accepting connections, along with a pool of
Worker threads controlled by a master thread. Upon a
new connection, it becomes a task in a shared queue
between Server and Worker. The master thread re-
trieves and assigns tasks to workers. Simultaneously,
new connections can be established and added to the
queue.

The diagram from Figure 2 offers a more detailed
view of the system’s functionality. Upon the appli-
cation’s initiation, a configuration file undergoes pro-
cessing, and its supplied information is stored within
an IConfiguration object for convenient access. This
file encompasses various details, including the desired
thread pool size. Concurrently, the creation of the
Worker results in the instantiation of X threads, as
dictated by the configuration. The requests are dis-
tributed for processing among the worker threads in a

Round-robin fashion (Balharith and Alhaidari, 2019).
An index of the next thread for receiving a new task
is kept in the Master Worker state. If a new request
arrives, the thread that is pointed at by the index will
be assigned to serve it and the index is incremented,
therefor the next one will be handled by a different
worker.

3.2 One-Tiered Cache Replacement
Policy

The main means by which RcSys stores the cached
data is disk, be it HDD or SSD. Although it may not
be as fast to access and retrieve information as RAM,
disk has its own advantages, and the fact that it is
“disk-only” is not entirely true.

Caching data into RAM comes with a lot of care-
ful managing and designing. If your process ends up
leaking memory or not allocating/deallocating it ef-
ficiently, it can use all the computer’s memory and
slow the entire system’s performance or even crash.
RAM is also a much smaller sized resource on com-
modity computers that can be used as servers, be-
ing significantly more expensive than the disk. A
16 —32 — 64 — 128...GB RAM machine could also
store way less cached data than a 2-4TB non-volatile
memory option.

Despite its inherent drawbacks, the decision to uti-
lize the disk as a storage medium is justified by the
support provided by the operating system in man-
aging file access. Therefore, the characterization of
it being a “disk-only solution” is not entirely accu-
rate. To facilitate access to memory for software ap-
plications, the OS allocates pages of memory. Those
pages represent virtual memory addresses that are
later translated to physical addresses when a request
to the memory controller is made to get the stored
data. The OS also uses the main memory of a com-
puter to load accessed disk files into and minimize the

369

ICSOFT 2024 - 19th International Conference on Software Technologies

Client

Worker #1)

Server Master Worker,
Thread Thread orker # 3
orker #3
J

Figure 2: RcSys thread pool.

IO operations that would be performed. It maps the
file opened for reading and writing from the disk to
the RAM and takes care of evicting them if the mem-
ory is full. This way, the user can manipulate the file’s
data and the system does not have to issue a write to
disk every time a new letter is typed. Instead, it marks
the memory pages as “dirty”” and updates the file later.
Managing resources this way increases the machines’
general performance (Love, 2010).

RcSys’s architecture takes advantage of the OS
file caching behavior to simplify the proposed solu-
tion and to also benefit from the performance gains
that come along with writing and reading from RAM.

Disk’s higher memory availability does not mean
that it is infinite. It might as well get full if enough
data requires caching. To deal with this problem, a
simple cache eviction policy was implemented, that
would delete files from disk according to LRU. The
least recently accessed file for either reading or writ-
ing will be erased to make space for a new one. The
configuration file also specifies the maximum size of
disk memory that can be used for caching. The archi-
tecture, however, does not guarantee that the quan-
tum won’t be exceeded. Instead, when a new re-
quest comes in, before processing it, we evaluate
whether the maximum cache size was exceeded. If
so, cached resources from the disk will get deleted
in a LRU manner until the used space is below the
maximum one. This means that if the incoming re-
quest has to write new files on disk, the memory limit
could be again surpassed till another request arrives,
and the cycle repeats. The OS also implements a
variation of the LRU for deleting unused pages, see
https://www.kernel.org/doc/.

3.3 Use Cases

As a caching proxy, RcSys aligns with established use
cases observed in existing solutions. Its deployment
serves purposes such as conserving processing power
and bandwidth for a web server. By caching non-
real-time critical content, RcSys alleviates the prox-

370

ied server’s burden, including items like blog posts,
images, messages, entire web pages, etc. Moreover,
it enhances the user experience by positioning itself
in proximity to the user and handling requests that do
not necessitate database queries or data regeneration,
thereby minimizing overhead.

