
Yet Another Miner Utility Unveiling a Dataset: CodeGrain

Dániel Horváth1 a and László Vidács1,2 b

1Department of Software Engineering, University of Szeged, Dugonics tér 13., Szeged, Hungary
2MTA-SZTE Research Group on Artificial Intelligence, Hungary

Keywords: Automated Program Repair, Data Mining, Bug-Fixing.

Abstract: Automated program repair (APR) gained more and more attention over the years, both from an academic, and
an industrial point of view. The overall goal of APR is to reduce the cost of development and maintenance, by
automagically finding and fixing common bugs, typos, or errors in code. A successful, and highly researched
approach is to use deep-learning (DL) techniques to accomplish this task. DL methods are known to be very
data-hungry, but despite this, data that is readily available online is hard to find, which poses a challenge to
the development of such solutions. In this paper, we address this issue by providing a new dataset consisting
of 371,483 code examples on bug-fixing, while also introducing a method that other researchers could use as
a feature in their mining software. We extracted code from 5,273 different repositories and 250,090 different
commits. Our work contributes to related research by providing a publicly accessible dataset, which DL
models could be trained, or fine-tuned on, and a method that easily integrates with almost any code mining
tool, as a language-independent feature that gives more granular choices when extracting code parts from a
specific bugfix commit. The dataset also includes the summary, and message of the commits in the training
data which consists of multiple programming languages, including C, C++, Java, JavaScript, and Python.

1 INTRODUCTION

Data-driven repair approaches (Monperrus, 2020)
have recently shown promising results (Chen et al.,
2019; Dinella et al., 2020; Lutellier et al., 2019;
Jiang et al., 2021; Yi et al., 2020) in software en-
gineering research. However, the most commonly
used datasets for APR research (Defects4J (Just et al.,
2014), QuixBugs (Ye et al., 2019), ManyBugs (Le
Goues et al., 2015)) have some limitations, such as
being too small and not preprocessed for deep learn-
ing.

To tackle this problem, Tufano et al. (Tufano
et al., 2019a) introduced a large dataset mined from
GitHub (GitHub, 2023a) commits that has become a
benchmark (Lu et al., 2021) for various tasks. How-
ever, this dataset only considers learning on Java
code, which limits researchers’ ability to test con-
figurations in a multilingual environment and poses
significant limitations to research questions such as
the ability to transfer knowledge (Kim et al., 2022)
learned in one programming language to another.
Also, the dataset uses an abstracted code format (Tu-

a https://orcid.org/0000-0001-8855-921X
b https://orcid.org/0000-0002-0319-3915

fano et al., 2019a; Csuvik and Vidács, 2022). How-
ever, current DL models can handle large vocabular-
ies, which may motivate the use of non-abstracted
code so that models can produce usable code as-is.

More recent work such as PreciseBugCollec-
tor (He et al., 2023) or GitBug-Actions (Saavedra
et al., 2023) employ more sophisticated methods on
bugfix collection. However many seminal works (Tu-
fano et al., 2019a; Lutellier et al., 2020; Chen et al.,
2019; Drain et al., 2021) use simple text-based ver-
ification of whether a commit is considered a bug-
fix or not. While more sophisticated methods could
yield better quality bugfixes, it also limits one’s ability
for large-scale mining, since it greatly restricts bugfix
commit availability, e.g. only commits that rely on rel-
atively new features (such as github-actions) are con-
sidered for mining.

Another issue with many of the datasets available
is that they store bugfixes in raw format, without the
employment of some sort of pre-processing, such as
extracting smaller, but complete segments of the code,
like methods or classes. CodegrainHouse separates
such code fragments from the rest of the code. How-
ever, if one should need it, diff information is also
available in the dataset which contains the modifica-
tions applied to the entire source file.

338
Horváth, D. and Vidács, L.
Yet Another Miner Utility Unveiling a Dataset: CodeGrain.
DOI: 10.5220/0012760100003756
Paper published under CC license (CC BY-NC-ND 4.0)
In Proceedings of the 13th International Conference on Data Science, Technology and Applications (DATA 2024), pages 338-345
ISBN: 978-989-758-707-8; ISSN: 2184-285X
Proceedings Copyright © 2024 by SCITEPRESS – Science and Technology Publications, Lda.

