
A Comparison of the Efficiencies of Various Structured and Semi-
Structured Data Formats in Data Analysis and Big Data Analytic

Development

Heather E. Graham and Taoxin Peng
School of Computing, Engineering and the Build Environment, Edinburgh Napier University, Edinburgh, U.K.

Keywords: Athena, Cloud, Big Data, Data Format, Semi-Structured, Efficiency, EMR.

Abstract: As data volumes grow, so too does our need and ability to analyse it. Cloud computing technologies offer a
wide variety of options for analysing big data and make this ability available to anyone. However, the
monetary implications for doing this in an inefficient fashion could surprise those who may be used to an on-
premises solution to big data analysis, as they move from a model where storage is limited and processing
power has little cost implications, to a model where storage is cheap but compute is expensive. This paper
investigates the efficiencies gained or lost by using each of five data formats, CSV, JSON, Parquet, ORC and
Avro, on Amazon Athena, which uses SQL as a query language over data at rest in Amazon S3, and on
Amazon EMR, using the Pig language over a distributed Hadoop architecture. Experiment results suggest that
ORC is the most efficient data format to use on the platforms tested against, based on time and monetary costs.

1 INTRODUCTION

Data is growing in size and in variety at an ever-
increasing pace, as are the technologies that are used
to analyse it. The combination of analysis, data
formats and tooling used has the potential to be very
powerful for businesses, but the wrong combination
also has the potential to be very costly.

Once, only a few businesses had the profits and
ability to be able to analyse ‘big’ data with databases
or data warehouses they managed and maintained
themselves. The advent of cloud computing has made
this accessible to everyone. In an ecosystem where
storage is considered cheap whereas computational
power is expensive, data can be stored in multiple
data formats to allow analysis to be conducted
efficiently and with less expense.

For businesses who are moving towards cloud
computing from previous on-premises big data
solutions, this is a different mindset, as previously
they would have been restricted by storage size and
the monetary value of compute power was subsumed
in the initial setup costs of their big data architecture.

Different data formats have been designed with
different functions in mind, with row-oriented
formats being designed to efficiently run over subsets
of rows in data, that might be defined using a

WHERE or FILTER function, whereas columnar
formats are designed to run efficiently over a subset
of columns within the data. For this reason, it is
important to test and understand the efficiencies that
could be found by using a particular data format for
analysis.

In this paper five popular structured and semi-
structured data formats (CSV, JSON, Parquet, ORC
and Avro) are tested against a number of queries,
using two different cloud-based technologies, to learn
which format is the most efficient for certain forms of
analysis.

This has resulted in understanding that ORC is the
most efficient data format to use when using the Pig
language over Apache Tez in Amazon EMR, amd
while the CSV data format is more time efficient
when used in Amazon Athena, ORC is the most
inexpensive when considering monetary cost to run.

This paper is structured as follows; (1) an
introduction to the background of the paper and the
motivation behind the research, (2) an exploration of
existing literature on the topic, (3) experiment and
data preparation, (4) experiment implementation and
(5) analysis and evaluation of experiment results.

Graham, H. and Peng, T.
A Comparison of the Efficiencies of Various Structured and Semi- Structured Data Formats in Data Analysis and Big Data Analytic Development.
DOI: 10.5220/0012756300003756
Paper published under CC license (CC BY-NC-ND 4.0)
In Proceedings of the 13th International Conference on Data Science, Technology and Applications (DATA 2024), pages 301-308
ISBN: 978-989-758-707-8; ISSN: 2184-285X
Proceedings Copyright © 2024 by SCITEPRESS – Science and Technology Publications, Lda.

301

2 RELATED WORKS

Data is growing in volume at an ever-increasing rate.
In 2013, it was reported that 2.5 quintillion bytes of
data, or 2500 petabytes of data, were created each day
(Wu et al., 2013). Ten years later, the Internet of
Things, mobile devices, social media, sensors and a
whole host of other technologies mean that the
amount of data produced is growing rapidly, even
when confined to a single field of expertise.

