
Efficient and Secure Multiparty Querying over Federated Graph
Databases

Nouf Aljuaid1,2, Alexei Lisitsa2 and Sven Schewe2

1Department of Information Technology, Taif University, Saudi Arabia
2Department of Computer Science, University of Liverpool, Liverpool, U.K.

Keywords: Graph Databases, SMPC, Federated Databases, Secure Data Processing.

Abstract: We present a system for efficient privacy-preserving multi-party querying (PPMQ) over federated graph
databases. This framework offers a customisable and adaptable approach to privacy preservation using two
different security protocols. The first protocol utilises standard secure multiparty computation (SMPC) proto-
cols on the client side, enabling computations to be conducted on data without exposing the data itself. The
second protocol is implemented on the server side using a combination of an SMPC protocol to prevent ex-
posing the data to the clients and the use of encrypted hashing to prevent exposing the data to the server. We
have conducted experiments to compare the efficiency of our PPMQ system with Neo4j Fabric, the off-the-
shelf solution for querying federated graph databases, and with two previous systems, SMPQ and Conclave
for secure multiparty querying. The results demonstrated that the execution times and overheads of PPMQ are
comparable to those using Neo4j Fabric. Notably, our results reveal that the execution times and overheads of
PPMQ outperform both SMPQ and Conclave, showcasing the better efficiency of our approach in preserving
privacy within federated graph databases.

1 INTRODUCTION

Given the significance of data security, it is unsurpris-
ing that numerous techniques have been proposed and
designed to enhance it. Secure multi-party compu-
tation (SMPC) stands out as a particularly intriguing
example of a method developed for this purpose. Ac-
cording to (Cramer et al., 2015), SMPC is a crypto-
graphic technique that enables a group of individuals
to collaborate on computations while keeping their
private data secret. It offers several advantages, in-
cluding full data privacy, where no third parties can
access the data regardless of their level of trustwor-
thiness. Additionally, it eliminates the need to com-
promise between data usability and privacy, enabling
data processing with high accuracy.

Nowadays, SMPC has a wide range of practical
applications, including, but not limited to, detect-
ing financial fraud (Sangers et al., 2019), aggregat-
ing model features from private datasets, and predict-
ing heart disease(van Egmond et al., 2021). More-
over, SMPC can address trust-related concerns in var-
ious scenarios, such as secure elections (Alwen et al.,
2015), auctions (Aly and Van Vyve, 2016), and secret
sharing (Evans et al., 2018).

Until now, in the context of data processing,
SMPC has primarily been utilised to safeguard re-
lational databases (Volgushev et al., 2019; Poddar
et al., 2020; Bater et al., 2016). More recently,
applications of SMPC for other types of databases
with different data models have been considered.
This includes the system targeting graphs databases
like GOOSE (Ciucanu and Lafourcade, 2020), which
employs SMPC at the backend, while queries re-
main one-party only, and SMPQ (Al-Juaid et al.,
2022) which implements multi-party queries. Com-
pared to relational databases, graph databases pro-
vide a more flexible data model that is more efficient
for some types of queries, such as traversal queries
(Salehnia, 2017). The graph model employed by
graph databases has proven advantageous in numer-
ous scenarios, and these databases have had a wide
variety of uses, including on social media platforms,
such as Instagram, Twitter, and Facebook (Ciucanu
and Lafourcade, 2020).

While SMPC applied to multi-party queries has
shown promise, serious challenges remain, such as
low performance. For example, our SMPQ system
reported in (Al-Juaid et al., 2022) adopts the previ-
ously developed Conclave system (Volgushev et al.,

Aljuaid, N., Lisitsa, A. and Schewe, S.
Efficient and Secure Multiparty Querying over Federated Graph Databases.
DOI: 10.5220/0012757100003756
Paper published under CC license (CC BY-NC-ND 4.0)
In Proceedings of the 13th International Conference on Data Science, Technology and Applications (DATA 2024), pages 39-50
ISBN: 978-989-758-707-8; ISSN: 2184-285X
Proceedings Copyright © 2024 by SCITEPRESS – Science and Technology Publications, Lda.

39



2019) for graph databases and optimizes processing,
but still, significant overheads remain.

1.1 Our Contributions

We have developed a privacy-preserving multi-party
query system (PPMQ) that leverages the Neo4j Fabric
functionality extended with the Awesome Procedures
on Cypher (APOC) library (Gu et al., pear), (Need-
ham and Hodler, 2019).

In PPMQ, we altered and improved the architec-
ture of our previous SMPQ model introduced in (Al-
Juaid et al., 2022) by eliminating the Conclave layer,
connecting directly to the JIFF server (Albab et al.,
2019) to reduce the overheads. This system can han-
dle a larger number of queries than SMPQ.

The system provides the user with two different
security protocols. The first protocol involves using
traditional SMPC protocols on the client side, en-
abling computations to be performed on the data with-
out revealing it.

The second protocol, a novel approach imple-
mented on the server side, utilises traditional SMPC
protocols and involves hashing the data and masking
it with a Diffie-Hellman (DH) key exchanged among
all clients. This protects the data against access by the
server. The choice between the two protocols is deter-
mined based on the computations the parties want to
perform within the query itself.

We measured the execution times of both proto-
cols to compare the performance of the PPMQ system
with Neo4j Fabric (without encryption or SMPC) as
well as with two existing SMPC-based systems: Con-
clave(Volgushev et al., 2019) and SMPQ (Al-Juaid
et al., 2022).

The remainder of this paper is organised as fol-
lows: Section 2 presents the background to this work,
followed by a review of related literature (Section 3).
Next, our approach is outlined in Section 4. Follow-
ing this, Section 5 presents the evaluation of the sys-
tem and the experimental setup, followed by the re-
sults of our experiments. Finally, the paper concludes
in Section 6, and we offer directions for future work.

2 BACKGROUND

2.1 Secure Multi-Party Computation
(SMPC)

SMPC enables a group of parties to jointly compute
a function while ensuring the confidentiality of their
individual inputs. Imagine a scenario where several

parties, denoted as P, each possess private data X that
they want to use for a computation represented by
function F. If these parties don’t fully trust each other,
they may choose to involve a trusted third party, de-
noted as Z, to perform the computation. In this setup,
parties provide their data to Z, who computes F and
returns the respective part of the result, Y, to each
party.