Without further ado, we propose CodeSieve util-
ity, and CodegrainHouse, a newly mined dataset fea-
turing our technique. CodegrainHouse is a multi-
linguistic dataset consisting of 5 popular program-
ming languages, mined from more than 5,000 GitHub
repositories. It contains 371,483 methods extracted
from code from 250,090 bug-fixing commits. The
dataset also contains the message of the commit,
allowing researchers to not only generate the fixed
code but include an explanation on the generated fix,
which could motivate researchers to make DL models
to also generate commit messages (Xu et al., 2019)
when producing a fix, which also helps the process of
automation and documentation. CodegrainHouse is
larger and more detailed compared to similar datasets
publicly available on code repair. The dataset is avail-
able at Zenodo 1 in a JSONL format, which simply
contains JSON-compatible strings separated by line
breaks. Our methods used for extracting functions
from commit diffs are also available as a small pack-
age at our public GitHub repository 2.

2 RELATED WORK

In this section, we provide some of the related work
that collected datasets containing bugs, or bugfixes.
These datasets are usually used by G&V approaches.
Some of which can be used in test-based, and some in
deep-learning contexts.

Defects4J (Just et al., 2014), BugsJS (Gyimesi
et al., 2019), BugsInPy (Widyasari et al., 2020) are
similar benchmarks, for Java, JavaScript, and Python
respectively. The datasets consist of a relatively small
number of, although high-quality, manually curated
code examples on bugfixes.

Codeflaws (Tan et al., 2017) benchmark dataset
contains 7,436 programs sourced from the Code-
forces online database. This dataset includes 3902 de-
fects categorized into 40 different groups of defects.
As a result, it allows for researchers to apply, and test
a wide range of repair tools on these bugs.

QuixBugs (Ye et al., 2019) consists of 40 pro-
grams from the Quixey Challenge translated into both
Python and Java. It is a defect collection of one-
liner bugs, with corresponding test cases. Bugs in this
dataset can be categorized into 14 different classes.
The benchmark can be used to study the performance
of multi-language repair tools.

ManySStuBs4J (Karampatsis and Sutton, 2020) is
a collection of simple Java bug fixes for evaluating

1https://zenodo.org/records/10198721
2https://github.com/AAI-USZ/codesieve

program repair techniques. They also use specific
keywords such as error, issue, fix, repair,
solve, remove, problem to identify bug-fixing
changes. They also filter them to get small bugfix
changes and categorize them into 16 syntactic tem-
plates called SStuBs. The dataset includes bugs from
open-source Java projects mined from GitHub, focus-
ing on single statement changes that are likely bug
fixes, similar to our work in the sense that we also
only include commits affecting a single file.

Vul4J (Bui et al., 2022) is a dataset of 79 re-
producible Java vulnerabilities from 51 open-source
projects filtered from the Project KB (Ponta et al.,
2019) knowledge base. Each vulnerability comes
with a proof of vulnerability (PoV) test case. They
collected and analyzed 1803 fix commits from 912
real-world vulnerabilities to create the dataset.

FixJS (Csuvik and Vidács, 2022) similar to the
Java benchmark introduced by Tufano et al. (Tu-
fano et al., 2019a) usually used by papers found in
CodeXGLUE (Lu et al., 2021), but for JavaScript
bugs. Similarly to our work, it uses commit messages
for filtering bugs from GitHub repositories.

GitBugActions (Saavedra et al., 2023) is a tool for
building new datasets, that rely on GitHub Actions to
detect and mine bugfixes including reproducible test
suites. The main focus of the tool is bugs that have
corresponding test suites which can be collected by
locally executing them in the environment specified
by the developers in the GitHub Actions workflow.

PreciseBugCollector (He et al., 2023) is a dataset
focusing on bugfix quality. They employ a pre-
cise bug collection approach comprising of a bug-
tracker and a bug-injector component. They extracted
1,057,818 bugs from 2,968 open-source projects,
where 12,602 bugs come directly from bug reposito-
ries (such as NVD and OSS-Fuzz), while the remain-
ing 1,045,216 bugs are injected via bug-injection
tools.

