
A Systematic Mapping Study on Impact Analysis

Emanuele Gentili1,2 a, Jonida Çarka1 b and Davide Falessi1 c

1University of Rome Tor Vergata, Rome, Italy
2MBDA Italy S.p.a., Italy

Keywords: Impact Analysis, Mapping Study, Software Changes.

Abstract: Context: Software change impact analysis (CIA) concerns managing the consequences of the changes in
software artefacts. CIA solutions support software developers in making informed decisions regarding the
impact of changes and ensure the overall stability and reliability of software systems. Aim: This paper
presents a mapping study on CIA solutions. Our analysis focuses on two main dimensions: 1) the source of
the change and 2) the target of the change. Method: We analyse 258 primary studies. Results: We show that
in more than one-third of the cases, the Target and Source artefacts mentioned are in the general category. The
second most analyzed artefact is Code. In contrast, the least mentioned source artefact is test, while the least
mentioned target artefact is requirement. Conclusions: The identified research gaps offer opportunities to
expand the knowledge and understanding of CIA techniques, ultimately benefiting practitioners and software
development processes as a whole.

1 INTRODUCTION

Software development follows an iterative approach
involving frequent changes to software artefacts (Turk
et al., 2002). Managing and understanding the conse-
quences of these changes is critical for ensuring the
quality and reliability of software systems (Boehm
and Sullivan, 2000). This process is known as
software change impact analysis (CIA), which con-
trols, understands, and manages the consequences of
changes to software artefacts (Bohner, 1996).

Software undergoes changes for various reasons,
such as addressing bugs, introducing new features, or
enhancing performance. There are four main types
of software maintenance: perfective, preventive, cor-
rective, and adaptive. Perfective maintenance focuses
on enhancing software functionality, while preven-
tive maintenance aims to identify and address poten-
tial issues proactively. Corrective maintenance deals
with bug fixing, while adaptive maintenance involves
adapting software to operating environment changes
or requirements (Lientz and Swanson, 1980).

Regardless of the reasons for software changes, it
is essential to understand how we can limit and con-
trol those changes. CIA supports software developers

a https://orcid.org/0009–0002-4283-9114
b https://orcid.org/0000-0001-9315-3652
c https://orcid.org/0000-0002-6340-0058

in making informed decisions regarding the impact of
changes and ensures the overall stability and reliabil-
ity of software systems.

This paper presents a mapping study on solutions
for CIA in software development. While several map-
ping studies have been conducted on the CIA (Kret-
sou et al., 2021; Li et al., 2013; Malhotra and Bansal,
2016; Malhotra and Khanna, 2019), our analysis fo-
cuses on two new dimensions: 1) the source of the
change and 2) the target of the change. Thus, the con-
tribution of this paper lies in the comprehensive char-
acterisation of CIA solutions and their relationship to
different types of artefacts, such as requirements, de-
sign, code, and tests.

Our study analyses 258 primary studies and pro-
vides a detailed characterisation of the solutions pro-
posed for CIA. Our results show that few studies sup-
port changes when the source is a late artefact (e.g.
test) and the target an early artefact (e.g. require-
ment).

The remainder of the paper is organised as fol-
lows. In Section 2 we present the related work on
CIA. Sections 3 and 4 describe the methodology used
for this mapping study, addressing the research ques-
tions and presenting a comprehensive analysis of the
results. Section 5 discusses the implications of our
results on researchers and practitioners. Finally, Sec-
tions 6 to 7 discuss the threats to validity and provide
concluding remarks based on the study.

Gentili, E., Çarka, J. and Falessi, D.
A Systematic Mapping Study on Impact Analysis.
DOI: 10.5220/0012758200003753
Paper published under CC license (CC BY-NC-ND 4.0)
In Proceedings of the 19th International Conference on Software Technologies (ICSOFT 2024), pages 375-382
ISBN: 978-989-758-706-1; ISSN: 2184-2833
Proceedings Copyright © 2024 by SCITEPRESS – Science and Technology Publications, Lda.

