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Abstract: In recent years, the adoption of Single Sign-On (SSO) has been progressing to reduce the burden of user ac-
count management in web services. In web services using OpenID Connect, a primary SSO protocol, the user
is authenticated using an ID Token (IDT) issued by the identity provider. The Session Token (ST) generated
after authentication is often used to authenticate subsequent requests. However, attackers can acquire victims’
IDT/ST through Cross-Site Scripting (XSS) or malicious browser extensions, enabling them to hijack sessions
and impersonate victims. Related studies have proposed countermeasures against impersonation attacks using
IDT/ST. Still, their effectiveness is limited against user-level malware (e.g., malicious browser extensions),
making it impossible to prevent impersonation entirely. This study proposes OIPM (OpenID Connect Imper-
sonation Prevention Mechanism) as a countermeasure to address the issue of impersonation using IDT/ST.
Specifically, a unique private key is generated during user registration using FIDO, a passwordless authenti-
cation technology. This private key’s signature is verified during authentication to prevent impersonation, and
a temporary private key generated at authentication is used for subsequent request verification. Additionally,
post-authentication high-confidentiality operations require user verification through FIDO-based gestures such
as fingerprints to ensure security against user-level malware.

1 INTRODUCTION

Single Sign-On (SSO) has become widespread to re-
duce the burden of account management in recent
years. OpenlD Connect is one of the SSO protocols
and is supported by large companies like Google and
Microsoft. With OpenID Connect, users only need
to log in once to the Identity Provider (IdP) such as
Google or Microsoft; the IdP provides the user’s au-
thentication and attributes information to other web
services, the Relying Party (RP). This enables users
to utilize multiple services with a single account.

In OpenID Connect, the IdP issues ID To-
ken (IDT) that contains user attributes post-
authentication. After verifying the IDT’s authentic-
ity, the RP authenticates the user and issues a Ses-
sion Token (ST) to manage the session. However, at-
tackers can acquire users’ credentials via phishing at
the IdP or obtain IDT/ST through XSS and user-level
malware (e.g., malicious browser extensions). This
allows them to impersonate users, access sensitive in-
formation, or conduct financial transactions.
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Openpubkey (Heilman et al., 2023) has proposed
countermeasures against impersonation attacks using
IDT. These attacks can stem from vulnerabilities like
XSS or local threats like user-level malware. Open-
pubkey links a public key to the IDT for signature
verification to prevent unauthorized use. However,
this approach falls short against local threats where
malicious browser extensions could access and use a
victim’s private key to forge a valid signature.

Studies have proposed methods beyond OpenID
Connect to combat session hijacking by protecting ST
from remote attacks (Nikiforakis et al., 2011; Tang
et al., 2011; Bugliesi et al., 2015). However, their
effectiveness is limited against user-level malware.
Moreover, some approaches prevent impersonation
by signing ST with secret information (Johns et al.,
2012; Dacosta et al., 2012; De Ryck et al., 2015).
However, these approaches also fall short of user-
level malware that can access secrets and forge valid
signatures.

This study addresses the stolen IDT and ST threats
from XSS and user-level malware. We introduce an
OIPM that ensures user authenticity by requiring sig-
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nature verification with a private key created dur-
ing account setup. This mechanism verifies email
ownership and employs Fast Identity Online (FIDO)
for robust identity confirmation throughout the au-
thentication processes. It also generates an unpre-
dictable ‘secret® during authentication and is used for
continuous hash value verification and IP and de-
vice checks. To combat local threats, our method
includes a re-authentication feature for web applica-
tions, which protects sensitive operations like access-
ing confidential data or conducting critical transac-
tions. Our OIPM is designed for websites with SSO
that demand high reliability.

2 OpenID CONNECT

OpenlD Connect!, based on OAuth 2.02, is an authen-
tication protocol enabling ID federation across appli-
cations. It involves interactions among three entities:
the IdP, the RP, and the user. The IdP authenticates the
user and shares attribute information with the RP, pro-
viding services based on this authentication. OpenlD
Connect supports three authentication flows: Autho-
rization Code Flow, Implicit Flow, and Hybrid Flow.
This study focuses on the Implicit Flow>, where the
IDT is directly received through the browser. This
flow is particularly used for simple login implemen-
tations without managing RP credentials, making it
popular among RPs.

Fig. 1 shows the targeted use case using Implicit
Flow. First, the user starts the authentication by click-
ing a login button in the browser (Process 1). The
RP then requests authentication via browser redirec-
tion to the IdP (Process 2). The IdP presents a login
page where the user inputs credentials and a consent
page for user approval to share attribute information
with the RP (Process 3). Upon consent, the IdP issues
an IDT containing the user’s identifier ‘sub,‘ the RP’s
identifier ‘aud,‘ and the user’s email ‘email‘ and sends
it back via redirection (Process 4). Since processes 1
to 4 are Implicit Flow steps, the rest of the use case
will be explained in Section 3.1.