CodegrainHouse provides a relatively large
dataset containing smaller, more separated code parts
(e.g. functions) to be fixed. To the best of our knowl-
edge, this is yet, the largest dataset to not only provide
the buggy and fixed code, but also the correspond-
ing commit message, commit diff, project’s name, the
fixed file’s location in the repository, the current, and
parent commit’s hash, and more.

3 BACKGROUND

Software development is a complex process that in-
volves several stages, from writing code to delivering
the final product to customers. For developers, ver-

Yet Another Miner Utility Unveiling a Dataset: CodeGrain

339

sion control systems like git, play a vital role in de-
veloping the final product.

When developers complete a feature or fix a bug,
they commit code changes to the version control sys-
tem. Committing code involves creating a snapshot
of the changes made to the codebase. This snap-
shot –among various other information– includes the
changes made to the code and a description of the
changes. The committed code is then pushed to a re-
mote repository, e.g. GitHub, where other team mem-
bers can access it.

We make use of this process by querying the
GitHub API (GitHub REST API, 2023a) to search for
desirable repositories. We then copy them to a local
store to iterate the commits and filter them for bug-
fixing commits. Datasets like GitBugActions (Saave-
dra et al., 2023), PreciseBugCollector (He et al.,
2023) provide us with great bug collection meth-
ods, FixJS (Csuvik and Vidács, 2022) can give us
more fine-grained code snippets as it only contains
functions, and not necessarily the whole source file,
QuixBugs (Ye et al., 2019) or Defects4J (Just et al.,
2014) have few, although, high-quality collection of
defects with corresponding test cases. However, these
datasets have either too few examples for deep learn-
ing models to train effectively, provide only a sin-
gle language, or do not give control over which parts
of the code the user is interested in case of a bug-
fix. To this end, we introduce a method that could be
used as a feature in data mining software independent
of programming language and also provide a collec-
tion of relatively up-to-date bug-fixing commits in our
dataset.

4 METHOD

In this section, we will explain the mining process.
This task involves multiple steps necessary to extract
the desired code snippets from the source code. First,
we query GitHub’s API to find the repositories that
meet our filtering criteria. Once we have located these
repositories, we clone them to a specified location on
our system. After that, we iterate through each repos-
itory while filtering for bug-fixing commits. Finally,
we extract the desired code snippets from the source
code and save them to a specified location. This step
is important since we are only interested in code snip-
pets that are related to bug fixes.

4.1 Mining

Online repositories like GitHub (GitHub, 2023b)
are an abundant resource of source codes. During

the mining process, we used GitHub’s API (GitHub
REST API, 2023a) to query for appropriate reposi-
tories. The only API endpoint required by this ap-
proach is to use the repositories endpoint https://api.
github.com/search/repositories with the appropriate
query parameters. Among other things, a high-level
approach to this repository filtering process can be ob-
served in Figure 1. The public API is only used in the
first part of the process, where repositories are queried
based on some criteria, e.g. the publicity, number of
stars, etc.

After collecting necessary information on reposi-
tories, like the URL, the cloning process begins. For
the cloning process, we used GitPython (GitPython,
2023), a popular Python package for interacting with
git repositories. We selected more than 5,000 reposi-
tories based on the following criteria; the repositories
should be public, and should not be mirrors, forks,
templates, or archived. Furthermore, at the time of
the collection process, there should be a push event
not older than 180 days, signaling that the project is
still being maintained.

We collected source codes written in 5 popular
programming languages, C, C++, Java, JavaScript,
and Python. These languages are also included in the
API query criteria.

After the cloning process, one is able to freely it-
erate the commits without the use of GitHub’s API,
which we did try to minimize as much as possible
throughout our experiments, and the development of
the data creation software. One reason to do so is be-
cause the public API can be limiting (GitHub REST
API, 2023b) in the sense, that it only allows a small
number of queries per hour. Specific commits are pri-
marily selected by their commit message. If the mes-
sage contains a ”fix-like” word, such as ”bug”, ”fix”,
or ”improve” (Tufano et al., 2019b), then the commit
is considered a bugfix. For our purposes, the commit
should also conform to 3 other rules.

Firstly, there should be only one modified file by
the commit, as currently, most APR techniques focus
on single file bugfixes.

Secondly, the modified file’s extension should
match one of the extensions commonly used by the
specified languages. Such precaution could be neces-
sary so that it rules out cases when e.g. only a JSON
file is modified during a bugfix.