However, SMPC offers an alternative approach.
It enables parties to collaboratively compute F while
preserving the privacy and security of their data. Re-
gardless of the number of parties involved, each with
their own private data, SMPC ensures that the compu-
tation of F is conducted confidentially. This guaran-
tees that the outcome remains identical to what would
be obtained if a trusted third party Z were to perform
the computation.

We refer the reader to (Evans et al., 2018) for an
overview of SMPC and related standard security def-
initions.

2.2 Neo4j and Cypher Query Language

In this work, Neo4j served as the implementation for
graph databases (Guia et al., 2017). The graph data
model employed in Neo4j comprises a collection of
nodes and relationships. Nodes signify individual en-
tities, with connections between them depicted using
arrows (Miller, 2013). Each node in the graph may be
assigned properties to describe the entity it represents.
Moreover, labels can be attached to nodes, enhancing
the ease of conducting efficient searches within the
graph. Neo4j incorporates the Cypher query language
for managing data within graph databases (Francis
et al., 2018).

In our system implementation, we make use of
Neo4j Fabric functionality (Gu et al., pear) along
with the APOC library (Needham and Hodler, 2019).
Neo4j Fabric operates on the principle of executing
Cypher queries that simultaneously target multiple
Neo4j graph databases, making it an ideal solution for
federated databases.

In general, a federated database denotes a type
of database management system that integrates mul-
tiple autonomous database systems into a single fed-
erated database. Similarly, a federated graph collab-
oratively integrates multiple sharded graphs, enabling
the querying of all these graphs as a single big graph
database (Azevedo et al., 2020). There are three main
challenges in federated computation: privacy, effi-
ciency, and effectiveness. Privacy involves maintain-
ing the confidentiality of each owner’s private data
while facilitating collaborative computing. Efficiency
is influenced by additional communication and com-

DATA 2024 - 13th International Conference on Data Science, Technology and Applications

40



putation. Effectiveness pertains to conducting accu-
rate analysis in the presence of multiple distributed
datasets (Tong et al., 2023).

The APOC library contains more than 450 proce-
dures and functions designed to assist in various com-
mon tasks, including data integration, cleaning, con-
version, and general-purpose helper functions. Fig-
ure 1 illustrates an example general Cypher query in-
volving two parties with two databases extended us-
ing Neo4j Fabric and the intersection procedure from
the APOC library.

Figure 1: Example of a general Cypher query utilising two
parties with two databases.

3 RELATED WORK

3.1 Implementation of SMPC

Until recently, SMPC was primarily a subject of
theoretical exploration. However, in recent times,
there has been a notable effort to apply it in real-
world applications (Evans et al., 2018). Examples of
SMPC implementations used in various contexts in-
clude JIFF (Albab et al., 2019), Oblivm (Liu et al.,
2015), GraphSC (Nayak et al., 2015), and Sharemind
(Bogdanov et al., 2008).

JIFF (Albab et al., 2019) is a JavaScript li-
brary designed for scenarios involving distributed
data among multiple entities, facilitating SMPC. It
employs a server to manage encrypted messages
exchanged between participants, operating under a
semi-honest security model. JIFF utilises Shamir’s
secret sharing method (Shamir, 1979) for secure com-
putation. In SMPC, the private information of each
participant is divided into shares, and distributed
among multiple parties. These shares individually
hold no meaning but can be collectively combined to
reconstruct the original secret.

When JIFF operates as a server, each party acts
as a client. Throughout the computation process, in-
put data from participants is divided into shares and
encrypted using the public keys of the parties. Each
party possesses shares from others, including their
own. The computation is performed on these shares,
and the output is displayed to all participants without
disclosing the underlying data involved in the calcu-
lation. The architecture of JIFF is illustrated in Fig-
ure 2. In the Shamir secret sharing scheme (Shamir,

Figure 2: JIFF architecture and components.

1979), two operations are employed: share generation
and reconstruction. During share generation, shares
are created from a given secret input, where the secret
is divided into several shares and distributed among n
parties. The reconstruction process defines the min-
imum number of parties required to reconstruct the
original secret input.

ObliVM (Liu et al., 2015) is a secure computation
framework using ObliVM-lang, akin to Java. It em-
ploys a two-party garbled circuit protocol, supports
arbitrary-sized integers, fixed-size integers, and an ef-
ficient Oblivious RAM (ORAM) scheme. The au-
thors demonstrate efficient complex arithmetic, like
Karatsuba multiplication, in ObliVM-lang.

GraphSC is a secure computation framework
leveraging ObliVM for graph parallelism. It relies on
ObliVM (Liu et al., 2015) and enables secure two-
party computation where one party garbles and the
other evaluates data. Performance evaluations show
GraphSC processes data roughly ten times faster than
ObliVM.

Sharemind is a high-speed, secure computation
framework using a three-party hybrid protocol and ad-
ditive secret-sharing scheme. Its roles include clients,
servers, and outputs. Sharemind operates within a fi-
nite ring, processing data securely while ensuring pri-
vacy and scalability.

In this work, we will utilise JIFF (Albab et al.,
2019) as the backend for our PPMQ system to imple-
ment SMPC protocols.

3.2 SMPC for Data Processing

There have been recent efforts to integrate SMPC with
databases to enhance data security. For instance, (Vol-
gushev et al., 2019) proposes Conclave, a query com-
piler used with relational databases. This compiler
converts queries into a combination of data-parallel,
local cleartext processing, and small SMPC steps.
The system rewrites queries to reduce the cost of
SMPC processing and improve scalability. They rec-
ommend forwarding the modified query to JIFF (Al-
bab et al., 2019), which serves as the backend SMPC
system.

Efficient and Secure Multiparty Querying over Federated Graph Databases

41



In (Poddar et al., 2020), the Senate system is in-
troduced, enabling collaborative execution of analyti-
cal SQL queries while preserving data confidentiality.
Unlike previous systems, the Senate offers protection
against malicious parties rather than just semi-honest
modes.