3 PROBLEM DEFINITION

In this section, we describe the OpenID Connect use
case and threat model targeted in this study and ad-

Ihttps://openid.net/specs/openid-connect-core-1_0.
html

Zhttps://datatracker.ietf.org/doc/html/rfc6749

3Note that while the Implicit Flow is deprecated in
OAuth 2.0, it is not deprecated in OpenID Connect.
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Figure 1: The Target Use Case of This Study.

dress the authenticity problems upon authentication
and post-authentication in RP. We also define access
patterns by attackers when user authenticity cannot be
guaranteed.

3.1 Target Use Case

Fig. 1 illustrates this study’s OpenlD Connect use
case, focusing on user registration and authentication
via SSO. During SSO, the IdP verifies the user’s cre-
dentials (e.g., email address, password). The user
then receives an IDT through the browser and for-
wards it to the RP for authentication (Processes 5 and
6). After authentication, an ST to identify the user’s
session is issued and returned to the user (Process 7).
The ST is included in a cookie for subsequent RP
requests to facilitate session-related data processing
(Processes 8 and 9).

3.2 Threat Model

This study assumes a threat model based on the web
attacker model. The threat model includes three
threats: a phishing threat, an XSS threat, and a user-
level malware threat. Each threat operates distinctly
without one being a prerequisite for another.
Phishing Threat: Attackers can lure victims to their
hosted websites (e.g., attacker.com) and steal their
credentials by having them enter the information on
the website.

XSS Threat: Attackers can also exploit XSS vul-
nerabilities on the RP, executing arbitrary JavaScript
on the victim’s browser. This allows them to by-
pass browser-based XSS countermeasures (e.g., the
HttpOnly attribute for cookies, Content Security Pol-
icy) and steal IDT/ST.

User-level Malware Threat: We assume attackers
can infect the client with malware to consider ro-
bust countermeasures against compromising user de-
vices. We specifically consider malware with only
user-level access, such as malicious browser exten-
sions, excluding malware with root-level access. We
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assume that the OS protection mechanisms are fully
operational against user-level malware. This threat
is realistic due to numerous malicious browser exten-
sions installed on many users’ devices in the Chrome
web store. Our threat model does not include attacks
against the FIDO2 protocol itself, assuming that it is
secure. Users are presumed to use physical authen-
ticators (not virtual) certified at L2 or above by the
FIDO Alliance.

Finally, we do not assume that parties other than
the user in OpenID Connect (RP, IdP) can be compro-
mised. For instance, attackers cannot compromise the
RP to alter the authenticity verification results or the
IdP to steal the secret keys for signing IDT.

3.3 Authenticity Problems

Authentication in RP: The IDT includes a nonce to
mitigate unauthorized acquisition and prevent replay
attacks. However, if an attacker acquires a valid, un-
used IDT, e.g., using malicious browser extensions,
they can impersonate the user by submitting it to an
RP that recognizes the RP identifier (aud). Addition-
ally, attackers may acquire a victim’s credentials at
the IdP through phishing, allowing them to obtain a
new IDT. By submitting these tokens to the RP, at-
tackers can compromise user authenticity and log in
as the victim.

Post-Authentication in RP: STs are managed as
cookies in browser storage. Attackers can exploit the
XSS vulnerability on the RP to execute JavaScript in
a victim’s browser or use malicious browser exten-
sions to acquire the ST from the victim’s browser.
So, attackers can use the stolen ST to perform post-
authentication operations as legitimate users.
Potential Access Patterns: During authentication in
the RP, attacker access patterns with IDT include:
(IT-1) stealing and submitting the IDT; (IT-2) using
stolen credentials to obtain and submit a new IDT
from the IdP. Both scenarios allow requests from ei-
ther the attacker’s or the victim’s browser.

In the post-authentication phase, attacker access
patterns with ST are: (ST-1) stealing the ST via XSS
and making requests from the attacker’s browser;
(ST-2) using the ST from a compromised victim’s
browser due to XSS or browser hijacking.

4 RELATED WORKS

Studies on impersonation attacks using IDT (Mainka
et al., 2017) show that attackers can tamper with
or forge tokens using a victim’s identifier. This at-
tack can be detected by verifying the signature of the
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Figure 2: Overview of OIPM.

IDT. However, if legitimate IDT can be stolen, the
signature value would be correct, making imperson-
ation undetectable. The Openpubkey method (Heil-
man et al., 2023) addresses this by embedding users’
public keys in IDTs for signature verification, en-
hancing security against impersonation. It also intro-
duces the MFA-cosigner feature, which requires ad-
ditional authentication beyond the IdP, increasing se-
curity but also adding complexity. Nonetheless, mali-
cious browser extensions might still enable attackers
to forge valid signatures.