375



2 RELATED WORK

This section presents the existing body of research on
CIA in software engineering. This section comprises
two subsections: Introduction to CIA, where we pro-
vide an overview of the studies conducted to investi-
gate various aspects of impact analysis, underscoring
its significance and relevance in software engineer-
ing. Additionally, we include Literature Reviews on
CIA, which focuses on reviewing and discussing sec-
ondary studies that directly or indirectly pertain to our
research. By examining the literature in these sub-
sections, we aim to comprehensively understand the
current research landscape in the realm of CIA.

2.1 Introduction to CIA

Several studies have been conducted to address vari-
ous aspects of CIA in the field of software engineer-
ing:

Lehnert (2011) addresses the need for a com-
prehensive framework to classify and compare ap-
proaches for CIA in software development. The pa-
per introduces a new taxonomy for CIA derived from
a literature review of 160 relevant studies. The taxon-
omy provides detailed and precise classification cri-
teria, overcoming the limitations of existing frame-
works. The applicability and usefulness of the tax-
onomy are demonstrated through the classification
of multiple approaches. This research serves as a
foundation for conducting a comprehensive software
change impact analysis survey. The taxonomy ad-
dresses various levels of software, such as source
code, architectural models, and miscellaneous arti-
facts, highlighting the need for a comprehensive clas-
sification system. Future work involves expanding the
taxonomy to a more extensive set of studies and en-
hancing its criteria and granularity levels. For exam-
ple, the study conducted by Lehnert (2011) does not
explicitly mention software testing as an artifact in the
taxonomy for CIA.

Bordin and Benitti (2018) focus on the need to
prioritize research and practices in software mainte-
nance in academia and industry. Their study analyzes
how software maintenance is addressed in academic
programs and industry practices, comparing them to
identify alignment and potential areas of improve-
ment. The study utilizes document review, survey,
and comparative analysis methodologies. The find-
ings reveal that while legacy systems and impact anal-
ysis are prevalent in industry practices, they are not
extensively explored in academia. Conversely, topics
related to the maintenance process and reengineering
should be more utilized in industry practices.

Aung et al. (2020) conducted a systematic lit-
erature review to examine CIA in large-scale soft-
ware development projects and the use of automated
traceability-link recovery approaches. The review
identifies 33 relevant studies and investigates various
aspects of the CIA, including traceability approaches,
CIA sets, evaluation degrees, trace direction, and
methods for recovering traceability links between dif-
ferent artifact types. The study highlights the limited
number of studies addressing the design and testing of
impact analysis sets, likely due to the need for more
available datasets. It suggests the need for further in-
dustrial case studies and the development of traceabil-
ity tools to support fully automatic approaches utiliz-
ing machine learning and deep learning.

Anwer et al. (2019) focus on Requirement Change
Management (RCM) in both in-house software devel-
opment and Global Software Development (GSD) ap-
proaches, with a specific emphasis on impact analysis.
Their study identifies challenges influencing RCM,
particularly concerning CIA, through a systematic lit-
erature review of 43 papers and a questionnaire sur-
vey. While the study provides valuable insights for re-
searchers and industry professionals to enhance their
understanding and implementation of CIA in differ-
ent development scenarios, it does not analyze other
artifacts such as test design or source code.

Rinkevics and Torkar (2013) present a system-
atic literature review of Cumulative Voting (CV) and
CV analysis methods in software engineering. Their
study focuses on the practical use of CV and the de-
tection of prioritization items with equal priority. The
review highlights CV applications in various software
engineering disciplines, including requirements prior-
itization and CIA. They introduce Equality of Cumu-
lative Votes (ECVs) as a method to identify equal pri-
ority items in CV results. The evaluation of ECV on
prioritization cases demonstrates its effectiveness in
detecting equal items, providing insights for practi-
tioners adopting CV, and supporting decision-making
processes in software engineering.