Additionally, in (Liagouris et al., 2021), the au-
thors proposed Secrecy, a relational SMPC frame-
work based on replicated secret sharing. It partitions
data into three shares where each party handles two
shares to execute query segments securely.

Furthermore, (Bater et al., 2016) presents SM-
CQL, a system converting SQL queries into secure
multiparty computations. Users submit queries to an
honest broker, acting as a trusted third party, respon-
sible for processing queries securely and delivering
results.

In another study by (Bater et al., 2020), they used
SMCQL to develop the Secure Approximate Query
Evaluator (SAQE) system, enhancing SQL query se-
curity. SAQE follows a two-stage approach: plan-
ning and execution. The client optimizes and exe-
cutes query plans, while query execution occurs on
the server among data owners, using SMPC protocols.
They collaborate to execute queries across databases
and share results with the client.

Bater et al. expanded on the SMCQL system and
developed a system called Shrinkwrap (Bater et al.,
2018), using two-party secure computations. While
improving SMCQL’s efficiency, it’s important to note
that some information is disclosed in the process.

In (Wang and Yi, 2021), the authors introduce Se-
cure Yannakakis, a modified version of the classical
Yannakakis algorithm tailored for secure two-party
computation. This protocol enables parties to assess
free-connex join-aggregate queries while safeguard-
ing data confidentiality. Results demonstrate a no-
table efficiency enhancement compared to the current
method relying on Yao’s garbled circuit.

VaultDB, outlined in (Rogers et al., 2022), is a
framework for secure SQL query computation over
private data from diverse sources. It utilises the EMP
toolkit as its SMPC backend. The authors evaluated
it with a dataset from a Clinical Research Network,
covering data from almost 13 million patients. Their
results highlight the efficiency and scalability of the
system in distributed clinical research analyses while
maintaining patient record privacy.

Scape (Han et al., 2022) is a scalable collaborative
analytics system for private databases with malicious
security. It enables secure sharing among three non-
colluding computing parties, allowing users to exe-
cute various SQL queries. Benchmark results show
Scape is up to 25 times faster than the Secrecy frame-

work (Liagouris et al., 2021).
Sequre, outlined in (Smajlović et al., 2023), is a

Python-based framework for SMPC in bioinformat-
ics. It prioritises high performance and incorporates
automatic compile-time optimizations to boost effi-
ciency and speed. Through secret-sharing, Sequre
enables secure computation of biomedical data while
ensuring faster query execution and analysis tasks.

Hu-Fu (Tong et al., 2022) is a system designed for
secure and efficient spatial queries within a data fed-
eration. It minimizes secure operations and enhances
query processing performance compared to existing
solutions while ensuring robust security across vari-
ous spatial databases.

Contrastingly, in (He et al., 2015) and (Ciucanu
and Lafourcade, 2020), the authors explore SMPC’s
application for single-party querying. They introduce
the SDB system, a cloud-based relational database
involving two parties: the data owner (DO) and the
server provider (SP). Sensitive data is split into two
shares: one held by the DO (item key) and the other
by the SP (ciphertext). SMPC (secret sharing) is used
between the DO and the SP. When a user submits
an SQL query, the SDB proxy in the DO segment
transforms sensitive column queries into correspond-
ing User-Defined Functions (UDFs) at the SP. These
altered queries are then sent to the SP, and the en-
crypted results are returned to the SDB proxy for de-
cryption before being provided to the user.

The GOOSE framework, detailed in (Ciucanu
and Lafourcade, 2020), shares similarities with SDB
and primarily focuses on securing outsourced data
within a Resource Description Framework (RDF)
graph database using SMPC secret sharing. Graph
data is divided into three components, encrypted, and
distributed across the cloud. All components are
multi-party, preventing any single party from access-
ing the complete graph, query, or outcomes. Data
transmissions between parties are encrypted using the
AES algorithm.

Initially, multi-party query security in graph
databases was outlined in the SMPQ (Al-Juaid et al.,
2022) framework. Subsequent advancements trans-
formed SMPQ into a fully automatic solution, ex-
panding its query-handling capabilities with signifi-
cantly improved performance (Al-Juaid et al., 2023).
Notably, this system is built upon the Conclave sys-
tem, utilizing the SMPC protocol to secure relational
databases.

We introduce PPMQ, a system designed to secure
multiparty queries on graph databases. The PPMQ
model is inspired by SMPQ, in which we altered the
architecture by eliminating the Conclave layer and
connecting directly to the JIFF server(Albab et al.,

DATA 2024 - 13th International Conference on Data Science, Technology and Applications

42



2019) to reduce the overheads. We implemented
PPMQ using JavaScript and built it on top of the JIFF
library, serving as an implementation of SMPC proto-
cols.

Table 1 provides a comparative analysis between
our proposed PPMQ system and all mentioned above
systems.

4 DESIGN OF THE PPMQ
FRAMEWORK

In this section, we first introduce the entities in-
volved in the PPMQ framework and then provide an
overview of how it works.

4.1 Involved Entities

The architecture of our PPMQ system is illustrated in
Figure 3. The system involves the following entities:
1. Data Owners. It enables multiple data owners,

denoted by P1, P2,. . . , Pn, to jointly execute a sin-
gle query on the union of their own separate and
private databases, once they reach an agreement.

2. Neo4j Databases. The different data owners
make their respective Neo4j databases available
for the system, to execute the sub-query for each
party using their Neo4j database.

3. JIFF Server. This entity represents a server that
provides SMPC protocols like secret sharing to be
used in joint querying.

4.2 Security Guarantees and
Assumption

PPMQ is designed on top of the JIFF library, which
follows a semi-honest security model. Parties agree
via out-of-band mechanisms on the query to run, and
all parties faithfully execute the protocol. In the semi-
honest security model, parties adhere to the proto-
col but may attempt to learn private information by
analysing their messages or colluding with other par-
ties. The security of PPMQ is built upon the robust-
ness of the underlying cryptographic primitives em-
ployed by JIFF, encompassing secure encryption al-
gorithms, key exchange protocols, and cryptographic
hash functions.

