
A Performant Quantum-Resistant KEM for Constrained Hardware:
Optimized HQC

Ridwane Aissaoui1 a, Jean-Christophe Deneuville1 b, Christophe Guerber2 c

and Alain Pirovano1 d

1Fédération ENAC ISAE-SUPAERO ONERA, Université de Toulouse, France
2Direction de la Technique de l’Innovation, Toulouse, France
fi

Keywords: HQC: Hamming Quasi-Cyclic, Optimization, PQC: Post-Quantum Cryptography, KEM: Key Encapsulation
Mechanism.

Abstract: Secure Key Encapsulation Mechanisms (KEMs) are necessary for providing authentication and confidentiality
through symmetrical encryption. The emergence of quantum computers is a threat to current KEM standards,
therefore new quantum-resistant algorithms have been developed in recent years. One of these propositions
is the code-based Hamming Quasi-Cyclic (HQC) algorithm. However, a lightweight version of this algorithm
is required to run on low-performance systems such as Internet of Things (IoT) devices or small Unmanned
Aerial Vehicles (UAVs). This article presents an algorithmic optimization of the HQC algorithm applied on
constrained hardware. The goal is to improve the performance for real-life applications, and thus the test
bed uses a Real-Time Operating System (RTOS) to emulate a system able to complete complex tasks. This
optimization reduces the completion time of key generation, encapsulation, and decapsulation by a factor of 10,
and reduces significantly the Random Access Memory (RAM) usage for the algorithm. These improvements
make HQC viable for real-life applications on constrained hardware, and the performance could be further
improved by using hardware-specific optimizations.

1 INTRODUCTION

1.1 Security of Constrained Devices

In recent years, the number of connected objects, in-
cluding IoT devices and UAVs, has surged exponen-
tially, leading to increased wireless communication
and security challenges. UAVs require secure video
feeds and authenticated commands to prevent unau-
thorized access (Aissaoui et al., 2023). Similarly, IoT
devices can leak sensitive information without secure
communications(Naru et al., 2017).

While larger systems rely on standard crypto-
graphic protocols, implementing them on small, con-
strained devices consumes significant computational
and memory resources, potentially disrupting system
operations (Thakor et al., 2021). Thus, optimizing
cryptographic algorithms for resource-constrained

a https://orcid.org/0000-0003-1567-8458
b https://orcid.org/0000-0002-5128-6729
c https://orcid.org/0000-0003-4127-7615
d https://orcid.org/0000-0002-5254-0178

systems is crucial to minimize resource consumption
and ensure compatibility.

This study focuses on the ARM Cortex-M4, a
32-bit Microcontroller Unit (MCU) suitable for UAV
flight controllers, embedded automotive systems like
Engine Control Units (ECUs), and infotainment sys-
tems. Popular devices such as Elle0, LizaMX, Pix-
Hawk PX4, and Crazyflie feature an ARM Cortex-M4
MCU with 1 Mbyte of Flash memory and 192 kB of
RAM, which also meets the requirements for many
IoT devices (Yiu and Frame, 2013).

1.2 Post-Quantum Cryptography

The emergence of quantum computing poses a signif-
icant threat to current cryptography standards. Shor’s
quantum algorithm (Shor, 1994) provides a polyno-
mial time solution to the factorization problem, com-
promising the security of Rivest Shamir Adleman
(RSA) keys and Diffie-Hellman (DH)-based primi-
tives. As a result, there is a pressing need for post-
quantum solutions, resistant to attacks performed
with quantum computing abilities.

668
Aissaoui, R., Deneuville, J., Guerber, C. and Pirovano, A.
A Performant Quantum-Resistant KEM for Constrained Hardware: Optimized HQC.
DOI: 10.5220/0012757800003767
Paper published under CC license (CC BY-NC-ND 4.0)
In Proceedings of the 21st International Conference on Security and Cryptography (SECRYPT 2024), pages 668-673
ISBN: 978-989-758-709-2; ISSN: 2184-7711
Proceedings Copyright © 2024 by SCITEPRESS – Science and Technology Publications, Lda.