Volume of data is already a problem that many
companies and organisations must consider, amongst
others. While more data, particularly good quality,
relevant data, is a good thing, it introduces additional
challenges, such as processing and storage. Research
and experimentation are constantly being instigated
to address these challenges.

As previously stated, this paper will investigate
structured (CSV) and semi-structured (JSON,
Parquet, ORC and Avro) data formats. Apart from
being structured or semi-structured, there is also a
division between row-oriented (CSV, JSON and
Avro) data structures and column-oriented (Parquet
and ORC) data structures. This is also a
consideration, in that the data a query is extracting,
and where it is placed within, for example, a table, is
important. If a sale or transaction is considered, in a
row-oriented data format all the data about the sale,
for example, the item, the cost, the date of sale, will
all be stored together, and it will then store all the data
for the next sale together. With a column-oriented
data format, all the items sold will be stored together
and the costs will be stored together. The data
regarding each individual sale is still linked, but it is
optimised to work with columns and subsets of
columns, whereas row-oriented formats are optimised
to work with and filter on individual rows, or entities
(Dwivedi et al., 2012).

The compression of different data formats results
in the size of the data on disk varying between the
formats. Various data formats have been compared on
this topic. JSON and CSV are not compressed
whereas Parquet, ORC and Avro all make use of
compression.

Related work shows that JSON is the largest of the
five data formats on disk, followed by CSV (Belov et
al., 2021).

Of the three compressed formats, Avro files
usually take the most disk space (Belov et al., 2021a,
2021b; Naidu, 2022; Plase et al., 2017), however
there are anomalies where Parquet data is the larger
of the two (Abdullah & Ahmed, 2020). ORC
consistently uses the least disk space (Belov et al.,
2021a, 2021b; Pergolesi, 2019; Plase et al., 2017;

Rodrigues et al., 2017). In one case, Parquet had a
smaller footprint than ORC, but the difference was
minimal (Naidu, 2022).

Related works, regarding which data formats are
optimised for the functions being used in the later
evaluation will be analysed. What follows is a brief
summary of what these works discovered, based on
data formats and technologies used.

Several studies showed that using a Spark-on-
Hadoop environment, Parquet and ORC were the
most efficient data formats (Belov et al., 2021a,
2021b), with Parquet out-performing ORC (Abdullah
& Ahmed, 2020; Gupta et al., 2018; Pergolesi, 2019)
and JSON being consistently the most inefficient data
format (Belov et al., 2021a, 2021b).

Meanwhile, when using Hive as the underlying
platform, ORC performed better than other data
formats (Gupta et al., 2018; Naidu, 2022; Pergolesi,
2019). When ORC was not in consideration, it was
shown that Parquet was a more efficient data format
on Hive than Avro (Plase et al., 2016, 2017).

Avro generally proved to be an inefficient data
format except when used with Impala (Gupta et al.,
2018) and this data format and architecture
combination was more performant than other
combinations.

Finally, one study analysed Parquet and ORC
using Amazon Athena and discovered that for lookup
intensive queries, ORC was more efficient whereas
for aggregating queries, Parquet was more efficient
(Tran, 2019).

In comparison, this paper tests a range of
individual functions using Amazon Athena and
Amazon EMR across CSV, JSON, Parquet, ORC and
Avro in addition to comparing overall performance
using both time and monetary cost as evaluation
metrics.

3 EXPERIMENT PREPARATION

The COVID Vaccination data from Our World in
Data was chosen as the data on which to run
experiments over. It was downloaded in JSON form,
then modified to be usable.

Our World in Data, who have provided the data,
make it their mission to provide “research and data to
make progress against the world’s largest problems”.
The COVID Vaccinations dataset (OWID, 2024)
contains daily updates from each country regarding
vaccinations, including total number of people
vaccinated, daily vaccinations and booster
vaccinations. There are fields for Country and ISO
Code, and a nested data structure that can contain up

DATA 2024 - 13th International Conference on Data Science, Technology and Applications

302

to twelve fields which may or may not be populated.
This data structure is repeated for each day, with new
values.