An additional advantage that sets it apart from
alternative solutions is its capability to temporarily
store data intended for server writes and subsequently
perform bulk writes. This feature substantially re-
duces the processing load on the main server and
database, further enhancing efficiency.

3.4 A Final Overview of System’s Flow

For providing a comprehensive overview and con-
necting all the components comprising the architec-
ture, a sequence diagram has been crafted, see Figure
3. In this diagram, we explain some of the most im-
portant objects’ states and their role in RcSys, as well
as showing the path that a user’s request takes once in
the system.

If we delve into the details, particularly in the con-
text of caching incoming data, the process unfolds as
follows in 4.

4 STRENGTHS AND
SHORTCOMINGS OF THE
SOLUTION

In order to compare the overall performance of the
proposed application, we chose to test it against
Squid-Cache, both being a caching proxy. Before go-
ing forward, we must make a big disclaimer. RcSys is
nowhere near as powerful and well-rounded as Squid,
nor is it production ready. It is just an experimental
application built to explore new architectures and ca-
pabilities that a caching proxy can bring.

The proxied application utilized in our research
serves as a conceptual, abstract representation—a pat-

Process
Conf igurow
tion P[e,

Proxy's port
- Proxied server address
- Caching Alrec'torv./ path

- Requests queue
- Configuration state
- Mutexes and conditioned

Optimizing Intensive Database Tasks Through Caching Proxy Mechanisms

]- A Consumer is a Tl«reaol
1that handles requests H
- The Consumers Momo‘ﬁer:
\distrbutes the requests |

/ Waits on separate
thread for new

" Ustens on
separate thread

\
'
'
'

- Cacheable URLs and their
Type

- Theread Poo[size

'\— Moximum cache size

for new
connections

|
i
i
1 requests, pushed by '
i

1Server, on the sl«cxrecl'

1to the Thread Pool and
ikeeps used memory within

requests

'lm‘ts

Create
Resources

! Consumers wq‘t.ns, for

A c|as$ part of

| [N
RQSYS | new requests to be | | Consumers Manager tho:ti
A rassigned For processing | | | olils the state of all !
Wby Manager . /1 cached Resources
(S N
Stortw Joeeeen eces
Poss to h/or;ke; Forword to
Worker Receive one of the
request consumers
Is URL cacheable? Is the requested
Received (spe,ciﬁe:} n con‘p‘s,) resource valid? S Is Post?
request Yes?
Yes?
Consumers we? | rect | Coache
of resource
Request [data response
- J

Figure 3: RcSys flow chart.

l

Cache data (POST)

bodly

Send local
data to main
server

.

Extract reqeust's
doto from auery or|

Did the caching
time expire?

Run Ja‘ta O\ﬂoxmst g clofe v‘\he‘?

validators defined
in Config

Append the new
data to the
local bubfer

Send Failed
validation
response

Send success
response

Figure 4: RcSys flow chart zoomed in on POST cache.

tern mirroring the structure typical of a conventional
web server. Developed in Golang, the choice of this
language stems from our desire for a swift prototype
creation process, minimizing unnecessary code ver-
bosity. Golang’s net/http https://pkg.go.dev/net/http
handles the requests along Gorm, https://gorm.io/, an
ORM library popular among Go developers, for inter-
acting with a PostgreSQL database. The database’s
schema is modest, consisting of four entities (4c0fk,
4c2fk, 10c0fk, 10c2fk), modeled in such a way as
to cover some real-world operations. The names
are self-explanatory, each entity consisting of several
string fields equal to the digits previous to the “c”
character and some foreign keys equal to the digit pre-

vious to “fk”. For example, entity 4cOfk has 4 string
columns and 0 foreign keys, while entity 10c2fk has
10 string columns and 2 foreign keys (mapped to en-
tity 4cOfk and entity 10cOfk, same as for entity 4c2fk).

We aimed to explore fundamental database use
cases by conducting tests for different results on ta-
bles of various sizes, ranging from small to large, and
considering scenarios with and without foreign keys.
Foreign keys are important in a relational database,
impacting a query’s performance. For each foreign
key that the database must insert, it must perform
a look up in the referenced table to ensure that the
newly created row is valid and does not point to a non-
existing record.