These studies contribute to understanding CIA,
software maintenance, and prioritization in software
engineering. They offer valuable insights and high-
light the need for further research and improve-
ments in various areas, such as taxonomy develop-
ment, traceability tools, best practices in requirement
change management, and other artifacts such as soft-
ware design, source code, and testing.

2.2 Literature Reviews on CIA

This subsection reviews and discusses related work,
specifically secondary studies such as Systematic Lit-

ICSOFT 2024 - 19th International Conference on Software Technologies

376



erature Reviews (SLRs) or Systematic Mapping Stud-
ies (SMS), that are directly or indirectly related to our
research. Table 1 reports some highlights of the four
related secondary studies that we elaborate below.

Kretsou et al. (2021) conducted a systematic map-
ping study focusing on the usefulness of the CIA, the
top researched subfields, and code-based approaches.
The study highlighted the practical advantages of
CIA, which encompasses all maintenance requests
and can help reduce associated costs. It also identi-
fied four parameters for CIA quantification and found
variations in the level of research across various as-
pects of the CIA.

Li et al. (2013) conducted a survey that explored
code-based CIA techniques. Their study emphasized
the key application areas of the CIA and presented a
framework for comparing code-based techniques. It
highlighted the importance of CIA in critical activi-
ties such as software comprehension, change propa-
gation, regression test case selection, debugging, and
attribute measurement.

Malhotra and Bansal (2016) conducted a literature
review in 2016 specifically on software change pre-
diction, focusing on change proneness. Their review
highlighted the strong predictive power of object-
oriented measures in change prediction.

Malhotra and Khanna (2019) systematically re-
viewed software change prediction. Their study ex-
amined experimental settings, characteristics and per-
formances of prediction models, and the use of CK
metrics (Chidamber and Kemerer, 1994), feature se-
lection strategies, and evaluation metrics such as
AUC. The review found that CK metrics were ex-
tensively used, feature selection strategies were com-
monly employed, and AUC was frequently used as a
performance metric.

These mapping studies provide valuable insights
into various aspects of CIA, including its usefulness,
application areas, techniques, metrics, and prediction
models.

3 METHODOLOGY

This section presents the approach used in this study.
We begin by stating our objectives and research ques-
tions, formulated using the Goal-Question-Metrics
(GQM) framework (Basili et al., 1994). These re-
search questions focus on characterizing CIA solu-
tions in terms of their input and output. Next, we
describe the study selection process, where we con-
ducted a comprehensive search in major digital li-
braries and applied filtering criteria based on domain,
venue, and article type. The selected studies were

then subjected to data collection, which involved clas-
sifying each paper based on two dimensions: the
source of the change and the target of the change.

3.1 Objectives and Research Questions

The goal of this study, specified using the GQM ap-
proach, is to analyse existing CIA solutions for the
purpose of characterisation with respect to the input
and output from the point of view of researchers and
practitioners in the context of software engineering.

Based on the GQM formulation and the aim de-
tailed in Section 1, we investigate the following re-
search questions:

• RQ1: What is the source of the CIA? RQ1 aims
at characterising the primary studies in terms of
the specific types of artefacts, e.g. requirements,
that are considered by the solution provided in the
study as the source of the CIA.

• RQ2: What is the target of the CIA? RQ2 aims
at characterising the primary studies in terms of
the specific types of artefacts, e.g. code, that are
considered by the solution provided in the study
as the target of the CIA.

3.2 Study Selection

Our goal is to identify any papers related to the topic
of CIA, which we define as a technique used to limit
or evaluate the possible outcomes of a change in a
software system (Kretsou et al., 2021).