The data was originally published in order to
allow data scientists to use it to monitor how effective
vaccinations in a country, or globally, were, however
it has been chosen for use in this experiment, not for
the data it contains, but because it is a large, semi-
structured, nested dataset that contains no personal
information of any individuals, making it an ideal test
dataset.

The COVID Vaccination dataset was originally in
a nested JSON structure that was 62MB in size. The
data required no cleaning prior to use; however, it did
need to be transformed to be compatible with the
platforms used. It was also duplicated to ensure that
the data was large enough to produce meaningful
results from the experiments.

Figure 1: Sample raw JSON data.

It was discovered early in the experimentation
phase JSON Lines (JSONL) is more appropriate than
standard JSON for use in Athena. In addition, due to
the levels of nesting, Athena was unable to load the
data. This was due to the ‘data’ field, which was
defined as an array of structures and contained a
structure for each day the data was collected in the
specified country. In many cases, the ‘data’ field was
larger than 35MB, which is the size limit for a field in
Athena. To mitigate this, the data was partially

flattened and converted into JSONL, with the
following schema, as can be seen in Figure 2 and with
the definition as can be seen in Table 1.

Figure 2: JSONL schema.

Table 1: Attributes per country in JSONL data schema.

Attribute Meaning
Date Date data collected.

Total Vaccinations Running total of vaccination
doses administered.

People Vaccinated Running total of people who
have received at least one dose

of vaccination
Total Vaccinations Per

Hundred
Total Vaccination per hundred

of the country’s population.
People Vaccinated Per

Hundred
People Vaccinated per hundred

of the country’s population.
Daily Vaccinations Vaccinations performed on

Date.
Daily Vaccinations Per

Million
Daily Vaccinations per million

of the country’s population.
Daily People
Vaccinated

Number of people receiving
first dose of vaccination on

Date.
Daily People

Vaccinated Per
Hundred

Daily People Vaccinated per
hundred of the country’s

population.
People Fully
Vaccinated

Running total of people who
have received all prescribed

doses of vaccination.
People Fully

Vaccinated Per
Hundred

People Fully Vaccinated per
hundred of the country’s

population.
Daily Vaccinations

Raw
Daily change in total number of
vaccination doses administered.

Total Boosters Running total of booster
vaccinations administered.

Total Boosters Per
Hundred

Total Boosters per hundred of
the country’s population.

This data was then duplicated one hundred times
to create a sizable amount of data to test on. This
created a total dataset size of 5.2GB. It was also

A Comparison of the Efficiencies of Various Structured and Semi- Structured Data Formats in Data Analysis and Big Data Analytic
Development

303

converted into Parquet, ORC and Avro, and flattened
to create a copy of the data as a CSV.

During the experiment phase using EMR, it was
discovered that the JsonLoader for Pig would only
recognise JSONL records where the entire schema
was complete. The semi-structured JSONL data was
adjusted to be fully structured, by including all
possible fields and giving them a default value, in
order to load all the data. As the only optional fields
were of type long or double, 0 and 0.0 were used as
the default values.

Table 2: Data sizes.

Data Format Size
JSON (Semi-Structure /Structured) 5.2GB / 8.4GB

CSV 1388.8MB
Parquet 366.5MB

ORC 332.9MB
Avro 1354.3MB

Finally, in order to test the JOIN function, a small
dataset of Country Names and various codes (World
Population Review, 2023) was downloaded to join to
the test data. This data was in CSV format and stored
in S3.

In addition to this the Amazon EMR Cluster was
set up with the following specifications;
 EMR Release - emr-6.12.0
 Applications - Hadoop 3.3.3, Pig 0.17.0, Tez

0.10.2
 Primary and Core Node - m5.xlarge (1 Task

Node and 1 Core Node)
The size of the cluster was set manually and auto-

scaling was disabled.

4 IMPLEMENTATION

4.1 Implementation of Queries in
Amazon Athena

The first stage of implementation was to create all the
necessary tables in Athena. Six tables were created in
total. Five of these were copies of the data from the
Data Preparation Stage, in JSONL, CSV, Parquet,
ORC and Avro formats. The sixth table was created
using the Country and Country Code CSV data,
which was used to JOIN to the data being assessed.