Session hijacking, where STs are stolen through
exploits like XSS or malicious browser extensions,
has led to several defensive solutions. SessionShield
(Nikiforakis et al., 2011), Zan (Tang et al., 2011),
and Cookiext (Bugliesi et al., 2015) protect STs by
managing them outside the browser or by setting se-
cure cookie attributes, though their defense against
browser extensions is limited. Alternatives like Bet-
terAuth (Johns et al., 2012), One-time cookies (Da-
costa et al., 2012), and SecSess (De Ryck et al., 2015)
enhance security by generating unique hash values for
each request using HMAC authentication, which con-
firms the possession of secret user information. One-
time cookies use TLS for secret exchange, while Bet-
terAuth and SecSess utilize Diffie-Hellman for secret
sharing without TLS. However, these methods cannot
prevent impersonation if malicious extensions access
the secret to forge valid hashes.

This study highlights the limitations of current de-
fenses against impersonation using IDT and session
hijacking, especially concerning local threats like ma-
licious browser extensions. We propose a new coun-
termeasure to prevent impersonation involving IDT
and ST.
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S OIPM DESCRIPTION

5.1 Verifying Authenticity of ID Tokens

This section proposes a method to verify user authen-
ticity during authentication. It begins with checking
the user’s IDT and verifying email ownership at reg-
istration, preventing attackers without email access
from registering. Users generate private and public
keys during registration. Based on FIDO2, signa-
ture verification ensures security as the private key is
stored in a FIDO device that is resistant to attacks, re-
quiring a PIN or biometric verification. FIDO2’s fea-
tures, like KHAccessToken and authenticatorClient-
PIN, are safeguarded against user-level malware, pre-
venting attackers from forging signatures(Kuchhal
et al., 2023).

Key Pair Generation During User Registration:
User registration (phase 1 in Fig. 2) involves gen-
erating a key pair, starting with the user registering
at the RP, followed by IdP authentication and receiv-
ing an IDT. The IDT is sent to the RP for valida-
tion, and the RP emails a confirmation URL to the
user. Upon clicking this URL, a personal confir-
mation token is validated by the RP, which then is-
sues a session-specific challenge to the authenticator
through the browser. User authenticity is confirmed
by biometric or PIN verification on the authenticator,
generating a key pair with the private key stored se-
curely in the authenticator. The public key, sent to
the RP along with the IDT, is saved for future login
authenticity verification.

Authenticity Verification Using Private Key at Au-
thentication: During authentication, the signature
created by the user is verified (phase 2 in Fig. 2).
Specifically, the RP uses a private key to generate a
signature that includes a random string, known as a
challenge value. This signature, along with the IDT, is
then transmitted to the RP, which uses the public key
to verify the validity of the signature. The authenticity
verification process using a signature during authenti-
cation is detailed in Fig. 3.

The user authentication process at the RP starts
with the user logging in and receiving an IDT from
the IdP, which is then sent to the RP for verifica-
tion. The RP issues a session-specific challenge to
the authenticator to prevent replay attacks and ensure
session uniqueness. The user confirms their identity
through biometric or PIN authentication on the au-
thenticator, which then uses the private key to create
a signature. This signature, along with the IDT, is
sent to the RP, where the public key, provided dur-
ing registration, is used to validate the signature and
authenticate the user. Although authentication can be
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Figure 3: Authenticity Verification Using Private Key at
Authentication.

achieved solely through FIDO-based signatures, it is
crucial for SSO that RPs continuously reference and
update IdP user information for personalized expe-
riences. Therefore, transmitting the IDT alongside
FIDO-based signatures remains essential.

5.2 Verifying Authenticity of Session
Tokens

This section proposes a method for verifying user au-
thenticity in post-authentication. Specifically, when
users have been logged in, a random string (secret)
shared exclusively between the user and the RP is
generated. This allows the verification of user authen-
ticity at the time of post-authentication to be substi-
tuted and verified through the maintenance of the se-
cret. The following explains the generation and ver-
ification method of the secret at the time of authen-
tication and describes a re-authentication method to
address the threat of secret theft.

Authenticity Verification Using Secret at Post-
Authentication: During authentication, verifying au-
thenticity with FIDO private keys requires a ges-
ture. Requiring gestures for each post-authentication
request would hinder convenience, so we use a
shared secret between the user and RP instead. This
128-bit random string (secret) secures request au-
thenticity and resists brute-force attacks. For post-
authentication requests, the user-generated hash value
is verified (phase 3 in Fig. 2). Specifically, a hash
value is generated using a nonce value and the secret
created by the RP, and this hash value, along with the
ST, is sent to the RP. The RP then generates a hash
value using the nonce value and secret and compares
it with the received one.