4.3 Query Agreement

The PPMQ system allows for joint querying by two
or more parties. After determining the number of par-
ties involved in performing the query using the SMPC

protocol, they should agree on a computation ID. In
our current system, this computation ID (ComID) can
be considered an agreement to apply the query us-
ing their respective databases (Albab et al., 2019).
In a further enhancement of the system, we will use
the threshold shared signatures method (Tang et al.,
2023).

4.4 PPMQ Overview

The PPMQ system works by providing users with the
ability to execute queries using two different security
protocols. One option is to use traditional SMPC pro-
tocols on the client side, allowing computations to be
performed on the data without exposing it. The sec-
ond protocol is implemented on the server side using
SMPC protocols and involves hashing the data to use
the hashed value. This protects the data against access
by the server, assuming that hashing is not reversible,
contributing to the security of the data. The choice
between the two protocols is determined based on the
computations the parties want to perform within the
query itself. If the query involves performing arith-
metic operations, including secure addition, multipli-
cation, division, comparison, or sorting, it will be
done on the client side. However, if the purpose of
the computation in the query is to find the intersection
among the parties’ private data, this computation will
be carried out using the second protocol on the server
side. The types of queries covered include those in-
volving arithmetic operations such as secure addition,
multiplication, division, comparison, or sorting. Ad-
ditionally, queries aimed at finding the intersection
among the parties’ private data are handled using the
second protocol on the server side. Furthermore, as
part of our ongoing development efforts, we intend to
extend the coverage to include graph traversal queries
over multiple parties databases.

4.4.1 Protocol 1: Client-Based

To apply traditional SMPC protocols on the client
side, leveraging the functionality provided by JIFF,
the sub-query results obtained from each party are
transmitted to the JIFF server. At the JIFF server, the
SMPC protocol (Secret Sharing) is employed to di-
vide the data into shares. Subsequently, JIFF utilises
a server to store and route encrypted messages ex-
changed among the participating parties for computa-
tion purposes. JIFF’s functionality encompasses per-
forming arithmetic operations, including secure ad-
dition, multiplication, and division of two or more
secret-shared numbers. This capability enables par-
ties to collaboratively compute a joint function with-
out disclosing their respective inputs. Furthermore,

Efficient and Secure Multiparty Querying over Federated Graph Databases

43



Table 1: SMPC for data processing.

Framework Parties
supported SMPC Framework

backend
Trust
Party

No.Data
owners Data Model Query

language/API
Available

implementation
Development

language
Conclave (Volgushev et al., 2019) >= 2 Secret Sharing JIFF Yes >= 2 Relational DB SQL/LINQ Yes Python

Congregation >= 2 Secret Sharing JIFF No >= 2 Relational DB SQL Yes Python
SMCQL (Bater et al., 2016) 2 Garbled Circuits/ ORAM ObliVM No 2 Relational DB SQL Yes Java
Senate (Poddar et al., 2020) 2 Garbled Circuits N/A No 2 Relational DB SQL No -
SAQE (Bater et al., 2020) 2 Garbled Circuits ObliVM No 2 Relational DB SQL No -

Shrinkwarp (Bater et al., 2018) 2 Garbled Circuits/ ORAM ObliVM No 2 Relational DB SQL No -
Secrecy (Liagouris et al., 2021) 3 Repl.Secret Sharing N/A No 3 Relational DB SQL No C

SecureYannakakis (Wang and Yi, 2021) 2 Garbled Circuits N/A No 2 Relational DB SQL Yes C++
VaultDB (Rogers et al., 2022) 2 Garbled Circuits EMP-Toolkit No 2 Relational DB SQL No C++

Scape (Han et al., 2022) 3 Repl.Secret Sharing Frigate No 3 Relational DB SQL No -
Sequre (Smajlović et al., 2023) 3 Secret Sharing N/A Yes 3 Relational DB SQL Yes Python/C++

Hu-Fu (Tong et al., 2022) >= 2 N/A N/A Yes n Relational DB SQL Yes Java
SMPQ (Al-Juaid et al., 2022) >= 2 Secret Sharing Conclave/JIFF No >= 2 GraphDB Cypher No Python

SDB (Wong et al., 2014; He et al., 2015) 1 N/A Secret Sharing N/A No 1 Relational DB SQL No -
GOOSE (Ciucanu and Lafourcade, 2020) 2 N/A Secret Sharing N/A No 1 GraphDB SPARQL Yes Python

PPMQ >= 2 Secret Sharing JIFF No >= 2 GraphDB Cypher No JavaScript

*Both 1 and 2 use SMPC as backend over a database; they do not support multi-party user queries

JIFF supports comparison operations, allowing par-
ties to determine the relative magnitude of their in-
puts, as well as sorting operations, permitting parties
to establish the order of their inputs without revealing
the actual values. Additionally, we have developed
a custom function for identifying the intersection be-
tween two or more secret-shared strings, further ex-
tending the functionality of JIFF. Algorithm 1 illus-
trates the phases involved in client-based query pro-
tocol.

To illustrate how this works, consider a scenario
with three parties aiming to execute one of the queries
from the subsection 5.2 specifically, Q2, which is a
query to count the number of students who scored
7 and are common across all databases. The syntax
for the joint query will be as follows:

CALL {USE db1
MATCH (n:Prof) -[:Guide]-> (m:Student)
where m.Score= 7
RETURN count(m) as db1}
CALL {USE db2
MATCH (n:Prof) -[:Guide]-> (m:Student)
where m.Score= 7
RETURN count(m) as db2}
CALL {USE db3
MATCH (n:Prof) -[:Guide]-> (m:Student)
where m.Score= 7
RETURN count(m) as db3}

RETURN apoc.coll.sum (db1,db2,db3 ) AS cnt

In this example, each party executes a sub-query
to count students with a score of 7 in its respective
database. The results (db1, db2, db3) are transmit-
ted to the server as shares. These shares are then
distributed among the parties to compute intermedi-
ate results. Subsequently, based on these intermediate
results, the final result of the joint query Q is deter-
mined.