The quantum threat extends to key exchange and
signature schemes, where RSA, Elliptic Curve Cryp-
tography (ECC), and DH schemes are no longer se-
cure. Post-quantum cryptography offers five main
public-key primitives: (Euclidean) Lattices, (Er-
ror Correcting) Codes, Hash functions, Multivariate
polynomials, and (Elliptic curves) Isogeny.

In 2017, the National Institute of Standards and
Technology (NIST) initiated a standardization pro-
cess for post-quantum cryptography, with the first
standards announced in July 2022. This process
notably evaluated KEM candidates. A Lattice-
based candidate - CRYSTALS-Kyber (Avanzi et al.,
2019) - was selected, alongside three competing
code-based propositions: HQC (Aguilar et al.,
2023), BIKE (Aragon et al., 2022), and Classic
McEliece (Albrecht et al., 2022). Despite the selec-
tion, widespread adoption of these standards will re-
quire time as public trust in their security develops.

1.3 Post-Quantum Cryptography on
Constrained Devices

While post-quantum cryptographic algorithms ad-
dress the threat from quantum computing, integrating
them into constrained devices poses challenges (Ku-
mari et al., 2022). These devices operate with limited
computational power and memory, making traditional
cryptographic protocols designed for more powerful
systems less applicable. KEMs provide authentica-
tion, integrity, and confidentiality, but are vulnera-
ble to quantum attacks and are being standardized by
NIST.

One KEM candidate is HQC but its lack of opti-
mized implementations hinders its integration in con-
strained hardware like the ARM Cortex-M4. Mo-
tivated by this gap in the existing literature, we
sought to identify potential optimizations for HQC
on constrained devices and assess their practical via-
bility for real-world deployment. An algorithmic ap-
proach is not hardware or software-specific, which al-
lows the optimization to be portable on different sys-
tems. This paper presents algorithmic optimizations
of HQC in the context of the feasibility of imple-
menting post-quantum cryptographic algorithms on
constrained systems. Through our investigations, we
aim to provide an optimized version of HQC that can
be recommended as a secure and efficient encryption
scheme tailored specifically for resource-constrained
systems like UAVs and IoT nodes.

2 HQC

HQC is a code-based public-key encryption scheme.
The HQC KEM ensures a secure key exchange be-
tween parties. The sender encrypts a shared secret
with the public key of the receiver, which is used to
produce a key for symmetrical encryption. The mes-
sage can only be deciphered with the receiver’s secret
key. The sender is guaranteed that subsequent com-
munication using the shared key is authenticated, as
only the receiver can retrieve it. The following para-
graphs detail the workings of HQC based on the NIST
fourth round submission (Aguilar et al., 2023):

2.1 Notations

Vectors are depicted in lowercase bold and matrices
in uppercase bold. For instance, x is a vector, X is a
matrix. In represents the identity matrix of size n×n.
H () represents a hash function. We use F2 to repre-
sent the binary finite field and R = F2[X ]/(Xn−1) to
denote the quotient ring where vectors and operations
of HQC are defined. An element of Fn

2 can be de-
picted as a n-dimension vector x = (x0,x1, ...,xn−1) in
F2 or as a polynomial x = ∑

n−1
i=0 xiX i in R . The Ham-

ming weight of x, denoted wt(x), is defined as the
number of non-zero coefficients. Formally, wt(x) =
#{xi ̸= 0}. For two vectors x,y ∈ Fn

2, the addition
a= x+y∈Fn

2 is defined as ai = xi+yi mod 2. Vector
multiplication is defined as its analog over R , that is
if a= x×y∈Fn

2, then ak =∑i+ j≡k mod n xi ·y j mod 2
for k = 0, ...,n− 1. The parameters n, w, wr depend
on the security level and can be found in Table 1.