Lastly, the code should not be a minified version
of itself. JavaScript code is often minified to speed
up webpage loading to improve website experience.
However, for our purposes, we are only interested in
code that is being developed by humans, for humans.
And so, we rule out minified versions of code.

DATA 2024 - 13th International Conference on Data Science, Technology and Applications

340

Figure 1: Overview of data mining procedure.

Figure 2: AST node position extraction.

Commits that abide by the above criteria are
stored in JSON files. Most of the information is saved
in the mentioned file, but it mainly contains the diff
information, the buggy, and fixed version of the code,
and the whole commit message.

Most importantly, the last step uses the Tree-
sitter (Tree-sitter, 2023) library to extract specific
code snippets from the source code. To the best of
our knowledge, no other multi-lingual dataset uses the
kind of post-processing we provide here. We gen-
erate an Abstract Syntax Tree (AST) representation
of the buggy and fixed version of the source. We
use the diff information (difflib, 2023) generated by
comparing the buggy and the fixed code, extracting
the positions of the applied changes. In other words,
we map changes in the buggy file, to changes in the
fixed version. This position mapping can then be
used to find the nearest AST nodes relative to the
applied code changes as depicted by Figure 2. By
moving up in the node hierarchy i.e. querying the par-
ent node by node, we check if a node’s type satis-
fies the condition of being of type function, method,
function declaration, etc. If the given condition
is met, we store the code segment represented by that
particular AST node.

class AwesomeCalculator {

public static float divide(float a, float b) {

if (a == 0) {

return Double.NaN;

}

return a / b;

}

}

Listing 1: Java code example.

Consider the buggy Java program in Listing 1 for
a more concrete example. In this example, the fixed
code should include the condition change from a ==
0 to b == 0, and from the diff information we can
find its position inside the tree constructed by Tree-
sitter, in both the buggy and fixed version of the code,
as shown by Listing 2. From there we can climb up
the tree, search for a method declaration, and catch
the encapsulating function. This could be done inde-
pendently of the programming language so that this
feature could easily be included in any source code
miner software.
program [0, 0] - [8, 0]

class_declaration [0, 0] - [7, 1]

name: identifier [0, 6] - [0, 23]

body: class_body [0, 24] - [7, 1]

method declaration [1, 4] - [6, 5]

...

parameters: formal_parameters [1, 30] - [1, 48]

...

body: block [1, 49] - [6, 5]

if_statement [2, 8] - [4, 9]

condition: condition [2, 11] - [2, 19]

...

consequence: block [2, 20] - [4, 9]

...

return_statement [5, 8] - [5, 21]

...

Listing 2: Tree generated by Tree-sitter.

Yet Another Miner Utility Unveiling a Dataset: CodeGrain

341

The software could also be configured to catch the
encapsulating class (or a given number of lines around
a buggy segment, or any type of nodes), but for now,
we chose to extract code segments on the function
level, as it represents a relatively small, but complete
code fragment. It is also notable, that this method
is language agnostic thanks to the Tree-sitter (Tree-
sitter, 2023) library. The method presented here, can
also be found in our publicly available Github repos-
itory as an installable Python package. Outside of
Tree-sitter, we do not have any special dependen-
cies, and since it has bindings for many popular lan-
guages, our method can easily be implemented in
those languages too, if one should have the need.
Also, any other existing data mining software could
make use of the function-, class-, or line-by-line envi-
ronment extraction from source codes without need-
ing to worry about the programming language, thus
providing them with yet another useful feature.

5 DATASET

In this section, we will provide a detailed overview
of the dataset. We will discuss metrics, possible use
cases, and experiment designs that could be achieved
using the dataset. We will also highlight some of the
potential limitations and scenarios when the dataset
cannot be used in its current form.

All in all, we collected more than 370000 buggy-
fixed function pairs and their corresponding commit
message. We also provide some metrics, which can
be observed in Table 1. These metrics can help to
give some insight into the size of separate parts of the
dataset, which could provide helpful information for
the user.

Table 1: Metrics describing the dataset.