We conducted a search for academic literature
in software engineering by using a specific search
string and limited our search to three digital libraries:
ACM Digital Library, IEEE Xplore, and SCOPUS.
We chose these libraries because they are among the
most frequently used digital libraries for software en-
gineering (Croft et al., 2023). We decided to avoid
other search engines, such as Google Scholar, to avoid
including non-peer-reviewed articles. As a search
query, to be comprehensive, we use the string “impact
analysis” in the title, abstract or keywords.

Our initial search across three major digital li-
braries - SCOPUS, IEEE Xplore, and ACM Digital
Library - yielded a total of 16,554 studies, including
14,573 from SCOPUS, 1,624 from IEEE Xplore, and
357 from ACM Digital Library. We applied various
filtering criteria based on domain, venue, and arti-
cle type to refine our results. We then downloaded
all retrieved studies and removed duplicates using the
bibtex-tidy tool1. Furthermore, in our categorization
process, we classified the primary studies according

1https://github.com/FlamingTempura/bibtex-tidy.git

A Systematic Mapping Study on Impact Analysis

377



Table 1: Mapping studies in CIA.

Kretsou et al.
(2021) Li et al. (2013) Malhotra and

Khanna (2019)
Malhotra and
Bansal (2016) Our Work

Title
Change impact
analysis:A system-
atic mapping study

A survey of code-
based change im-
pact analysis tech-
niques

Software Change
Prediction:
A Systematic Re-
view
and Future Guide-
lines

Software change
prediction:
a literature review

A Systematic Map-
ping Study
of Impact Analysis

Year 2021 2012 2019 2016 2023

#Primary Studies 111 30 38 21 258

Main Focus

*Usefulness of
CIA;
*Top researched
CIA subfields;
*Only code;

*Key application
areas of CIA;
*Framework for
comparing
code-based CIA
techniques;

*Change predic-
tion;
*Experimental set-
tings;
*Prediction models
characteristics and
performances;

*Change prone-
ness;

*Artifacts sup-
ported as
input and output of
solutions;

Results

*practical advan-
tages of CIA;
* CIA quantifica-
tion parameters;
* some CIA aspects
are more researched
than others;

*CIA supports
many critical activi-
ties
such as software
comprehension,
change propaga-
tion, selection of
regression,
test cases, debug-
ging and measuring
various
software attributes;

*The majority of
studies have
employed fea-
ture selec-
tion/dimensionality
reduction strate-
gies;
*The majority of
the datasets
are open-source;
*AUC metric is fre-
quently used;

*Object-oriented
measures
have a strong pre-
dictive power;

*Under-studied and
over-studied areas
in CIA techniques,
urging researchers
to focus
on late to early arti-
fact solutions;

to the type of support they provided. Under the cate-
gory of Identification, the papers proposed solutions
to identify the impacted elements using terms like
”impact set” or ”identification.” On the other hand,
under the category of Prevention, the papers presented
solutions to mitigate or lessen the impact of system
changes, employing terms such as ”maintainability”
or ”stability.” As part of our exclusion criteria, we re-
moved all studies that focused on solutions to limit or
reduce the impact of changes to the system.

Figure 1 shows the workflow that depicts the en-
tire search and study selection process, highlighting
the number of papers retrieved at each stage. We con-
ducted the process in April 2023 and obtained a total
of 258 primary studies, and then we listed all of them
in Appendix A.

Table 2 reports our 3 inclusion and 8 exclusion
criteria as inspired by (Croft et al., 2023).

The first two authors applied the exclusion crite-
ria. In the event of disagreements, we reached a con-
sensus via a discussion with the third author; we had
only three disagreements about exclusion criteria.

3.3 Data Collection

We classify each paper in the following two orthogo-
nal dimensions:

1. Source of the change: The input of the solution
is the element or component that undergoes the
change and affects the system. For instance, sup-
pose that a model is developed from requirements
and it supports the understanding of how changes
in requirements impact the design; then the source
of the change is requirements. Based on the pro-
vided information, this dimension can have the
following values:

• Requirement: Specifications or requirements
that define what the system should do. This
category also includes standards that the system
needs to adhere to (Pohl, 2010).