2.2 Key Generation

A vector h is randomly sampled, representing the
foundation for generating a circulant matrix and, con-
sequently, a systematic quasi-cyclic code with an in-
dex of 2. Specifically, let h = (h0, . . . ,hn−1). The ma-
trix

rot(h) =


h0 hn−1 · · · h1
h1 h0 · · · h2
...

...
. . .

...
hn−1 hn−2 · · · h0


is a circulant matrix, and H = [In|rot(h)] forms the
parity-check matrix of a systematic quasi-cyclic code
with an index of 2. The secret key consists of two
vectors, x and y, sampled with a specified low weight
w. (x,y) can be viewed as a secret error with a
low Hamming weight relative to n (roughly, w =
O(

√
(n))). The syndrome, denoted as s, is given by

s = (x,y)HT = x+y× rot(h)T = x+h×y. The pub-
lic key comprises the vector h and the syndrome s.

A Performant Quantum-Resistant KEM for Constrained Hardware: Optimized HQC

669



2.3 Encryption and Encapsulation

Three vectors r1, r2, and e are randomly sampled with
a specified low weight wr (of order w). The syndrome
u of (r1,r2) is then computed. Formally, u = r1 +
h× r2. The message is encoded using a concatenated
Reed–Muller and Reed–Solomon code (of generator
matrix G), and it is further modified by s · r2 + e to
obtain v. Formally, v = m×G+ s× r2 + e. The final
ciphertext is composed of u and v, i.e., c = (u,v). For
IND-CCA2 encapsulation, a seed m is encrypted to
produce c. The shared secret is derived from m and
c, and the ciphertext is formed as (c,H (m)). More
details for the encapsulation process are available in
Section 2.3.2 of (Aguilar et al., 2023).

2.4 Decryption and Decapsulation

The process involves decoding v − u × y using the
concatenated Reed–Muller and Reed–Solomon code.
The message can be correctly decoded when the
Hamming weight of the given element is less than the
minimum distance of the code. The probability that
the message cannot be decoded from v−u×y is neg-
ligible in the security parameter. For decapsulation,
(c,H (m)) is received. m is retrieved from c, and ver-
ified with H (m). Then the shared secret is derived
from m. More details for the decapsulation process
are available in Section 2.3.2 of (Aguilar et al., 2023).

Table 1: Parameter sets for HQC. n represents the length of
the vector (polynomial). w indicates the weight of vectors x
and y, whereas wr denotes the weight of vectors r1, r2, and
e. The security level for each parameter set is specified.

Instance n w wr Security
hqc128 17,669 66 75 128
hqc192 35,851 100 114 192
hqc256 57,637 131 149 256

3 RELATED WORK

The PQClean project (Kannwischer et al., 2022) pro-
vided a well-organized implementation of HQC for
the ARM Cortex-M4 platform. Their analysis re-
vealed deficiencies in reference implementations in-
cluded in NIST submission packages. Addressing
those issues, many of which were related to non-
adherence to software engineering practices required
significant effort. While PQClean offers a deployable
implementation, it lacks optimization.

The pqm4 project (Kannwischer et al., 2019) op-
timized various post-quantum candidates on ARM
Cortex-M4, yet HQC lacks similar attention. Only

PQClean’s HQC runs on ARM Cortex-M4, under-
scoring the need for further optimization efforts for
equitable evaluations.

(Deshpande et al., 2023) implements similar algo-
rithmic improvements, but mostly outlines hardware
optimizations for HQC on Xilinx Artix 7 FPGA. This
restricts its applicability to other Central Processing
Unit (CPU) architectures, challenging broader utiliza-
tion and comparison across platforms.

4 METHODS

4.1 Hardware and Software

The chosen platform is the STM32F4 Discovery de-
velopment board. It is equipped with a Cortex-M4
microcontroller. It features a clock frequency of 128
MHz, 192 kB of RAM, and 1 MB of flash mem-
ory, closely resembling the capabilities of a low-
performance system, such as UAVs.