Language #Samples #Chars (mean) #Chars (med) Size (MiB)

C 63928 1612.50 885.0 196.65

C++ 69905 1503.97 828.0 200.60

Java 69917 1075.18 654.5 143.58

JavaScript 66453 1196.82 541.5 151.86

Python 101280 1168.78 693.5 225.94

Summary 371483 1311.45 720.5 918.63

#Samples is the number of buggy-fixed pairs extracted from commits under
a specific language. #Chars mean, and median values provide some insight
into the average source code length of the mined programs, while Size mea-
sures the UTF-8 encoded length of the source codes in mebibytes. The sum-
mary of sample and size information is a cumulative value of the separate
samples, while both mean and median character values are averaged over the
buggy and fixed codes.

5.1 Possible Use Cases

The CodegrainHouse dataset provides pre-processed
buggy functions that can be used for several deep
learning and generative tasks. Some of these tasks
include:

1. Bugfix Commit Generation: The dataset can be
used to train deep learning models to generate commit
messages (Dong et al., 2022) for bugfixes. The pre-
processed buggy, fixed, or both code segments can act
as input to the DL model, so it can learn and generate
relevant commit messages.

2. Code Repair Prediction: The dataset can pre-
dict the changes required to fix (Hu et al., 2022; Lu
et al., 2021) the buggy functions. The pre-processed
buggy functions serve as the input to the deep learn-
ing model, which can predict the appropriate code
changes to repair the bugs.

3. Code Completion and Suggestion: The dataset can
also be used for generative tasks, such as training deep
learning models for code completion (Lu et al., 2021)
and code suggestion. The fixed part of the dataset
also consists of pre-processed code snippets, and thus
could serve as input to such a generative model, which
in turn could suggests appropriate code snippets to
complete the code.

4. Buggy Function Detection: The dataset can train
deep learning models for buggy function detection
tasks (Alrashedy, 2023; Phan et al., 2021). The pre-
processed buggy code sections can help the model
learn the patterns in buggy code, making it a use-
ful tool for identifying such functions. Such models
could be used in a pre-commit hook, to mark these
functions for revisal.

Example: for clarity, we show an example to provide
more insight into the basic structure of the dataset. On
Listing 3 the buggy code could be observed, while
Listing 4 shows the fixed program. For the snippet
that shows the fixed code, we put the bugfix commit
message on top for simplicity, however, the dataset it-
self does not (necessarily) contain the commit mes-
sage in the fixed source code in this format. We
marked such messages as comments with two enclos-
ings @ to avoid confusion.

The examples on Listings 3 and 4 shows us a
simple bugfix, where an unnecessary "".join(...)
statement is removed, returning the file contents as an
array.

The dataset contains more complex and larger ex-
amples too, however for a short showcase of the bugs,
we only included some that are short and relatively
simple.

DATA 2024 - 13th International Conference on Data Science, Technology and Applications

342

def readfile(filename):

try:

with open(filename, "r") as f:

line = "".join(f.readlines())

except Exception as e:

log.error('Failed to read file "%s": %s' % (filename,

e))↪→
return None

return line

Listing 3: Buggy Python function.

@@ firewall.functions.readfile: Return lines

read from the file as an array↪→
#

This is needed for the dbug output in

ipXtables.set_rules, ebtables.set_rules and

ipset.restore. @@

↪→
↪→
def readfile(filename):

i = 1

try:

with open(filename, "r") as f:

return f.readlines()

except Exception as e:

log.error('Failed to read file "%s": %s' % (filename,

e))↪→
return None

Listing 4: Fixed Python function.

5.2 Limitations

CodegrainHouse’s main usage is to train and vali-
date deep-learning models. The dataset does not aim
to be used with generate and validate (G&V) ap-
proaches (Martinez and Monperrus, 2016; He et al.,
2023), where test cases should also be available for
a given bug. Linking test cases to a given function
is still a challenging task today, and the demand for
existing tests would limit the number of repositories
that could be crawled from the web, as not all projects
include test cases for every possible bug. While this
aspect of CodegrainHouse could be limiting, it also
allows models to train on bugs not covered by test
cases.

The dataset is relatively large in size, however, in
itself, it may be insufficient to train large language
models (Touvron et al., 2023; Brown et al., 2020)
(LLM) like current Generative Pretrained Trans-
former (GPT) based models.

Also, the dataset currently only features 5 popular
languages, which may pose a threat to data diversity,
however, the scope of languages could be expanded
in the future.