• Design: UML diagrams or similar artifacts that
represent the structure, architecture, or design
of the system (Rumbaugh et al., 1996).

• Code: The actual implementation of the sys-
tem, including the source code. This category
also includes the identification of bugs or de-
fects in the code (Eckel, 2005).

• Test: Artefacts and activities related to test-
ing, such as test cases, test plans, or test scripts
(Ammann and Offutt, 2008).

• General: It’s important to note that these cate-
gories are not exhaustive and may vary depend-
ing on the specific context of the paper or study.

ICSOFT 2024 - 19th International Conference on Software Technologies

378



Figure 1: Study selection process.

Moreover, the primary study might be vague
about the category of artefacts involved in the
CIA. Therefore, we classify an artefact as gen-
eral if the above-mentioned categories are inap-
propriate.

2. Target of the change: What is impacted by the
change. For instance, suppose that a model is de-
veloped from requirements and it supports the un-
derstanding of how changes in requirements im-
pact the design; then the target of the change is
design. This dimension has the same values as the
source of the solution.

The first two authors applied the exclusion crite-
ria. In the event of disagreements, we reached a con-
sensus via a discussion with the three authors; we had
only three disagreements about exclusion criteria. We
had 24 disagreements for the first dimension and 21
disagreements for the second dimension.

4 STUDY RESULTS

Figure 2 reports the number of studies published
across periods of over 20 years. According to Figure
2, there has been a significant increase in the number

of studies over time, even if the trend is not perfectly
monotone, with a spike in 2018.

Figure 2: Distribution of primary studies across years.

Figure 3 shows the proportion of primary studies
across target artefacts and source artefacts. Accord-
ing to Figure 2, in more than one-third of the cases,
the Target and Source artefacts mentioned are in the
general category. The second most analyzed artefact
is Code. In contrast, the least mentioned source arte-
fact is test, while the least mentioned target artefact is
requirement.

Figure 4 reports the frequency of CIA solu-
tions for specific source and target combinations.

A Systematic Mapping Study on Impact Analysis

379



Table 2: Inclusion/Exclusion Criteria.

Inclusion Criteria
I1. The study relates to the field of Computer Science, and informs the practice
of Software Engineering and Maintenance
I2. The study proposes a solution and/or its evaluation to support CIA.
I3. The study is a full paper longer than nine pages.
Exclusion Criteria
E1. Solely a literature review or survey article.
E2. Non peer-reviewed academic literature.
E3. Academic articles other than conference or journal papers,
such as book chapters or dissertations.
E4. Studies not written in English.
E5. Studies whose full-text is unavailable.
E6. Studies published to a venue unrelated to the discipline of
Computer Science.
E7. Studies that are less than ten pages long.
E8. Studies that state a problem without any solution
E9. Studies propose a solution to limit or reduce the impact of changes to the system.

Figure 3: Proportion of primary studies across target and source artefacts.

According to Figure4 two combinations of source-
target, i.e., General-General and Code-Code, cover
41% of the primary studies. No primary stud-
ies provide support for four combinations (Design-
Requirement, Test-Requirement, Test-Design, and
General-Requirement).

5 DISCUSSION

In this section, we discuss the implications of our
study for researchers. As in (Kretsou et al., 2021)
we organize the discussion section according to over-
studied areas and under-studied areas. Regarding the
under-studied areas, we address the missing source
and target combinations, such as the Requirement to
Test or Requirement to Design and provide possible
explanations for this observation. This could be at-

tributed to several factors. One possible explanation
is that the research community has predominantly fo-
cused on studying specific combinations considered
more critical or commonly encountered in practice
such as Code to Code. As a result, other combinations
may have received less attention, leading to limited
empirical evidence and understanding in those areas.
Another reason is that the software development pro-
cess follows a specific direction, from Requirement
to Design to Code to Test. Therefore, a change in
Test might be perceived as unlikely to impact require-
ments. However, since the software development life-
cycle is mostly iterative, changes in Test might impact
Requirements or other artefacts. Identifying and ex-
amining the reasons behind these missing combina-
tions can guide future research efforts to bridge these
gaps and provide a more comprehensive understand-
ing of CIA.