The second stage of the experiment was to design
a series of queries that would test a range of functions.
Initially eleven queries were designed to do this, plus
a variant on four of the queries for the data formats
that included a layer of nesting. Each query uses one
or more of the SQL functions. The primary function

that is being tested against each data format, is listed
in Table 3 below.

Table 3: Functions used in SQL with Athena.

Name Primary Function
SELECT SELECT

SELECT UNNEST SELECT
WHERE = WHERE

WHERE = UNNEST WHERE
WHERE > WHERE

WHERE > UNNEST WHERE
WHERE LIKE WHERE

WHERE LIKE UNNEST WHERE
GROUP BY COUNT GROUP BY

GROUP BY SUM GROUP BY
ORDER BY ORDER BY

COUNT COUNT
SUM SUM
JOIN JOIN

JOIN DISTINCT JOIN

For these queries, any query name that contains
the word ‘UNNEST’ is specific to the nested data
formats, JSONL, Parquet, Avro and ORC. UNNEST
in this instance refers to flattening the data.

Finally, each query was run using the Athena
Query Interface. Each query was logged with how
many rows it returned and how long it took to run
against each table of a separate data format.

4.2 Implementation of Queries in
Amazon EMR

Unlike Athena, tables are not created in EMR. Data is
instead read directly from S3 for each query,
requiring a schema to be provided for every query.

Table 4: Functions used in Pig with EMR.

Name Primary Function
SELECT LOAD

SELECT UNNEST LOAD
WHERE = FILTER BY

WHERE = UNNEST FILTER BY
WHERE > FILTER BY

WHERE > UNNEST FILTER BY
WHERE LIKE FILTER BY

WHERE LIKE UNNEST FILTER BY
GROUP BY COUNT GROUP BY

GROUP BY SUM GROUP BY
ORDER BY ORDER BY

COUNT COUNT
SUM SUM
JOIN JOIN

JOIN DISTINCT JOIN

DATA 2024 - 13th International Conference on Data Science, Technology and Applications

304

The first stage of this experiment was to create
comparative queries using Pig for EMR as had been
developed in SQL for Athena.

A new Step in EMR was created for each query
and every query was run separately to avoid
contention for resource skewing the results.

When a Step, or Query, was run, results were
output as CSV Part Files in S3 and the stdout logs
provided more information about CPU Time and a
more detailed Time to Run. The number of results,
CPU Task Time and Time to Run are all recorded for
evaluation.

5 EVALUATION

5.1 Evaluation of Data Formats Using
Amazon Athena

Table 5: Runtime of queries using Athena in milliseconds.

Function CSV JSONL Parquet ORC AVRO
SELECT * 65325 123616 210735 218493 186882
SELECT
UNNEST

N/A 49780 81641 79615 69358

WHERE = 1152 2890 1995 1796 7084
WHERE =
UNNEST

N/A 2312 1728 1392 9445

WHERE LIKE 1550 3757 2362 2456 10678
WHERE LIKE

UNNEST
N/A 2.585 3.453 1.602 8106

WHERE > 20877 51938 62228 72468 45177
WHERE >
UNNEST

N/A 21561 31467 31190 25371

GROUP
BYCOUNT

1448 2528 1267 906 7999

GROUP BY
SUM

2584 3346 5352 3858 8753

ORDER BY 15013 15207 13648 14180 21618
COUNT 1064 1219 718 832 2176

SUM 2456 3418 4827 5758 11438
JOIN 11735 13758 14981 13009 15027
JOIN

DISTINCT
1662 3041 1806 2092 6528

As can be seen in Table 5, the types of functions being
performed vary widely in performance against
different data formats.

In order to determine where a function performed
better over a data format when that function has been
used multiple times, the mean of each performance
metric was used to calculate the overall performance
against the initial list of functions.

Table 6: Average (mean) performance of functions against
data formats in Athena in milliseconds.