Algorithm 1: Client-Based Query Execution.

Require: Q: Joint query
Require: P: Set of parties P1, P2, . . . ,Pn for sharing

computations.
Require: ComID: Shared computation ID as proof

of agreement.
Require: PId : Unique ID for each P when connect-

ing to the server.
Require: R(Qi): Result of subquery Qi

Connect to the System
1. Decide the number of parties (Pi) involved in
the computation.
2. Use shared ComID to agree on the computa-
tion.
Preprocessing Phase
1. Each Pi submits Q to the system.
2. Parse Q into Qi based on PId for each Pi.
3. Execute Qi on each Pi’s Neo4j database.
Computation Phase
1. Each Pi sends R(Qi) to the server as shares.
2. Distribute shares among Pi, where each Pi re-
ceives one share from others.
3. Each Pi computes the intermediate result using
a subset of these shares.
Reconstruction Phase
1. Each Pi sends the intermediate result to Pi+1.
2. Given these results, find the final result of Q.

4.4.2 Protocol 2: Server-Based

Due to the potential lack of information when per-
forming the intersection on the client side, each party
receives shares from the other parties (without know-
ing the source) and identifies duplicate names as the
intersection. To solve this issue, we propose an alter-
native protocol that performs the intersection on the
server side while incorporating an additional method
to enhance the security of the information against po-

DATA 2024 - 13th International Conference on Data Science, Technology and Applications

44



tential server access. In our current version of PPMQ,
this protocol supports performing only the intersec-
tion operation. As an enhancement to the system, we
intend to use this protocol to study how to perform
traversal queries, paradigmatic for graph databases,
between multiple parties while preserving the privacy
of their data. Algorithm 2 outlines the phases of query
execution on the server side.

Algorithm 2: Server-Based Query Execution.

Require: Q: Joint query
Require: P: Set of parties P1, P2, . . . ,Pn for sharing

computations.
Require: ComID: Shared computation ID as proof

of agreement.
Require: PId : Unique ID for each P when connect-

ing to the server.
Require: Dh: Key generated and exchanged using

the DH algorithm.
Require: R(Qi): Result of subquery Qi

Connect to the System
1. Decide how many parties (Pi) are involved in the
computation.
2. Use shared ComID to agree on the computation.
3. After (Pi) connects to the system, generate Dh
and exchange it between Pn using the JIFF server.
Preprocessing Phase
1. Each Pi submits Q to the system.
2. Parse Q into Qi based on PId for each Pi.
3. Execute Qi on each Pi’s Neo4j database.
4. Each Pi hashs R(Qi) then, XORed using ex-
changed Dh.
Computation Phase
1. Each (Pi) sends the newly hashed R(Qi) to the
server as shares.
2. The server computes the intersection on the
hashed results received from (Pi).
3. The result of the computation is distributed to
each (Pi).
Reconstruction Phase
1. Each Pi performs XOR on the result using Dh.
2. The final result of Q is determined from these
XORed results.

To illustrate how this works, let’s consider an ex-
ample scenario involving two parties. They want to
run a query to find the names of people who appear
in both of their databases and were born in 1977.
The syntax for the joint query will be as follows:

CALL{
USE db1
MATCH (m:Person) WHERE m.born= 1977
RETURN DISTINCT(m.name) AS out1
}

CALL{
USE db2
MATCH (m:Person)
WHERE m.born >= 1977 and m.born<=1980
RETURN DISTINCT(mm.name) AS out2
}
RETURN apoc.coll.intersection
(out1,out2)

In this example, each party executes a sub-query
to identify distinct names based on certain conditions.
The results (out 1, out 2) are sent as shares to a server,
which computes the intersection of these results with-
out revealing underlying data. The final result of the
joint query Q is determined, representing the shared
names between them, which is returned to the partic-
ipating parties for privacy-preserving data collabora-
tion.

4.5 Query Workflow

Figure 3 outlines the query flow in the PPMQ system.
Multiple data owners (P1 to Pn) collaboratively exe-
cute a joint query on separate graph databases. In step
(1), they agree on a joint query and establish a shared
computation ID. Moving to step (2), parties submit
the query, which is then translated into sub-queries
depending on parties IDs. In step (3), each party ex-
ecutes their sub-query on their Neo4j database. The
sub-query could be the same across all parties, or it
can be an arbitrary sub-query. From step(1) to step
(3), the same steps will be on both the client and
server sides.

4.5.1 Query Workflow: Client Side

In step (4), sub-query results are sent to the JIFF
server, utilising SMPC protocols. Privacy is ensured
as results are passed as shares utilise Shamir’s secret
sharing method (Shamir, 1979). In step (5), shares
are distributed among parties to perform a secure op-
eration and compute the final query results. Finally,
in step (6), the exclusive outcome is revealed to the
parties who initiated the query, maintaining the confi-
dentiality of the underlying data.

4.5.2 Query Workflow: Server Side

In Step (4), a random key (Dh) is generated using DH
key exchange between the parties (Maurer and Wolf,
1998). Then, in Step (5), when the query results are
obtained and before being passed to the JIFF server,
each party hashes their result using SHA-256. This
is followed by XORing the hashed value using Dh.
Moving on to Step (6), within the JIFF server, SMPC
divides each party’s private data into smaller shares

Efficient and Secure Multiparty Querying over Federated Graph Databases

45



but does not distribute them among various parties.
Instead, the server performs the computation to find
the intersection. Finally, in Step (7), the final result is
revealed to the parties who initiated the query.

5 SYSTEM EVALUATION

We evaluate our proposed system, PPMQ, and inves-
tigate its efficiency. The goal of the experiments is to
answer the following questions: We evaluate the ef-
ficiency of our proposed system, PPMQ, addressing
the following questions:

• RQ1. How effective is our system in ensuring se-
cure multiparty queries, and what is its efficiency
in terms of performance?

• RQ2. Does the data size impact the system’s effi-
ciency?

• RQ3. How does PPMQ’s performance compare
to existing systems like Neo4j Fabric, Conclave,
and SMPQ?