ICSOFT 2024 - 19th International Conference on Software Technologies

380



Figure 4: Frequency of CIA solutions for specific source and target combinations.

In conclusion, our study offers valuable insights
for researchers in the field of CIA. By addressing the
missing source and target combination, we provide
a basis for future research endeavours. The identi-
fied research gaps and areas of further investigation
present opportunities to enhance the knowledge and
understanding of CIA solutions, ultimately benefiting
practitioners and software development processes as
a whole.

6 THREATS TO VALIDITY

Threats to validity can impact the reliability and exter-
nalizability of the study’s findings. To address these
threats, we took specific measures, as described be-
low.

One possible threat to validity is the possibility of
missing relevant papers. To mitigate this threat, we
searched three main databases (ACM Digital Library,
IEEE Xplore, and SCOPUS) to ensure a broader
scope of coverage (Croft et al., 2023). Additionally,
we utilised multiple search criteria, including title,
keywords, and abstract, and employed two specific
search terms (”impact analysis”) to capture relevant
literature related to CIA.

Another potential threat is the inclusion of papers
that are of low quality. To address this concern, we
applied a rigorous selection process during the analy-
sis phase, specifically considering only peer-reviewed
venues of Conference and Journal papers and papers
with more than ten pages (See Inclusion Criteria I3
and Exclusion Criteria E6 in Table 2). This approach
helped ensure that the included papers met a certain
quality standard.

There is also a threat related to the misclassifica-

tion of papers during the analysis phase. To minimise
this threat, we employed a meticulous procedure. All
the researchers performed each analysis individually,
and the results were subsequently merged. Inconsis-
tencies were carefully identified and resolved, ensur-
ing the accuracy of the classification process.

Furthermore, there is a possibility of wrong under-
standing or misinterpretation of the artefact types. We
adopted standard definitions of artefacts described in
section 3 to mitigate this threat. By adhering to estab-
lished definitions, we aimed to maintain consistency
and accuracy in identifying and categorising artefacts
throughout the study.

By addressing these potential threats to validity
and implementing appropriate measures, we aimed to
enhance the reliability and validity of our study’s find-
ings.

7 CONCLUSIONS

This paper provides a comprehensive analysis of so-
lutions for CIA (Change Impact Analysis) in soft-
ware development. The study specifically examines
two key dimensions: the origin of the change and
the destination of the change offered by each solu-
tion. The main contribution of this paper lies in thor-
oughly characterizing CIA solutions and their con-
nections to various artefacts, including requirements,
design, code, and tests. By analyzing 258 primary
studies, we offer a detailed overview of the proposed
solutions for CIA.

Our results show the presence of under-studied
and over-studied areas. The identified research gaps
offer opportunities to expand the knowledge and un-
derstanding of CIA techniques, ultimately benefiting

A Systematic Mapping Study on Impact Analysis

381



practitioners and software development processes as a
whole. We note that there are few studies supporting
changes where the source is a late artefact (e.g. test)
and the target an early artefact (e.g. requirement).
Since software development is iterative, researchers
are encouraged to focus future efforts on providing
CIA solutions for late to early artefacts.

REFERENCES

Ammann, P. and Offutt, J. (2008). Introduction to Software
Testing. Cambridge University Press.

Anwer, S., Wen, L., Wang, Z., and Mahmood, S. (2019).
Comparative analysis of requirement change manage-
ment challenges between in-house and global soft-
ware development: Findings of literature and industry
survey. IEEE Access, 7:116585–116611.