For the software foundation, we opted for the
ChibiOS RTOS. This choice is consistent with Pa-
parazzi, an open-source UAV autopilot software,
which also uses it. This operating system provides
the essential tools to implement algorithms on the de-
velopment board and monitor their execution time.

The performance evaluation of KEMs is based on
two metrics: computing cycles and memory usage.
We assess these metrics for the key generation, encap-
sulation, and decapsulation processes. Our test bed
provides the maximum number of cycles and mem-
ory usage for each process.

4.2 Algorithmic Optimization

The algorithms presented in this section are not di-
rectly applicable. For the sake of clarity, they are pre-
sented with vector representations of individual bits,
whereas they are arrays of 64-bit unsigned integers in
the code, and the smallest directly accessible value is
a byte. Modifying individual bits requires data ma-
nipulation that is not detailed here.

During the HQC processes of key generation, en-
capsulation, and decapsulation, there exist variables
with a very low Hamming weight. They only possess
a few non-zero bits therefore using arrays of indexes
for storing them reduces the size of those variables.
The new sparse vector generator is based on the ref-
erence implementation. No changes were made to the
generation of entropy. Only the format of the result is
modified, going from a n-size vector of bits to a w-size
list of integers. The complexity is O(w) = O(

√
N) in-

stead of O(N +w) = O(N) for the original algorithm.

SECRYPT 2024 - 21st International Conference on Security and Cryptography

670



In terms of memory, the low Hamming weight vector
is now stored in w∗16 bits instead of N bits.

Data: w: Hamming weight, SIZE: size of the
vector

Result: x: list of indexes of non-zero values
initialization;
for (i = 0, i < w, i++) do

x[i] = random(SIZE);
if x[i] in x[0 : i−1] then

i−−;
end

end
Algorithm 1: Sparse vector generator.

Polynomial addition uses the list of indexes in-
stead of the entire sparse vector. It iterates on each
index, then XORes 1 to the corresponding bit in u. It
modifies u in place as every instance of addition does
not require saving the initial vector. The new addi-
tion algorithm is detailed in Algorithm 2. The com-
plexity is reduced from O(N) to O(w) = O(

√
N), and

the memory usage is reduced by N bits (excluding the
savings made by the new storage method, which is
N − (16∗w)).

Data: u: Vector represented by an array of
bits, x: indexes of non-zero values of a
low Hamming weight vector

Result: u: result of the addition
for (index in x) do

u[i] = u[i] XOR 1;
end

Algorithm 2: Polynomial addition.

Polynomial multiplication is the most expensive
part of HQC, both in terms of complexity and mem-
ory usage. The PQClean implementation, as well
as the reference implementation, uses the Karatsuba
algorithm (Karatsuba and Ofman, 1962) for polyno-
mial multiplication. However, this can be further im-
proved by exploiting the properties of low Hamming
weight vectors. As seen in Algorithm 3, the poly-
nomial multiplication can be performed by rotating
the vector u to the left by a value corresponding to
the indexes given by x and then XORing those rota-
tions together. In practice, we build temporary 64-
bit buffers of a fraction of the resulting rotated vector.
These buffers are then successively XORed to the cor-
responding 64-bit block in the result. This method al-
lows the rotation to remain constant-time, as each iter-
ation on a given index requires exactly n/64+1 times
the construction of the buffer. Thus a timing analy-
sis of the operation only leaks the size of x, which is
already public. This new algorithm has a complex-
ity of O(N ∗w) = O(N

√
N) instead of O(Nlog2(3)) for

Karatsuba. For memory consumption, Karatsuba uses
16 ∗ N bits for temporary variables, whereas Algo-
rithm 3 only uses N bits.

Data: u: Vector represented by an array of
bits, x: indexes of non-zero values of a
low Hamming weight vector

Result: v: result of the multiplication
v = [0]× sizeof(u);
for (index in x) do

v = v XOR rotl(u, index);
end

Algorithm 3: Polynomial multiplication.