5.1 Data Sets

To validate our proposed PPMQ system and assess its
efficiency, we executed 15 queries using four distinct
datasets. These datasets were sourced from three dif-
ferent parties, each using separate Neo4j databases.

The first dataset, created by us, contains data from
professors and students, featuring 58 nodes and 29
edges. This dataset serves as a small-scale exam-
ple for testing purposes. The second dataset is de-
rived from an open Neo4j database example called
the ’Movie’ dataset (Neo4j, 2007). We modified the
nodes by adding and removing some, establishing
varying party sizes. The graph within this dataset con-
sists of 563 nodes with 785 edges, enabling a more
comprehensive evaluation. The third dataset, named
the ’POLE’ dataset, is a large-scale dataset provid-
ing open crime data for Manchester, UK, spanning
August 2017 (Hunger, 2020). It encompasses 61,521
nodes with 105,840 relationships. Finally, we devel-
oped the ’Car Location’ dataset exclusively using nu-
merical data. Across all the databases in this dataset,
a total of 100 nodes are interconnected by 63 rela-
tionships. This dataset was specifically designed to
facilitate a comparison between our system and the
Conclave system, given that the latter is designed for
handling solely numerical data.

For clarification, we used the first dataset to ex-
ecute queries Q1 to Q4, while the Movie dataset was
used for queries Q5 to Q8. Additionally, queries Q9 to
Q11 were executed using the POLE dataset, while the

final set of queries, Q12 to Q15, was conducted using
the last dataset. Table 2 provides further details about
each dataset, including node and relationship counts
for each database owned by distinct data owners.

Table 2: Details regarding the four datasets employed for
conducting the experiments.

Data sets Database No. of Nodes No. of Relationships

Prof-student
DB1 32 16
DB2 10 5
DB3 16 8

Movie
DB1 203 269
DB2 172 254
DB3 188 262

POLE
DB1 61521 105840
DB2 61521 105840
DB3 61521 105840

Car-Location
DB1 44 31
DB2 24 15
DB3 32 17

5.2 Queries

Below is the list of the 15 queries used to validate our
system1.

• Q1. Count how many students there are in com-
mon between all DBs.

• Q2. Count the number of students who scored 7
and are common across all databases.

• Q3: Find the names of the common students
across all the databases with scores of 9 or above.

• Q4. Find names of the common students across
all databases with scores of 7.

• Q5. Count the number of movies with the actor
Tom Hanks that are common across all databases.

• Q6. Find the names of the movies that are
common across all databases with the actor Tom
Hanks.

• Q7. Find the names of all actors who were born
in 1974.

• Q8. Finds the sum of all nodes in the movie DB
for all parties.

• Q9. Find the total number of robbery crimes
across all databases for the year 2017 in Manch-
ester.

• Q10. Determine the location with the highest fre-
quency of recorded burglaries in common across
all databases.

• Q11. Find which crime Inspector Morse investi-
gated is listed in all databases.

1all Cypher queries can be found in the Appendix avail-
able at https://doi.org/10.5281/zenodo.11048030

DATA 2024 - 13th International Conference on Data Science, Technology and Applications

46



Figure 3: PPMQ architecture and components.

• Q12. Find the number of cars present at each spe-
cific location.

• Q13. Find the total count of cars with ID=1 across
all the databases.

• Q14. Combine two databases by utilising the
node id of the professors whose students have a
grade equal to or higher than 9.0 in either of the
databases.

• Q15. Retrieve information from two databases by
selecting the scores of all students enrolled in the
Math course from both databases.

The experiments were conducted on a desktop
PC running Windows 11 with an Intel Core i7 pro-
cessor clocked at 1.5 GHz and 16.00 GB of RAM,
utilizing a local database for each party. Execution
times, representing the duration for all parties to ob-
tain query results, were measured using the perfor-
mance.now() function in JavaScript, providing high-
resolution timestamps in milliseconds. We executed
10 iterations for each query. Table 3 presents mean
running times and standard deviation for all queries
executed on PPMQ and on Neo4j Fabric, the popular
framework for federated graph databases which does
not use any SMPC protocols. The results show com-
parable execution times and overheads for PPMQ and
Neo4j Fabric (around double). Notably, even when
executing Q9-Q11 with a large dataset, the perfor-
mance remains acceptable, ranging from 79 to 208
ms. The evaluation covered a range of queries to as-
sess the performance of our system across different
query types, addressing RQ1. Furthermore, we ex-
plored the impact of data size on system efficiency us-
ing the large-scale ’POLE’ dataset, addressing RQ2.

Table 3: Execution times for Q1– Q15 when using PPMQ
and Neo4j Fabric.

PPMQ system Neo4j Fabric
Query Mean (ms) Standard Deviation Mean(ms) Standard Deviation

Q1 79.4 19.2 51.5 19.3
Q2 99.7 59.3 36.5 11.3
Q3 90.26 49.5 65.4 15.63
Q4 76.5 17.4 35.3 15.8
Q5 67.3 16.1 24.2 13.5
Q6 70.86 17.6 44.6 14.8
Q7 67.3 17.1 35 10.5
Q8 72.5 23.9 14.5 3.74
Q9 79.5 29.7 18 9.8

Q10 208.5 58.6 104.7 40.6
Q11 72.5 27.5 71.3 20.5
Q12 57.7 13.3 46 7.8
Q13 51.6 14.4 54.1 13.5
Q14 83.6 22.4 59.2 13.1
Q15 77.6 14.1 32.4 12.2

Figure 4: Execution times for Q1– Q15 when using PPMQ
and Neo4j Fabric.

5.3 Comparison with Prior Work

In this subsection, we aim to compare our sys-
tem, PPMQ, with two existing systems that leverage
SMPC for data processing. The first system is Con-
clave (Volgushev et al., 2019), which uses SMPC to
secure the relational database and serves as the back-

Efficient and Secure Multiparty Querying over Federated Graph Databases

47



Figure 5: Execution times for Q9– Q12 when using Con-
clave, SMPQ, and PPMQ.

end for the second system, SMPQ (Al-Juaid et al.,
2022) which focuses on secure multiparty queries in
graph databases. To ensure a fair comparison, we exe-
cuted the same queries used in our experiments using
their SQL equivalents.