 CSV JSONL Parquet ORC AVRO
SELECT 65325 86698 146188 149054 128120
WHERE 7860 14174 17206 18484 17644
GROUP

BY
2163 3097 3815 3507 9397

ORDER
BY

15013 15207 13648 14180 21618

COUNT 1256 1874 993 869 5088
SUM 2520 3382 5090 4808 10096
JOIN 6699 8400 8394 7551 10778

It can be seen in Table 5 and Table 6 that loading
in data (SELECT) and filtering it (WHERE) are most
efficiently performed on the flat CSV data structure.
It can also be seen that flattening the nested data
structures allows the queries to perform more
optimally.

There are three queries which use the GROUP BY
function. For those that also use the SUM function,
flat CSV data once again proves to be the most
efficient, and CSV remains the most efficient overall.
However, when counting records, whether using
GROUP BY or not, Parquet and ORC, the columnar
based data formats, prove to be superior. It can be
surmised from the results that GROUP BY and
COUNT performed on ORC data is more efficient
than GROUP BY performed on Parquet.

ORDER BY is a slow operation to perform,
however Parquet proved to be the most efficient data
format to perform it on.

JOIN is most efficient when performed on flat
CSV data, however, when the DISTINCT operator is
used in addition to this, it is seen that Parquet’s
performance improves from fourth most efficient to
second most efficient.

On average, CSV appears to be the most efficient
data format, whereas Avro performs the worst in all
functions except SELECT and the WHERE > queries.
With the WHERE > queries, Parquet and ORC
perform worse than Avro, which can be explained by
them being columnar data formats, not optimised for
filtering based on row values. JSON also performs
badly on this query when the data is un-flattened.

However, regarding Athena, there is a separate
consideration to make, which is the cost to run
queries. The cost of running queries on Athena is
based on the amount of data scanned, not the
resources needed to run the query, or the time taken
to run it. This means that businesses using Athena
must make a choice between timeliness of queries

A Comparison of the Efficiencies of Various Structured and Semi- Structured Data Formats in Data Analysis and Big Data Analytic
Development

305

running versus cost, as CSV is, as shown in Table 2,
is the second largest of the five data formats, whereas
ORC, once again, is the smallest. Reference (Tran,
2019) shows that ORC is recommended as the most
efficient data format to use. This supports the findings
that ORC is the more efficient data format, based on
monetary cost to run on Athena.

5.2 Evaluation of Data Formats Using
Amazon EMR

Table 7: Runtime of queries using EMR in milliseconds.

Function CSV JSONL Parquet ORC AVRO
SELECT * 84018 109684 68833 61137 74242
SELECT
UNNEST

N/A 108219 85781 63030 79326

WHERE = 56974 84154 50379 36260 52587
WHERE =
UNNEST

N/A 88395 49805 35001 51293

WHERE
LIKE

59233 86811 58041 51491 53151

WHERE
LIKE

UNNEST

N/A 93269 48112 46478 55632

WHERE > 70027 94114 58207 53363 60343
WHERE >
UNNEST

N/A 96470 59615 55452 71225

GROUP BY
COUNT

69737 123346 62492 69765 71655

GROUP BY
SUM

84418 161499 83305 67244 87577

ORDER BY 78256 195317 96765 858 97878
COUNT 69816 102325 67943 53133 69886

SUM 97936 176495 10673 128380 113648
JOIN 83531 135198 90587 82892 103551
JOIN

DISTINCT
55482 101199 54252 51987 64289

Despite Avro being designed to be performant with
Hadoop-backed systems, it again proved to be less
performant in comparison to other data formats.

In all cases except three, ORC proved to be more
efficient.

To confirm this, the Task CPU time for each query
was also recorded. Task CPU Time is a more accurate
measurement of performance than Total Run Time.
This is because it measures the time the processors
are working and eliminates variables such as time
spent waiting for resources. Due to this, the true
evaluation of performance will be based on Task CPU
Time.

Table 8: CPU tasktime of queries using EMR in
milliseconds.