5 RESULTS

5.1 Performance Analysis

Table 2 provides a summary of the optimized HQC
performance compared to its PQC competitors, as
well as the RSA and Elliptic Curve Diffie-Hellman
(ECDH) standards. RSA and ECDH are not quantum-
resistant and have been extensively researched and
optimized over many years. They serve as the cur-
rent standards for asymmetric encryption and key
exchange and are considered secure against non-
quantum computing attacks. For ECDH, the compu-
tation of the shared secret between parties is equiva-
lent to the encapsulation and decapsulation processes
of KEM. We compared this single result to both en-
capsulation and decapsulation for KEM. RSA key
generation, which requires the generation of large
prime numbers, is considered infinite in the compar-
ison due to its extensive computational requirements.
Therefore, using RSA would necessitate key genera-
tion by entities with stronger hardware.

All three algorithms improve memory perfor-
mance. The multiplication optimization enables run-
ning HQC-192, previously impossible due to RAM
constraints. Results for HQC-192 will be presented.
In addition to gaining 4 kB in flash memory, a signifi-
cant 35 kB of RAM is saved compared to the PQClean
implementation.

For computational complexity, the maximum
number of cycles encountered during 10,000 itera-
tions of each scenario is presented. The new algo-
rithms are expected to run in constant time, so slight
variations in cycles may result from other parts of
the implementation or delays induced by the RTOS.
To ensure reliability, the maximums encountered over
the iterations are presented, reflecting the computa-
tional cost for evaluating the real-time needs of the
algorithms.

A Performant Quantum-Resistant KEM for Constrained Hardware: Optimized HQC

671



Table 2: Global performance comparison with current standards and Post-Quantum Cryptography (PQC) competitors. The
Keygen, Encapsulation, and Decapsulation columns include the maximum (over 10000 iterations) number of cycles to com-
plete the process, and the resulting execution time in ms. RSA Keygen is considered infinite, as explained in Section 5.1. The
RAM usage numbers are round due to the static allocation required by the Operating System (OS).

Algorithm Max Cycles Max Cycles Max Cycles RAM usage Flash memory
Keygen Encapsulation Decapsulation (bytes) usage (bytes)

HQC-128 48,030,414 96,874,954 145,737,544 85,000 33,692(PQClean) (285.9 ms) (576.7 ms) (867.5 ms)
HQC-128 1,837,507 4,878,515 7,502,580 50,000 29,484(opt) (11 ms) (29.1 ms) (44.7 ms)

BIKE-1 36,895,891 4,309,361 73,127,121 90,000 121,668(219.6 ms) (25.7 ms) (435.8 ms)

Kyber-2 747,259 898,939 798,862 10,000 18,332(4.5 ms) (5.4 ms) (4.8 ms)
ECDH 3,587,785 3,564,808 3,564,808 2,048 19,932x25519 (21.3 ms) (21.3 ms) (21.3 ms)

RSA 2048 ∞
11,216,240 118,744,894 2,048 15,784(66.8ms) (706.8 ms)

Key generation now takes less than 4% of the time
required for the non-optimized version, while encap-
sulation and decapsulation times are reduced to 5% of
their original duration. This algorithmic optimization
results in a substantial improvement, even exceeding
expectations based on algorithm complexity.

Several factors contribute to this improvement.
Our multiplication algorithm works with 64-bit
blocks, resulting in fewer operations compared to the
recursive Karatsuba algorithm, which incurs a higher
complexity. Karatsuba also uses more basic oper-
ations for low-level polynomial multiplication, con-
tributing to exponential increases in completion time.
Furthermore, the addition optimization further accel-
erates processes by 15 to 20%, allowing the removal
of the original sparse vector generator from the code.
Finally, algorithm 1 provides a net gain, as the origi-
nal generation algorithm already generated the list of
indexes before filling an entire vector.