Subsequently, we compared PPMQ with SMPQ
(Al-Juaid et al., 2022), which is built atop the Con-
clave system for secure multiparty queries on a graph
database. However, when attempting to compare
our system with Conclave, we encountered a limita-
tion: Conclave only supports numerical data. Conse-
quently, executing queries Q1-Q11 was not possible.
To address this restriction, we utilized the ’Car loca-
tion’ dataset, which exclusively consists of numerical
data, to perform queries Q12-Q15.

Running these queries in the Conclave system re-
sulted in execution times ranging from approximately
402 to 74 seconds. Subsequently, executing the same
queries in the SMPQ system reduced the time to 22
to 19 seconds. This performance improvement was
achieved by eliminating the sorting function used in
the Conclave system after obtaining the query result.

Notably, PPMQ demonstrated a significant ad-
vancement in query execution time compared to both
Conclave and SMPQ. The removal of the Conclave
layer allowed PPMQ to streamline the query execu-
tion process, eliminating unnecessary computational
steps and reducing overall latency. As a result, PPMQ
achieved execution times of less than a second for the
same set of queries, showcasing its efficiency and ef-
fectiveness in secure multiparty query processing. Ta-
ble 4 and Figure 5 illustrate the comparison of execu-
tion times when running the mentioned queries using
Conclave, SMPQ, and PPMQ, thus providing insights
into addressing research question RQ3.

Table 4: Comparison of execution times.

Query Conclave(sec) SMPQ(sec) PPMQ(sec)
Q12 402.3 22.05 0.057
Q13 382.3 19.36 0.051
Q14 86.88 20.89 0.083
Q15 74.1 22.28 0.077

6 CONCLUSION

We have developed a framework for securing multi-
party queries over federated graph databases based on
SMPC protocols. Our system has been implemented
using the JIFF server as a backend for SMPC proto-
cols. Furthermore, we have expanded the system to
automatically parse queries based on the party ID, en-
abling the execution of the correct sub-query. How-
ever, certain Cypher query language features, such as
correlated queries, were not tested in the current sys-
tem, as they were beyond the scope of this paper. In
future work, we plan to extend the system to handle
traversal queries between multiple private databases
using SMPC protocols.

REFERENCES

Al-Juaid, N., Lisitsa, A., and Schewe, S. (2022). Smpg:
Secure multi party computation on graph databases.
In ICISSP, pages 463–471.

Al-Juaid, N., Lisitsa, A., and Schewe, S. (2023). Secure
joint querying over federated graph databases utilis-
ing smpc protocols. In Proceedings of the 9th Inter-
national Conference on Information Systems Security
and Privacy - Volume 1: ICISSP,, pages 210–217. IN-
STICC, SciTePress.

Albab, K. D., Issa, R., Lapets, A., Flockhart, P., Qin, L.,
and Globus-Harris, I. (2019). Tutorial: Deploying se-
cure multi-party computation on the web using JIFF.
In 2019 IEEE Cybersecurity Development (SecDev),
pages 3–3. IEEE.

Alwen, J., Ostrovsky, R., Zhou, H., and Zikas, V. (2015).
Incoercible multi-party computation and universally
composable receipt-free voting. In Advances in
Cryptology–CRYPTO 2015: 35th Annual Cryptology
Conference,, volume 9216, pages 763–780. Springer
Berlin Heidelberg.

Aly, A. and Van Vyve, M. (2016). Practically efficient
secure single-commodity multi-market auctions. In
International Conference on Financial Cryptography
and Data Security, pages 110–129. Springer.

Azevedo, L. G., de Souza Soares, E. F., Souza, R., and
Moreno, M. F. (2020). Modern federated database
systems: An overview. ICEIS (1), pages 276–283.

Bater, J., Elliott, G., Eggen, C., Goel, S., Kho, A., and
Rogers, J. (2016). SMCQL: secure querying for fed-
erated databases. arXiv preprint arXiv:1606.06808.

Bater, J., He, X., Ehrich, W., Machanavajjhala, A., and
Rogers, J. (2018). Shrinkwrap: efficient sql query pro-
cessing in differentially private data federations. Pro-
ceedings of the VLDB Endowment, 12(3):307–320.

Bater, J., Park, Y., He, X., Wang, X., and Rogers, J.
(2020). SAQE: practical privacy-preserving approx-
imate query processing for data federations. Proceed-
ings of the VLDB Endowment, 13(12):2691–2705.

DATA 2024 - 13th International Conference on Data Science, Technology and Applications

48



Bogdanov, D., Laur, S., and Willemson, J. (2008). Share-
mind: A framework for fast privacy-preserving com-
putations. In Computer Security-ESORICS 2008:
13th European Symposium on Research in Computer
Security, Málaga, Spain, October 6-8, 2008. Proceed-
ings 13, pages 192–206. Springer.

Ciucanu, R. and Lafourcade, P. (2020). GOOSE: A se-
cure framework for graph outsourcing and sparql eval-
uation. In 34th Annual IFIP WG 11.3 Conference
on Data and Applications Security and Privacy (DB-
Sec’20). Accepté, à paraı̂tre.

Cramer, R., Damgård, I. B., and Nielsen, J. B. (2015). Se-
cure multiparty computation. Cambridge University
Press.

Evans, D., Kolesnikov, V., and Rosulek, M. (2018). A prag-
matic introduction to secure multi-party computation.
Found. Trends Priv. Secur., 2:70–246.

Francis, N., Green, A., Guagliardo, P., Libkin, L., Lin-
daaker, T., Marsault, V., Plantikow, S., Rydberg, M.,
Selmer, P., and Taylor, A. (2018). Cypher: An evolv-
ing query language for property graphs. In Proceed-
ings of the 2018 International Conference on Manage-
ment of Data, pages 1433–1445.

Gu, Z., Corcoglioniti, F., Lanti, D., Mosca, A., Xiao, G.,
Xiong, J., and Calvanese, D. (to appear). A systematic
overview of data federation systems. Semantic Web.