371

ICSOFT 2024 - 19th International Conference on Software Technologies

Entity10C2FK H

Entity10COFK P

EntitydC2FK h

EntitydCOFK H

Bl RcSys Execution Avg.
| RcSys Planning Avg.

B Squid Execution Avg.

Bl Squid Planning Avg.

0 500 1000

1500

2000 2500 3000

Average Time Milliseconds

Figure 5: Overall performance gains RcSys vs Squid.

The application that simulates clients sending re-
quests to the web server was also built with Golang
for the same fast-prototyping reason. It defines basic
functions for getting as well as posting data for sev-
eral times in order to create metrics and compare the
proxies.

The set of tests simulated basic POST operations,
with the requests being proxied by both RcSys and
Squid. As already mentioned, Squid does not pos-
sess the ability to cache the uploaded data in order to
send it later to the proxied server all at once. There-
fore, every such operation was redirected to the main
server. Both applications went through the same tests,
with the same data (different strings with the same
size). For each entity (4c0fk, 4c2fk, 10cOfk, 10c2fk),
a client sent 1,100, 1000,5000,10000,25000,50000
and 100000 POST HTTP requests to create a new
record in the database. The data was collected and an-
alyzed for each batch of tests (1,100, ...). Although a
single client is performing the requests, each of them
may as well come from different users. The config-
uration and architecture of the proxy itself does not
specifically allocate one buffer per user’s cacheable
URL, but it’s rather shared between multiple agents.
Implementing the proposed idea by this paper, that
there is room for load optimizations through bulk
data-writes, custom solutions may be built to fulfil
specific needs like data validation and authorization,
as required by certain contexts, before buffering takes
place.

In order to obtain accurate results of the execution
time, PostgreSQL provides us with a query prefix EX-
PLAIN ANALYZE, see https://www.postgresql.org/
docs/. Running a simple query like “INSERT INTO
... VALUES ...” and prefixing it with “EXPLAIN AN-
ALYZE =>EXPLAIN ANALYZE INSERT INTO ...

372

VALUES ... ” results in both executing the query and
outputting different real information about the exe-
cution process. From among the returned data, we
extracted two performance metrics, namely the “Ex-
ecution time” (the actual time that it took to exe-
cute the query) and “Planning time” (the actual time
that it took to plan the query execution), expressed in
milliseconds. The information that EXPLAIN ANA-
LYZE provides differs for each type of query. For ex-
ample, if the inserted data links through foreign keys
to other tables, a trigger will be executed to check
if the referenced row exists. This “Trigger time” is
summed up in the “Execution time” parameter.
Figure 5 compiles and summarizes the re-
sults of all conducted experiments. There
were 8 tests for each entity, consisting of
1,100, 1.000,5.000,...100.000 requests per round,
identically for both RcSys and Squid. The output of a
test represents the overall Execution Time and Plan-
ning time that PostgreSQL needed in order to write
the new data, with respect to the number of requests.
Figure 5 displays, on the X axis, the average time
for all 8 experiments relative to the corresponding
entity. Observing the graphic, it becomes evident that
proxying a web server with RcSys outperforms Squid
significantly in handling upload requests. Saving
multiple rows of data is faster than saving only one
at a time and can drastically reduce the load on the
database. The chart illustrates that the Execution
time average, through RcSys, is always at least 5
times faster than Squid or even 9 times, in best-case
scenarios. When taking a look at the Planning time,
the gains range from anywhere between 14 to 52
times in favor of RcSys. Moreover, picking any of
the entities for a comparison of the two proxies, if
we sum up both the Planning and Execution times

Optimizing Intensive Database Tasks Through Caching Proxy Mechanisms

for RcSys, it never exceeds the amount of time that
the database server needs to plan up all the queries
redirected by Squid. Some of the details extracted
from the chart are also present in Table 3.