The comparison yields several insights. First,
non-PQC standards require less memory space than
post-quantum KEMs, particularly in RAM, which
may be preferable for highly constrained systems.
In flash memory, the overhead from using any al-
gorithm is similar, except for BIKE, which requires
significantly more space. CRYSTALS-Kyber is the
most computationally efficient algorithm, followed
by ECDH. HQC takes a similar amount of time as
ECDH, while BIKE is faster for encapsulation but
slower for key generation and decapsulation. RSA
is the least efficient computationally, and only the
PQClean version of HQC is slower. With optimiza-
tion, HQC appears more performant than BIKE, be-
ing slightly slower for encapsulation but faster for
key generation and decapsulation, while requiring
less space in RAM and flash memory. CRYSTALS-
Kyber-3 shows the best performance for higher secu-

rity levels. HQC-192 has comparable computational
complexity to ECDH x448.

5.2 Discussion

Our optimized HQC offers secure key exchange on
ARM Cortex-M4 systems with sufficient RAM and
flash memory. CRYSTALS-Kyber remains more ef-
ficient, even surpassing current standards. How-
ever, HQC lacks hardware acceleration optimization.
Implementing it with NEON or AVX2 instructions
could enhance its competitiveness. This version of
HQC meets the performance needs for UAV unicast
communications, IoT devices, data-gathering sensors,
and medical devices like cardiac monitors. Systems
with Cortex-M4 or similar processing units, includ-
ing smart devices and industrial systems, can now
consider optimized HQC as a viable alternative to
CRYSTALS-Kyber for ensuring confidentiality and
authentication in their communications.

It also offers flexibility across diverse hardware
platforms. Implemented at the high-level code, it en-
sures portability to systems with ChibiOS support.
The algorithmic enhancements are independent of
specific system calls, facilitating integration with any
OS that supports PQClean. Our optimized HQC has
a smaller footprint than the original PQClean ver-
sion, making it suitable for resource-limited systems.
Performance may vary across platforms, but its rela-
tive efficiency compared to other algorithms remains
consistent on 32-bit CPUs. This broad compatibility
makes it relevant for widespread usage.

The test bed, using ChibiOS, introduces variabil-
ity in outcomes compared to other CPU-RTOS com-
binations, as shown by PQM4 benchmarks. Real
hardware implementation limits monitoring capabili-
ties, making actual RAM assessment unfeasible. Our

SECRYPT 2024 - 21st International Conference on Security and Cryptography

672



code includes tasks for monitoring and sharing values,
marginally impacting results. While algorithmic op-
timization ensures portability, a hardware-specific ap-
proach, like the Xilinx Artix 7 CPU (Deshpande et al.,
2023), would yield better results with hardware ac-
celeration. The optimized HQC implementation runs
in constant time but must be evaluated against other
side-channel attacks for potential vulnerabilities.

6 CONCLUSIONS AND FUTURE
WORKS

This article presents algorithmic optimization for the
HQC post-quantum KEM on the ARM Cortex-M4 us-
ing the ChibiOS RTOS. The optimization is portable
and compatible with various operating systems, mak-
ing it applicable to a wide range of hardware plat-
forms. Performance improvements include a 96% re-
duction in key generation time and 95% reductions
in encapsulation and decapsulation times. These en-
hancements make HQC a viable solution for resource-
constrained systems, surpassing BIKE as the most
performant code-based KEM. While CRYSTALS-
Kyber remains the top-performing algorithm, further
optimization could narrow the performance gap.

Future work will explore hardware-specific opti-
mizations using NEON for ARM or AVX2 for Intel
CPUs. Additionally, BIKE will be investigated for a
similar optimization strategy. Evaluation across dif-
ferent hardware and OSs will validate the results.

Overall, this optimized version of HQC offers
enhanced cryptographic capabilities for applications
such as IoT and UAVs without compromising system
availability.