Furthermore, we tried to minimize the usage
of Github API, so that only minimal interaction is
required relieving much of the work from Github
servers, however, this results in a higher space re-

quirement from the end user. While space require-
ments depend highly on the repository caching mech-
anism, the application still requires a large number
of writes. Upon completing the cloning process, the
user would probably have written more than 100 GiB
of data while cloning the specified repositories. The
dataset created is minimal in size compared to this -
due to the extraction of bugfixing commits, and re-
quested code snippets from the source code - but one
should be aware of the immediate space requirements
of the process.

6 CONCLUSION AND FUTURE
WORK

In conclusion, we introduced a new dataset and a tech-
nique for extracting code fragments from source code
on multiple granule levels using Tree-sitter (Tree-
sitter, 2023). These levels can be used to include sur-
rounding lines, the encapsulating function, or class.
The provided dataset is publicly available as a com-
pressed archive, and the methods used for code-
snippet extraction are also publicly available in our
GitHub repository.

In the future, we plan to release software (YAMI:
Yet Another MIner), based on the techniques used in
this paper, that could be easily used by researchers to
mine their own datasets with their desired configura-
tions. Future plans also include but are not limited
to, using the currently mined dataset to see how cur-
rent LLMs or other DL models perform in a multi-
linguistic environment on APR tasks.

ACKNOWLEDGEMENTS

The research presented in this paper was supported
in part by the European Union project RRF-2.3.1-21-
2022-00004 within the framework of the Artificial In-
telligence National Laboratory. The national project
TKP2021-NVA-09 also supported this work. Project
no TKP2021-NVA-09 has been implemented with the
support provided by the Ministry of Culture and Inno-
vation of Hungary from the National Research, De-
velopment and Innovation Fund, financed under the
TKP2021-NVA funding scheme.

REFERENCES

Alrashedy, K. (2023). Language Models are Better Bug
Detector Through Code-Pair Classification.

Yet Another Miner Utility Unveiling a Dataset: CodeGrain

343

Brown, T. B., Mann, B., Ryder, N., Subbiah, M., Kaplan,
J., Dhariwal, P., Neelakantan, A., Shyam, P., Sas-
try, G., Askell, A., Agarwal, S., Herbert-Voss, A.,
Krueger, G., Henighan, T., Child, R., Ramesh, A.,
Ziegler, D. M., Wu, J., Winter, C., Hesse, C., Chen,
M., Sigler, E., Litwin, M., Gray, S., Chess, B., Clark,
J., Berner, C., McCandlish, S., Radford, A., Sutskever,
I., and Amodei, D. (2020). Language Models Are
Few-Shot Learners. In Proceedings of the 34th Inter-
national Conference on Neural Information Process-
ing Systems, NIPS’20, Red Hook, NY, USA. Curran
Associates Inc.

Bui, Q.-C., Scandariato, R., and Ferreyra, N. E. D. (2022).
Vul4J: A Dataset of Reproducible Java Vulnerabil-
ities Geared Towards the Study of Program Repair
Techniques. In 2022 IEEE/ACM 19th International
Conference on Mining Software Repositories (MSR),
pages 464–468.

Chen, Z., Kommrusch, S. J., Tufano, M., Pouchet,
L. N., Poshyvanyk, D., and Monperrus, M. (2019).
SEQUENCER: Sequence-to-Sequence Learning for
End-to-End Program Repair. IEEE Transactions on
Software Engineering, (01):1–1.

Csuvik, V. and Vidács, L. (2022). FixJS: A Dataset of
Bug-Fixing JavaScript Commits. In Proceedings of
the 19th International Conference on Mining Software
Repositories, MSR ’22, page 712–716, New York,
NY, USA. Association for Computing Machinery.

difflib (2023). difflib.
https://docs.python.org/3.11/library/difflib.html.

Dinella, E., Dai, H., Brain, G., Li, Z., Naik, M., Song,
L., Tech, G., and Wang, K. (2020). Hoppity: Learn-
ing Graph Transformations To Detect and Fix Bugs in
Programs. Technical report.

Dong, J., Lou, Y., Zhu, Q., Sun, Z., Li, Z., Zhang, W.,
and Hao, D. (2022). FIRA: ¡u¿fi¡/U¿ne-Grained
G¡u¿ra¡/U¿ph-Based Code Change Representation for
Automated Commit Message Generation. ICSE ’22,
page 970–981, New York, NY, USA. Association for
Computing Machinery.