MySQL’s official documentation breaks down the
cost of an INSERT statement in proportions as fol-
lows, see https://dev.mysql.com/doc/refman/8.0/en/
insert-optimization.html:

* Connecting (3)

* Sending query to server (2)

* Parsing query (2)

* Inserting row (1 x size row)

* Inserting indexes (1 x number of indexes)
* Closing (1)

Judging by MySQL’s provided information, it is
deductible that writing data to a database server in
bulk rather than query by query significantly reduces
the load across the network. Instead of performing
thousands of costly connections, closings, and data
transfers between computers, we narrow it down to
only a slightly larger parsing and inserting job, which
weighs down less. If, for example, we sum up all
the costs necessary for sending one thousand individ-
ual queries (that would insert one thousand rows) to a
database, according to MySQL, it would yield 10000
units of costs. Buffering the data (through, let’s say,
RcSys), a larger packet consisting of all the informa-
tion carried in the one thousand requests scenario will
be sent, reducing to a total of ~ 2000 units of cost.

Although MySQL’s information reveals important
aspects in the optimization process through bulk data
writes, Figure 5 does not illustrate them. That is
simply because our main way of measuring perfor-
mance is with the query prefix “EXPLAIN ANA-
LYZE” provided by PostgreSQL. This method only
takes into account the actual elapsed time for plan-
ning and executing the query. It does not add up
information regarding connection establishment and
closing, post-execution triggers, or any other over-
heads imposed by networking and external factors.
Approaching the problem this way, the experiments
were run in a laboratory-like environment, avoiding
the uncertainty and variables that large-scale com-
puter networks come with. Thus, extrapolating our
solution to real-world contexts, the gains may be even
higher since the proposed approach eliminates cer-
tain cost factors, as described in MySQL’s documen-
tation and the given example. It means that bulk data
writes provide an efficiency advantage on their own,
as presented in Figure 5, excluding networking im-
posed limitations. Still, there remains an overhead
that comes along with measuring performance with

“EXPLAIN ANALYZE”, sometimes called the Ob-
server effect, in this case increasing the actual time
needed to run the queries. Since all the tests were per-
formed using the same query prefix, we consider its
drawbacks negligible in the bigger picture.

The raw data collected from the tests and used to
compute the averages in Figure 5 is presented in Ta-
bles 1 and 2. Each cell sums up all the Execution
and Planning times as reported by PostgreSQL for
the count of requests indicated by the head of the ta-
ble, with respect to RcSys or Squid separately. Note
that the tables don’t include the information yielded
by the experiments with 5000 and 25000 requests due
to space reasons. Observing the data, we can con-
clude that there is no such scenario where bulk-writes
don’t outperform inserting one row per query, given
one of the entities and several requests. The query
planner has an especially hard time regarding granu-
lar writes. It takes so much time to plan 100000 in-
dividual insert queries (3310.1 ms), as seen in the Ta-
ble 2 for the 10c2fk entity, that it becomes less costly
to actually both plan and execute bulk-writes for the
same amount of data (165.85 ms + 2121.5 ms, also
see Table 1). Extracting additional information about
the gains is possible from the raw data, such as the
average time improvement for each test, as indicated
in Table 3. Besides its advantage in caching upload
requests, RcSys lacks many features and critical func-
tionalities that Squid has, see Table 4.

S CONCLUSIONS

The paper has proposed an innovative enhancement
designed to bring added value to conventional caching
proxy solutions. Through the implementation and
testing of the proposed architecture, it was evident
that there is a significant improvement opportunity
in reducing bandwidth consumption and optimizing
data upload speeds, especially in contexts utilizing
relational databases. The strategy of locally extract-
ing and storing data from upload-type requests on
the caching server’s disk or memory, followed by
later bulk-write, showcased marked enhancements in
overall database write performance. While typical
web caching proxies would redirect those types of
requests, RcSys obtained by buffering them between
5.20 and 9.12 times SQL query execution speedups
and between 14.17 and 52.11 times SQL query plan-
ning speedups.

373

ICSOFT 2024 - 19th International Conference on Software Technologies

Table 1: Raw execution tests data RcSys vs Squid in ms.

Entity 1 100 1.000 10.000 50.000 100.000
4c0fk RcSys 0.055 1.831 9.64 48.106 254.99 514.69
Squid 0.055 8.249 65.345 633.505 31743 6413.4

4e2fk ReSys 0.313 2.348 20.379 198.445 984.092 1956.51
Squid 0.313 11.431 131.999 1314.13 6791.7 13395.5

10c0fk RcS.ys 0.299 0.758 6.368 59.859 296.108 578.355
Squid 0.299 6.11 57.113 730.357 3446.2 6458.6

1062k RCS?/S 0.281 2.781 45.473 211.247 1058.82 2121.50
Squid 0.281 13.23 142.361 1396.49 6979.6 13692.9

Table 2: Raw planning tests data RcSys vs Squid in ms.