After user authentication, the RP stores an unpre-
dictable secret, the user’s IP address and device de-
tails. Additionally, the RP issues a ST and returns it
with the secret. The secret is stored in non-persistent
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in-memory storage using JavaScript closures*. Since
variables defined within the scope of a function can-
not be referenced from outside the scope, the secret
cannot be referenced from external JavaScript pro-
vided via XSS. Users also obtain a nonce from the RP
to prevent hash reuse. A JavaScript program on the
browser combines this secret and nonce to generate a
hash. The RP verifies the user by comparing this hash
with its generated one and checks the request’s IP and
device details, denying access to attackers even with
avalid ST. Access is granted only if both verifications
pass. In addition, if a user’s IP changes, they must log
in again.

Re-authentication Methods to Address Secret
Theft Threats: The post-authentication verification
process, outlined previously, checks IP and device in-
formation to mitigate impersonation from stolen se-
crets or hashes. However, attackers could still capture
the secret through malicious browser extensions that
access communication logs. To address this, sensitive
actions like accessing confidential data or making fi-
nancial transactions require FIDO re-authentication,
as phase 4 of Fig. 2 illustrates. This involves local au-
thentication on the user’s device with FIDO and veri-
fication of hash values, IP, and device info by the RP,
including signature checks using a public key.

6 EVALUATION

Implementation Method: The experimental setup
uses a Ubuntu 22.04 LTS server with a 6-core pro-
cessor and employs Docker and Docker Compose for
virtualization and container management. The OIPM
is built with Node.js, Express as the web server, and
MongoDB as the database, with its code hosted on

“https://developer.mozilla.org/en-US/docs/Web/
JavaScript/Closures
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Table 1: Control Results for Each Access Pattern.

User Information | Request Origin | Result
Victim Credential V@ctim Allowed
ST, Secret Victim Allowed

Credential Attacker Denied

Credential Victim Denied

Attacker IDT AtFac'ker Den@ed
IDT Victim Denied

ST, Secret Attacker Denied

ST, Secret Victim Allowed

ST, Hash Attacker Denied

ST, Hash Victim Denied

ST, Secret Victim Denied

GitHub’. We simulated the attacker, victim, RP, and
IdP as containers on the same network for access pat-
tern evaluation.

6.1 Access Pattern Evaluation

This study evaluates OIPM’s response to legitimate
user and attacker-induced access patterns, as outlined
in Section 3.3. Table 1 shows control outcomes
for victims and attackers during RP login and post-
login actions. Access is granted after verification
if the ST and secret are transmitted from the vic-
tim’s browser. However, access can be safeguarded
against malicious browser extensions by mandating
re-authentication using FIDO for sensitive operations.
These findings demonstrate OIPM’s effectiveness in
preventing impersonation at both the authentication
and post-authentication stages.

6.2 Performance Evaluation and
Discussion

This study measures OIPM’s impact on system per-
formance by analyzing response times and computa-
tional resource usage before and after deployment.
Response Time: We assess the response time for au-
thentication and post-authentication requests to the
RP’s server using the PlayWright browser automa-
tion tool, executing 100 requests at 500-millisecond
intervals. Pre-OIPM authentication requests averaged
550 milliseconds, with a post-deployment increase of
100 milliseconds. Post-authentication requests went
from a 50- to a 5-millisecond delay, and confidential
requests needing FIDO re-authentication experienced
an additional 10-millisecond delay (Fig. 5).
Computational Resource Load: We used Docker
stats to monitor the resource usage of Docker con-
tainers for the RP, measuring average memory and

Shttps://github.com/oidc-access-control/OIPM
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Figure 5: Response Time.

CPU utilization under 100 authentication and post-
authentication requests before and after OIPM’s im-
plementation. Data on memory and CPU usage were
collected at one-second intervals, with outliers re-
moved using z-score for data points within +/- 3
standard deviations, as shown in Fig. 6 and Fig.
7. Post-implementation, CPU utilization doubled
for authentication requests and quadrupled for post-
authentication, with a five-fold increase for confiden-
tial requests. Memory usage remained stable, with a
1.5 times increase only for confidential requests.
Discussion: Verifying email ownership in OIPM is
critical to prevent attackers from associating their
keys with a victim’s ID, a feature not present in stan-
dard SSO. It is important to create identity verification
methods that maintain user convenience. Addition-
ally, OIPM’s requirement for FIDO implementation
faces challenges due to its low website adoption rate.
Future studies should also consider the costs of adopt-
ing FIDO.

7 CONCLUSION

This proposal attempted to ensure user authenticity
in OpenID Connect at the RP. Our proposed OIPM
method leverages FIDO private keys for signature ver-
ification and secret information for hash verification,
protecting against user-level malware. The method
shows access control can be managed effectively with
little system impact. Future efforts will aim to create
an easy identity verification process and assess FIDO
costs.
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