Aung, T. W. W., Huo, H., and Sui, Y. (2020). A literature re-
view of automatic traceability links recovery for soft-
ware change impact analysis. In ICPC ’20: 28th In-
ternational Conference on Program Comprehension,
Seoul, Republic of Korea, July 13-15, 2020, pages 14–
24. ACM.

Basili, V. R., Caldiera, G., and Rombach, D. H. (1994). The
Goal Question Metric Approach, volume I. John Wi-
ley & Sons.

Boehm, B. W. and Sullivan, K. J. (2000). Software eco-
nomics: a roadmap. In Finkelstein, A., editor, 22nd
International Conference on on Software Engineer-
ing, Future of Software Engineering Track, ICSE
2000, Limerick Ireland, June 4-11, 2000, pages 319–
343. ACM.

Bohner, S. A. (1996). Impact analysis in the software
change process: a year 2000 perspective. In 1996
International Conference on Software Maintenance
(ICSM ’96), 4-8 November 1996, Monterey, CA, USA,
Proceedings, pages 42–51. IEEE Computer Society.

Bordin, A. S. and Benitti, F. B. V. (2018). Software main-
tenance: what do we teach and what does the industry
practice? In Kulesza, U., editor, Proceedings of the
XXXII Brazilian Symposium on Software Engineer-
ing, SBES 2018, Sao Carlos, Brazil, September 17-21,
2018, pages 270–279. ACM.

Chidamber, S. R. and Kemerer, C. F. (1994). A metrics
suite for object oriented design. IEEE Transactions
on software engineering, 20(6):476–493.

Croft, R., Xie, Y., and Babar, M. A. (2023). Data prepa-
ration for software vulnerability prediction: A sys-
tematic literature review. IEEE Trans. Software Eng.,
49(3):1044–1063.

Eckel, B. (2005). Thinking in Java (4th Edition). Prentice
Hall PTR, USA.

Kretsou, M., Arvanitou, E., Ampatzoglou, A., Deligiannis,
I. S., and Gerogiannis, V. C. (2021). Change impact
analysis: A systematic mapping study. J. Syst. Softw.,
174:110892.

Lehnert, S. (2011). A taxonomy for software change im-
pact analysis. In Cleve, A. and Robbes, R., ed-

itors, Proceedings of the 12th International Work-
shop on Principles of Software Evolution and the
7th annual ERCIM Workshop on Software Evolution,
EVOL/IWPSE 2011, Szeged, Hungary, September 5-6,
2011, pages 41–50. ACM.

Li, B., Sun, X., Leung, H., and Zhang, S. (2013). A sur-
vey of code-based change impact analysis techniques.
Softw. Test. Verification Reliab., 23(8):613–646.

Lientz, B. and Swanson, E. (1980). Software maintenance
management. Iee Proceedings E Computers and Dig-
ital Techniques, 127.

Malhotra, R. and Bansal, A. J. (2016). Software change
prediction: a literature review. Int. J. Comput. Appl.
Technol., 54(4):240–256.

Malhotra, R. and Khanna, M. (2019). Software change pre-
diction: A systematic review and future guidelines. e
Informatica Softw. Eng. J., 13(1):227–259.

Pohl, K. (2010). Requirements Engineering - Fundamen-
tals, Principles, and Techniques. Springer.

Rinkevics, K. and Torkar, R. (2013). Equality in cumula-
tive voting: A systematic review with an improvement
proposal. Inf. Softw. Technol., 55(2):267–287.

Rumbaugh, J., Jacobson, I., and Booch, G. (1996). The
unified modeling language. University Video Commu-
nications.

Turk, D., France, R., and Rumpe, B. (2002). Limitations of
agile software processes. In Third international con-
ference on eXtreme programming and agile processes
in software engineering (XP 2002), pages 43–46. Cite-
seer.

APPENDIX

All the primary studies used in this paper are acces-
sible via the following link: https://doi.org/10.5281/
zenodo.8235889.

ICSOFT 2024 - 19th International Conference on Software Technologies

382