Drain, D., Wu, C., Svyatkovskiy, A., and Sundaresan, N.
(2021). Generating bug-fixes using pretrained trans-
formers. MAPS 2021 - Proceedings of the 5th ACM
SIGPLAN International Symposium on Machine Pro-
gramming, co-located with PLDI 2021, pages 1–8.

GitHub (2023a). GitHub. https://github.com/.
GitHub (2023b). Octoverse: The state of open source and

rise of AI in 2023. https://octoverse.github.com.
GitHub REST API (2023a). GitHub REST API Official

Website. https://docs.github.com/en/rest.
GitHub REST API (2023b). Rate limits of GitHub’s

REST API. https://docs.github.com/en/rest/overview/
rate-limits-for-the-rest-api?apiVersion=2022-11-28.

GitPython (2023). GitPython.
https://github.com/gitpython-developers/GitPython.

Gyimesi, P., Vancsics, B., Stocco, A., Mazinanian, D.,
Beszédes, A., Ferent, R., and Mesbah, A. (2019).
BugsJS: a Benchmark of JavaScript Bugs. In 2019
12th IEEE Conference on Software Testing, Validation
and Verification (ICST), pages 90–101.

He, Y., Chen, Z., and Le Goues, C. (2023). PreciseBug-
Collector: Extensible, Executable and Precise Bug-
Fix Collection: Solution for Challenge 8: Automating
Precise Data Collection for Code Snippets with Bugs,
Fixes, Locations, and Types. In 2023 38th IEEE/ACM
International Conference on Automated Software En-
gineering (ASE), pages 1899–1910.

Hu, Y., Shi, X., Zhou, Q., and Pike, L. (2022). Fix
Bugs with Transformer through a Neural-Symbolic
Edit Grammar. In Deep Learning for Code Workshop.

Jiang, N., Lutellier, T., and Tan, L. (2021). CURE:
Code-Aware Neural Machine Translation for Auto-
matic Program Repair. pages 1161–1173.

Just, R., Jalali, D., and Ernst, M. D. (2014). Defects4J: A
database of existing faults to enable controlled test-
ing studies for Java programs. In 2014 International
Symposium on Software Testing and Analysis, ISSTA
2014 - Proceedings, pages 437–440. Association for
Computing Machinery, Inc.

Karampatsis, R.-M. and Sutton, C. (2020). How Often Do
Single-Statement Bugs Occur? The ManySStuBs4J
Dataset. In Proceedings of the 17th International Con-
ference on Mining Software Repositories, MSR ’20,
page 573–577, New York, NY, USA. Association for
Computing Machinery.

Kim, M., Kim, Y., Jeong, H., Heo, J., Kim, S., Chung,
H., and Lee, E. (2022). An Empirical Study of Deep
Transfer Learning-Based Program Repair for Kotlin
Projects. In Proceedings of the 30th ACM Joint Eu-
ropean Software Engineering Conference and Sympo-
sium on the Foundations of Software Engineering, ES-
EC/FSE 2022, page 1441–1452, New York, NY, USA.
Association for Computing Machinery.

Le Goues, C., Holtschulte, N., Smith, E. K., Brun, Y., De-
vanbu, P., Forrest, S., and Weimer, W. (2015). The
ManyBugs and IntroClass Benchmarks for Automated
Repair of C Programs. IEEE Transactions on Software
Engineering, 41(12):1236–1256.

Lu, S., Guo, D., Ren, S., Huang, J., Svyatkovskiy, A.,
Blanco, A., Clement, C., Drain, D., Jiang, D., Tang,
D., Li, G., Zhou, L., Shou, L., Zhou, L., Tufano, M.,
Gong, M., Zhou, M., Duan, N., Sundaresan, N., Deng,
S. K., Fu, S., and Liu, S. (2021). CodeXGLUE: A
Machine Learning Benchmark Dataset for Code Un-
derstanding and Generation. undefined.

Lutellier, T., Pang, L., Pham, V. H., Wei, M., and Tan, L.
(2019). ENCORE: Ensemble Learning using Convo-
lution Neural Machine Translation for Automatic Pro-
gram Repair.