Guia, J., Soares, V. G., and Bernardino, J. (2017). Graph
databases: Neo4j analysis. In ICEIS (1), pages 351–
356.

Han, F., Zhang, L., Feng, H., Liu, W., and Li, X. (2022).
Scape: Scalable collaborative analytics system on pri-
vate database with malicious security. In 2022 IEEE
38th International Conference on Data Engineering
(ICDE), pages 1740–1753. IEEE.

He, Z., Wong, W. K., Kao, B., Cheung, D., Li, R., Yiu, S.,
and Lo, E. (2015). SDB: A secure query processing
system with data interoperability. Proc. VLDB En-
dow., 8:1876–1879.

Hunger, M. (2020). neo4j-graph-examples/pole. https://gi
thub.com/neo4j-graph-examples/pole/. Accessed:
2023-12-28.

Liagouris, J., Kalavri, V., Faisal, M., and Varia, M. (2021).
Secrecy: Secure collaborative analytics on secret-
shared data. arXiv preprint arXiv:2102.01048.

Liu, C., Wang, X. S., Nayak, K., Huang, Y., and Shi, E.
(2015). ObliVM: A programming framework for se-
cure computation. In 2015 IEEE Symposium on Secu-
rity and Privacy, pages 359–376.

Maurer, U. and Wolf, S. (1998). Diffie-hellman, deci-
sion diffie-hellman, and discrete logarithms. In Pro-
ceedings. 1998 IEEE International Symposium on In-
formation Theory (Cat. No. 98CH36252), page 327.
IEEE.

Miller, J. J. (2013). Graph database applications and con-
cepts with Neo4j. In Proceedings of the Southern
Association for Information Systems Conference, At-
lanta, GA, USA, volume 2324.

Nayak, K., Wang, X. S., Ioannidis, S., Weinsberg, U., Taft,
N., and Shi, E. (2015). Graphsc: Parallel secure com-

putation made easy. In 2015 IEEE Symposium on Se-
curity and Privacy, pages 377–394. IEEE.

Needham, M. and Hodler, A. E. (2019). Graph algo-
rithms: practical examples in Apache Spark and
Neo4j. O’Reilly Media.

Neo4j (2007). built-in examples: Movie-graph. https://neo4
j.com/developer/example-data/#built-in-examples/.
Accessed: 2023-12-28.

Poddar, R., Kalra, S., Yanai, A., Deng, R., Popa, R. A.,
and Hellerstein, J. M. (2020). Senate: A maliciously-
secure mpc platform for collaborative analytics. arXiv
e-prints, pages arXiv–2010.

Rogers, J., Adetoro, E., Bater, J., Canter, T., Fu, D., Hamil-
ton, A., Hassan, A., Martinez, A., Michalski, E.,
Mitrovic, V., et al. (2022). Vaultdb: A real-world pi-
lot of secure multi-party computation within a clinical
research network. arXiv preprint arXiv:2203.00146.

Salehnia, A. (2017). Comparisons of relational databases
with big data: a teaching approach. South Dakota
State University Brookings, SD 57007, pages 1–8.

Sangers, A., van Heesch, M., Attema, T., Veugen, T., Wig-
german, M., Veldsink, J., Bloemen, O., and Worm, D.
(2019). Secure multiparty pagerank algorithm for col-
laborative fraud detection. In Financial Cryptography
and Data Security: 23rd International Conference,
FC 2019, Frigate Bay, St. Kitts and Nevis, February
18–22, 2019, Revised Selected Papers 23, pages 605–
623. Springer.

Shamir, A. (1979). How to share a secret. Communications
of the ACM, 22(11):612–613.

Smajlović, H., Shajii, A., Berger, B., Cho, H., and Nu-
managić, I. (2023). Sequre: a high-performance
framework for secure multiparty computation enables
biomedical data sharing. Genome Biology, 24(1):1–
18.

Tang, G., Pang, B., Chen, L., and Zhang, Z. (2023). Ef-
ficient lattice-based threshold signatures with func-
tional interchangeability. IEEE Transactions on In-
formation Forensics and Security, 18:4173–4187.

Tong, Y., Pan, X., Zeng, Y., Shi, Y., Xue, C., Zhou, Z.,
Zhang, X., Chen, L., Xu, Y., Xu, K., et al. (2022).
Hu-fu: Efficient and secure spatial queries over data
federation. Proceedings of the VLDB Endowment,
15(6):1159.

Tong, Y., Zeng, Y., Zhou, Z., Liu, B., Shi, Y., Li, S., Xu,
K., and Lv, W. (2023). Federated computing: Query,
learning, and beyond. IEEE Data Eng. Bull., 46(1):9–
26.

van Egmond, M. B., Spini, G., van der Galien, O., IJpma,
A., Veugen, T., Kraaij, W., Sangers, A., Rooijakkers,
T., Langenkamp, P., Kamphorst, B., et al. (2021).
Privacy-preserving dataset combination and lasso re-
gression for healthcare predictions. BMC medical in-
formatics and decision making, 21(1):1–16.

Volgushev, N., Schwarzkopf, M., Getchell, B., Varia, M.,
Lapets, A., and Bestavros, A. (2019). Conclave: se-
cure multi-party computation on big data. In Pro-
ceedings of the Fourteenth EuroSys Conference 2019,
pages 1–18.

Efficient and Secure Multiparty Querying over Federated Graph Databases

49



Wang, Y. and Yi, K. (2021). Secure yannakakis: Join-
aggregate queries over private data. In Proceedings
of the 2021 International Conference on Management
of Data, SIGMOD ’21, page 1969–1981, New York,
NY, USA. Association for Computing Machinery.

Wong, W. K., Kao, B., Cheung, D. W. L., Li, R., and
Yiu, S. M. (2014). Secure query processing with
data interoperability in a cloud database environment.
In Proceedings of the 2014 ACM SIGMOD inter-
national conference on Management of data, pages
1395–1406.

DATA 2024 - 13th International Conference on Data Science, Technology and Applications

50