Function CSV JSONL Parquet ORC AVRO
CREATE
TABLE

N/A N/A N/A N/A N/A

SELECT * 292460 410000 227020 198280 270220

SELECT
UNNEST

N/A 424760 222250 207170 290670

WHERE = 206140 306640 133290 082870 176840
WHERE =
UNNEST

N/A 315040 111690 063930 168750

WHERE
LIKE

208510 323450 142660 136140 184940

WHERE
LIKE

UNNEST

N/A 321920 111110 099120 165720

WHERE > 253150 356940 180676 150410 215780
WHERE >
UNNEST

N/A 380060 171790 168120 259950

GROUP
BY

COUNT

277120 490340 205590 148550 237920

GROUP
BY SUM

362570 640150 264270 244990 356170

ORDER
BY

285980 728300 320220 307140 393200

COUNT 271460 385920 191520 179510 217450
SUM 465030 837290 417390 430160 522740
JOIN 205270 408700 178560 162080 250420
JOIN

DISTINCT
183920 395770 136330 146550 216740

Once again, the mean Task CPU Time for each
main function is calculated, where it has been used in
multiple queries.

Table 9: Average performance of functions against data
formats in EMR in milliseconds.

 CSV JSONL Parquet ORC AVRO
SELECT 292460 417380 224635 202725 280445
WHERE 222600 334008 141869 116765 195330
GROUP

BY
368240 655926 295750 274566 372276

ORDER
BY

285980 728300 320220 307140 393200

COUNT 274290 438130 198555 164030 227685
SUM 413800 738720 340830 337575 439455
JOIN 194595 402235 157445 154315 233580

This confirmed that queries run against ORC data
were largely more efficient. The only exceptions were
ORDER BY, where the flattened CSV data was a
more efficient input, (GROUP BY) SUM, which
showed that when using multiple SUM functions,

DATA 2024 - 13th International Conference on Data Science, Technology and Applications

306

Parquet was more efficient, and JOIN (DISTINCT),
where Parquet was also the more efficient format,
however, ORC was more efficient for the GROUP
BY function and the SUM function on average. As
the JOIN query showed that ORC was the more
efficient data format, it can be surmised that running
DISTINCT over Parquet data in Pig is more efficient.

Another observation was that unlike with Athena,
unnesting data did not make a sizable efficiency
improvement. In fact, in some cases, it decreased the
efficiency of the query.

It is perhaps unsurprising that ORC was more
performant than Parquet, despite the majority of
existing literature suggesting otherwise. This is down
to the platform architecture used in these
experiments, and that of the platform used in the vast
majority of the previous experiments.

Many of the previous experiments were
performed on SparkSQL, which, as noted by (Gupta
et al., 2018) performs better when used with Parquet
Data. As also noted by (Gupta et al., 2018; Tran,
2019) that Hive performed better when used with
ORC data, which, like Pig in EMR, is run by default
on Apache Tez.

6 CONCLUSION AND FURTHER
WORK

For this evaluation of data formats and their
efficiencies for querying data and creating big data
analytics, fifteen queries were developed and run over
data structured in five data formats, CSV, JSON,
Parquet, ORC and Avro, using different frameworks
and languages for querying data, including Hadoop
and SQL on Amazon Web Services (AWS) Athena
and EMR. Metrics such as time taken, and Task CPU
time were gathered for analysis.

The metrics gathered from these experiments
were analysed and it was discovered that flat data was
more efficiently processed on Athena, and that by
flattening the data early in the query, it improved
performance, but that for the most part, the CSV
format was the most efficient, with ORC and Avro
proving to be the least efficient. However, Pig on
EMR proved to be optimised for ORC as it almost
always proved to be the most efficient, except when
using the ORDER BY function. In this case, Avro and
JSON proved to be the least efficient.

An additional consideration with cloud computing
platforms is the cost to run queries and analytics. This
was also discussed, and it was determined that whilst
using EMR, the most efficient data format was also

the least expensive from a monetary aspect, with
Athena, the data format that was the most reduced in
volume was the least expensive from a monetary
viewpoint. This was not CSV, but instead ORC,
which had proved to not be as efficient to query,
though its performance did improve when the data
was flattened.

To conclude, it is recommended that when using
the services described above, ORC is the most cost-
effective data format to use, and, when analysing data
using Pig on EMR, the most efficient.