REFERENCES

Aguilar, C., Aragon, N., Bettaieb, S., Bidoux, L., Blazy,
O., Bos, J., Deneuville, J.-C., Dion, A., Gaborit, P.,
Lacan, J., Persichetti, E., Robert, J.-M., Véron, P.,
and Zémor, G. (2023). Hamming quasi-cyclic (HQC)
fourth round version. Submission to the NIST’s post-
quantum cryptography standardization process.

Aissaoui, R., Deneuville, J.-C., Guerber, C., and Pirovano,
A. (2023). A survey on cryptographic methods to se-
cure communications for uav traffic management. Ve-
hicular Communications.

Albrecht, M. R., Bernstein, D. J., Chou, T., Cid, C., Gilcher,
J., Lange, T., Maram, V., Von Maurich, I., Misoczki,
R., Niederhagen, R., Paterson, K. G., Persichetti, E.,
Peters, C., Schwabe, P., Sendrier, N., Szefer, J., Tjhai,
C. J., Tomlinson, M., and Wang, W. (2022). Clas-
sic mceliece: conservative code-based cryptography.

Submission to the NIST’s post-quantum cryptography
standardization process.

Aragon, N., Aguilar Melchor, C., Barreto, P., Bettaieb,
S., Bidoux, L., Blazy, O., Deneuville, J.-C., Gaborit,
P., Ghosh, S., Gueron, S., Güneysu, T., Misoczki,
R., Persichetti, E., Richter-Brockmann, J., Sendrier,
N., Tillich, J.-P., Vasseur, V., and Zémor, G. (2022).
Bike: bit flipping key encapsulation. Submission to
the NIST’s post-quantum cryptography standardiza-
tion process.

Avanzi, R., Bos, J., Ducas, L., Kiltz, E., Lepoint, T., Lyuba-
shevsky, V., Schanck, J. M., Schwabe, P., Seiler, G.,
and Stehlé, D. (2019). Crystals-kyber algorithm spec-
ifications and supporting documentation. Submission
to the NIST’s post-quantum cryptography standard-
ization process.

Deshpande, S., Xu, C., Nawan, M., Nawaz, K., and Szefer,
J. (2023). Fast and efficient hardware implementa-
tion of HQC. In Proceedings of the Selected Areas in
Cryptography.

Kannwischer, M. J., Rijneveld, J., Schwabe, P., and Stof-
felen, K. (2019). pqm4: Testing and Benchmarking
NIST PQC on ARM Cortex-M4. Cryptology ePrint
Archive, Paper 2019/844.

Kannwischer, M. J., Schwabe, P., Stebila, D., and Wiggers,
T. (2022). Improving software quality in cryptogra-
phy standardization projects. In 2022 IEEE European
Symposium on Security and Privacy Workshops (Eu-
roS&PW). IEEE.

Karatsuba, A. and Ofman, Y. (1962). Multiplication of
many-digital numbers by automatic computers. Dokl.
Akad. Nauk SSSR.

Kumari, S., Singh, M., Singh, R., and Tewari, H. (2022).
Post-quantum cryptography techniques for secure
communication in resource-constrained internet of
things devices: A comprehensive survey. Software:
Practice and Experience.

Naru, E. R., Saini, H., and Sharma, M. (2017). A recent
review on lightweight cryptography in iot. In 2017 in-
ternational conference on I-SMAC (IoT in social, mo-
bile, analytics and cloud)(I-SMAC).

Shor, P. (1994). Algorithms for quantum computation: dis-
crete logarithms and factoring. In Proceedings 35th
Annual Symposium on Foundations of Computer Sci-
ence.

Thakor, V. A., Razzaque, M. A., and Khandaker, M. R.
(2021). Lightweight cryptography algorithms for
resource-constrained iot devices: A review, compar-
ison and research opportunities. IEEE Access.

Yiu, J. and Frame, A. (2013). Cortex-M Processors and the
Internet of Things (IoT). ARM whitepaper.

A Performant Quantum-Resistant KEM for Constrained Hardware: Optimized HQC

673