Entity 1 100 1.000 10.000 50.000 100.000
4c0fk RcSys 0.019 0.101 0.318 4.621 17.75 41.99
Squid 0.019 2.988 25.141 225.035 1112.1 2265.0
421k RcS_ys 0.024 0.124 1.095 17.235 70.487 150.85
Squid 0.024 2.639 30.298 311.137 1611.1 3182.5
10c0fk RcSys 0.026 0.052 0.32 7.581 26.919 52237
Squid 0.026 2.365 21.413 272.29 1280.3 2427.8
10e2fk RcSys 0.022 0.464 4.161 20.39 79.134 165.84
Squid 0.022 3.134 33.755 335.182 1679.7 3310.1
Table 3: RcSys vs Squid performance gains.
Average query speedups Test 4c0tk Test 10c0tk Test 4c2fk Test 10c2tk
Execution Speedup x9.12 x9.48 x5.93 x5.20
Planning Speedup x52.11 x40.18 x19.13 x14.17
Table 4: RcSys vs Squid features comparison.
Feature RcSys Squid
Security No HTTPS (SSL/TLS) or Authentication HTTPS and Authentication
Protocols supported Only HTTP HTTP, HTTPS, FTP and more
Yes, with complex hierarchy of
Distributed cache No parents, kids and coordinators
LRU, heap GDSF,
Cache replacement policies LRU heap LFUDA, heap LRU
Caching options Only disk Disk and Memory
Configuration Minimal Very robust

REFERENCES

rithm based on weighting and cost.

6:27010-27017.

IEEE Access,

Ali, W., Shamsuddin, S. M., and Ismail, A. S. (2011). A sur-
vey of web caching and prefetching a survey of web
caching and prefetching. International Journal of Ad-
vances in Soft Computing and its Applications, 3.

Ali, W., Shamsuddin, S. M., and Ismail, A. S. (2012). In-
telligent web proxy caching approaches based on ma-
chine learning techniques. Decision Support Systems,
53(3):565-579.

Balharith, T. and Alhaidari, F. (2019). Round robin schedul-
ing algorithm in cpu and cloud computing: A review.
In 2019 2nd International Conference on Computer
Applications & Information Security (ICCAIS), pages
1-7.

Datta, A., Dutta, K., Thomas, H., and VanderMeer, D.
(2003). World wide wait: A study of internet scalabil-
ity and cache-based approaches to alleviate it. Man-
agement Science, 49(10):1425-1444.

Ioannou, A. and Weber, S. (2016). A survey of caching
policies and forwarding mechanisms in information-
centric networking. IEEE Communications Surveys
& Tutorials, 18(4):2847-2886.

Love, R. (2010). Linux kernel development. Pearson Edu-
cation.

Ma, T., Hao, Y., Shen, W., Tian, Y., and Al-Rodhaan, M.
(2018). An improved web cache replacement algo-

374

Ma, Y., Liu, X., Zhang, S., Xiang, R., Liu, Y., and Xie,
T. (2015). Measurement and analysis of mobile web
cache performance. In Proceedings of the 24th Inter-
national Conference on World Wide Web, pages 691—
701.

Mertz, J. and Nunes, 1. (2017). Understanding application-
level caching in web applications: A comprehensive
introduction and survey of state-of-the-art approaches.
ACM Comput. Surv., 50(6).

Nanda, P, Singh, S., and Saini, G. (2015). A review of web
caching techniques and caching algorithms for effec-
tive and improved caching. [International Journal of
Computer Applications, 128:41-45.

Seshadri, V., Yedkar, S., Xin, H., Mutlu, O., Gibbons, P. B.,
Kozuch, M. A., and Mowry, T. C. (2015). Mitigating
prefetcher-caused pollution using informed caching
policies for prefetched blocks. ACM Trans. Archit.
Code Optim., 11(4).

Wessels, D. (2001). Web Caching.
O’Reilly & Associates.

Zulfa, M., Hartanto, R., and Permanasari, A. (2020).
Caching strategy for web application — a systematic
literature review. International Journal of Web Infor-
mation Systems, 16:545-569.

O’Reilly Series.