This work can be expanded upon and it is intended
to replicate these experiments to fully understand data
efficiency on EMR, using Hive and Spark. This can
be expanded across other AWS Services, but also on
similar platforms from other cloud providers. This
work would provide a comprehensive overview of
which data formats are most efficient and cost-
effective for use on a variety of cloud platforms.

REFERENCES

Abdullah, T., Ahmed, A. (2020). Extracting Insights: A
Data Centre Architecture Approach in Million Genome
Era. In Hameurlain, A., Tjoa, A. M., Transactions on
Large-Scale Data- and Knowledge-Centered Systems
XLVI (pp. 1-31). Springer Berlin Heidelberg.
10.1007/978-3-662-62386-2_1.

Belov, V., Tatarintsev, A. V., & Nikulchev, E. V. (2021a).
Comparative Characteristics of Big Data Storage
Formats. In Journal of Physics Conference Series,
1727(1). 10.1088/1742-6596/1727/1/012005.

Belov, V., Tatarintsev, A., & Nikulchev, E. (2021b).
Choosing a Data Storage Format in the Apache Hadoop
System Based on Experimental Evaluation Using
Apache Spark. In Symmetry, 13(2). 10.3390/sym130
20195.

Dwivedi, A. K., Lamba, C. S., & Shukla, S. (2012).
Performance Analysis of Column Oriented Database
versus Row Oriented Database. In International
Journal of Computer Applications, 50(14), 31-34.
10.5120/7841-1050.

Gupta, A., Saxena, M., & Gill, R. (2018). Performance
Analysis of RDBMS and Hadoop Components with
Their File Formats for the Development of
Recommender Systems. In 2018 3rd International
Conference for Convergence in Technology (I2CT), 1-
6. 10.1109/I2CT.2018.8529480

Naidu, V. (2022). Performance Enhancement using
Appropriate File Formats in Big Data Hadoop
Ecosystem. In International Research Journal of
Engineering and Technology, 9(1), 1247-1251.

OWID-Our World in Data. (2024, March)). COVID
Vaccinations Data. Retrieved from. https://github.com/
owid/covid-19-data/tree/master/public/data

A Comparison of the Efficiencies of Various Structured and Semi- Structured Data Formats in Data Analysis and Big Data Analytic
Development

307

Pergolesi, M. (2019). The impact of columnar file formats
on SQL-on-hadoop engine performance: A study on
ORC and Parquet. In Concurrency and Computation
Practice and Experience, 32(5). 10.1002/cpe.5523.

Plase, D., Niedrite, L., & Taranov, R. (2016). Accelerating
data queries on Hadoop framework by using compact
data formats. In 2016 IEEE 4th Workshop on Advances
in Information, Electronic and Electrical Engineering
(AIEEE), 1-7. 10.1109/AIEEE.2016.7821807

Plase, D., Niedrite, L., & Taranovs, R. (2017). A
Comparison of HDFS Compact Data Formats: Avro
versus Parquet. In Mokslas – Lietuvos Ateitis / Science
– Future of Lithuania, 9(3), 267-276. 10.3846/mla.20
17.1033.

Rodrigues, R. A., Filho, L., Gonçalves, G. S., Mialaret, L.,
Marques da Cunha, A., & Dias, L. (2017). Integrating
NoSQL, Relational Database, and the Hadoop
Ecosystem in an Interdisciplinary Project involving Big
Data and Credit Card Transactions. In Information
Technology - New Generations. Advances in Intelligent
Systems and Computing, 558. 10.1007/978-3-319-
54978-1_57.

Tran, Q. D. (2019). Toward a serverless data pipeline.
Unpublished.

World Population Review (2023). Country Codes 2023.
Retrieved from. https://worldpopulationreview.com/
country-rankings/country-codes

Wu, X., Zhu, X., Wu, G.-Q., & Ding, W. (2013). Data
mining with big data. In IEEE Transactions on
Knowledge and Data Engineering, 26(1), 97-107.
10.1109/TKDE.2013.109.

DATA 2024 - 13th International Conference on Data Science, Technology and Applications

308