Lutellier, T., Pham, H. V., Pang, L., Li, Y., Wei, M., and
Tan, L. (2020). CoCoNuT: Combining context-aware
neural translation models using ensemble for program
repair. ISSTA 2020 - Proceedings of the 29th ACM
SIGSOFT International Symposium on Software Test-
ing and Analysis, 20:101–114.

Martinez, M. and Monperrus, M. (2016). ASTOR: A pro-
gram repair library for Java (Demo). ISSTA 2016 -
Proceedings of the 25th International Symposium on
Software Testing and Analysis, pages 441–444.

Monperrus, M. (2020). The Living Review on Automated
Program Repair. Technical report.

DATA 2024 - 13th International Conference on Data Science, Technology and Applications

344

Phan, L., Tran, H., Le, D., Nguyen, H., Annibal, J., Pel-
tekian, A., and Ye, Y. (2021). CoTexT: Multi-task
Learning with Code-Text Transformer. pages 40–47.

Ponta, S. E., Plate, H., Sabetta, A., Bezzi, M., and Dan-
gremont, C. (2019). A Manually-Curated Dataset of
Fixes to Vulnerabilities of Open-Source Software. In
Proceedings of the 16th International Conference on
Mining Software Repositories.

Saavedra, N., Silva, A., and Monperrus, M. (2023). Gitbug-
actions: Building reproducible bug-fix benchmarks
with github actions.

Tan, S. H., Yi, J., Yulis, Mechtaev, S., and Roychoudhury,
A. (2017). Codeflaws: a programming competition
benchmark for evaluating automated program repair
tools. In 2017 IEEE/ACM 39th International Confer-
ence on Software Engineering Companion (ICSE-C),
pages 180–182.

Touvron, H., Lavril, T., Izacard, G., Martinet, X., Lachaux,
M.-A., Lacroix, T., Rozière, B., Goyal, N., Hambro,
E., Azhar, F., Rodriguez, A., Joulin, A., Grave, E.,
and Lample, G. (2023). LLaMA: Open and Efficient
Foundation Language Models.

Tree-sitter (2023). Tree-sitter. https://tree-
sitter.github.io/tree-sitter/.

Tufano, M., Pantiuchina, J., Watson, C., Bavota, G., and
Poshyvanyk, D. (2019a). On learning meaningful
code changes via neural machine translation. In Pro-
ceedings of the 41st International Conference on Soft-
ware Engineering, ICSE ’19, page 25–36. IEEE Press.

Tufano, M., Watson, C., Bavota, G., Penta, M. D., White,
M., and Poshyvanyk, D. (2019b). An Empirical Study
on Learning Bug-Fixing Patches in the Wild via Neu-
ral Machine Translation. ACM Trans. Softw. Eng.
Methodol., 28(4).

Widyasari, R., Sim, S. Q., Lok, C., Qi, H., Phan, J., Tay,
Q., Tan, C., Wee, F., Tan, J. E., Yieh, Y., Goh, B.,
Thung, F., Kang, H. J., Hoang, T., Lo, D., and Ouh,
E. L. (2020). BugsInPy: A Database of Existing
Bugs in Python Programs to Enable Controlled Test-
ing and Debugging Studies. In Proceedings of the
28th ACM Joint Meeting on European Software En-
gineering Conference and Symposium on the Foun-
dations of Software Engineering, ESEC/FSE 2020,
page 1556–1560, New York, NY, USA. Association
for Computing Machinery.

Xu, S., Yao, Y., Xu, F., Gu, T., Tong, H., and Lu, J. (2019).
Commit message generation for source code changes.
In IJCAI.

Ye, H., Martinez, M., Durieux, T., and Monperrus, M.
(2019). A Comprehensive Study of Automatic Pro-
gram Repair on the QuixBugs Benchmark. IBF 2019
- 2019 IEEE 1st International Workshop on Intelligent
Bug Fixing, pages 1–10.

Yi, L., Wang, S., and Nguyen, T. N. (2020). Dlfix: Context-
based code transformation learning for automated pro-
gram repair. In Proceedings - International Confer-
ence on Software Engineering, pages 602–614. IEEE
Computer Society.

Yet Another Miner Utility Unveiling a Dataset: CodeGrain

345

