
Encrypted KNN Implementation on Distributed Edge Device Network

B. Pradeep Kumar Reddy a, Ruchika Meel b and Ayantika Chatterjee c

Indian Institute of Technology, Kharagpur, India

Keywords: Machine Learning, IoT, Security, Fully Homomorphic Encryption, Distributed Computing, Privacy.

Abstract: Machine learning (ML) as a service has emerged as a rapidly expanding field across various industries like
healthcare, finance, marketing, retail and e-commerce, Industry 4.0, etc where a huge amount of data is gen-
erated. To handle this amount of data, huge computational power is required for which cloud computing used
to be the first choice. However, there are several challenges in cloud computing like limitations of bandwidth,
network connectivity, higher latency, etc. To address these issues, edge computing is prominent nowadays,
where the data from sensor nodes is collected and processed on low-cost edge devices. As simple sensor
nodes are not capable of handling complex computations of ML models, data from sensor nodes need to be
transferred to some nearest edge devices for further processing. If this sensor data is related to some security-
critical application, the privacy of such sensitive data needs to be preserved both during communication from
sensor node to edge device and computation in edge nodes. This increased need to perform edge-based ML
on privacy-preserved data has led to a surge in interest in homomorphic encryption (HE) due to its ability to
perform computations on encrypted form of data. The highest form of HE, Fully Homomorphic Encryption
(FHE), is capable of theoretically handling arbitrary encrypted algorithms but comes with huge computational
overhead. Hence, the implementation of such a complex encrypted ML model on a single edge node is not
very practical in terms of latency requirements. Our paper introduces a low-cost encrypted ML framework on
a distributed edge cluster, where multiple low-cost edge devices (Raspberry Pi boards) are clustered to perform
encrypted distributed K-Nearest Neighbours (KNN) algorithm computations. Our experimental result shows,
KNN prediction on standard Wisconsin breast cancer dataset takes approximately 1.2 hours, implemented on
a cluster of six pi boards, maintaining end-to-end data confidentiality of critical medical data without any re-
quirement of costly cloud-based computation resource support.

1 INTRODUCTION

The integration of edge computing and machine
learning (ML) has significantly impacted smart net-
working and the Internet of Things (IoT) in recent
years. However, this convergence brings forth press-
ing concerns regarding data privacy and security, par-
ticularly due to data collection by low-cost sensor
nodes lacking the computational power for complex
ML algorithms (Singh et al., 2021), (Xiao et al.,
2019), (Rizvi et al., 2020).

Encrypted machine learning (ML) at the edge is
vital for safeguarding sensitive information during
processing (Chien et al., 2023). However, leveraging
homomorphic encryption (HE) for privacy-preserving
ML at the edge presents challenges. The significant

a https://orcid.org/0000-0002-6377-4535
b https://orcid.org/0009-0005-1043-9134
c https://orcid.org/0000-0001-6368-0718

computational overhead associated with HE, particu-
larly for complex ML models and large datasets, can
slow down inference, which is critical in resource-
constrained edge computing environments. Addition-
ally, ensuring compatibility between HE schemes and
ML algorithms is challenging, as many popular algo-
rithms rely on encrypted operations not directly sup-
ported by existing HE libraries (Gouert et al., 2023).
Balancing security and efficiency is delicate, with
stronger encryption often leading to increased com-
putational complexity. Lastly, managing key distribu-
tion becomes complex in distributed edge computing
scenarios, where multiple devices may need to col-
laborate for encrypted ML tasks. Overcoming these
challenges is crucial for realizing the full potential of
HE in enabling secure and privacy-preserving ML at
the edge (Shrestha and Kim, 2019).

The ultimate form of HE, FHE promises imple-
mentation of arbitrary algorithms in encrypted do-
main theoretically. In practice, that adds several

680
Reddy, B., Meel, R. and Chatterjee, A.
Encrypted KNN Implementation on Distributed Edge Device Network.
DOI: 10.5220/0012761100003767
Paper published under CC license (CC BY-NC-ND 4.0)
In Proceedings of the 21st International Conference on Security and Cryptography (SECRYPT 2024), pages 680-685
ISBN: 978-989-758-709-2; ISSN: 2184-7711
Proceedings Copyright © 2024 by SCITEPRESS – Science and Technology Publications, Lda.

challenges, particularly in terms of memory and la-
tency(Sinha et al., 2022) in resource-constrained en-
vironments. Additionally, it introduces considerable
latency due to the computational complexity of homo-
morphic operations, which involve numerous mod-
ular arithmetic operations on encrypted data. As a
result, performing even simple computations can be
time-consuming. Hence, secure ML processing in
edge should be inherently distributed and decentral-
ized to mitigate huge latency and memory require-
ments by exploring techniques for parallelization and
optimization (Natarajan and Dai, 2021). However, in
recent reported ML works, most of the works are done
for cloud-based infrastructure.

With this motivation, the main goal of this work
is to implement K-Nearest Neighbour (KNN) algo-
rithm prediction steps on encrypted data using a dis-
tributed edge (Raspberry Pi) cluster. It is to be noted
that we are exploring only a single ML algorithm in
this work. However, to realize encrypted ML as a ser-
vice, all other ML algorithms will be incorporated
into this distributed framework with suitable modi-
fications. The specific contributions here are as fol-
lows:

1. Evaluation and minimization of computational
overhead introduced by encrypted data operations
with distributed and concurrent computing on the
edge devices network.

2. Further, we explore the realization of the KNN al-
gorithm on encrypted data, where the algorithm
needs to be realized in the circuit-based represen-
tation and computations should be performed us-
ing FHE gates.

3. Finally, we analyze how the proper choice of FHE
library differs according to the choice of plat-
forms, and that affects heavily the overall perfor-
mance. Implementation of the ML model is eval-
uated using two different HE libraries: NuFHE
library (NuF,) and OpenFHE library (Ope,),
where NuFHE can exploit GPU advantages and
OpenFHE claims to support faster bootstrapping.

The paper structure is as follows: Section 2 ex-
plores challenges and limitations of adapting single-
edge implementation of encrypted KNN on a dis-
tributed platform. Section 3 details the implementa-
tion of encrypted KNN for the distributed platform.
Finally, Section 4 demonstrates the timing require-
ment of the proposed framework and Section 5 men-
tions the conclusion and some future directions of this
work.

Overall, most of the existing works related to ML
algorithms on encrypted data are either limited to
cloud computation or applicable to specific schemes,

where partial HE is sufficient. In this paper, we
will highlight the implementation of encrypted KNN,
which can not be translated to encrypted domain only
with the support of partial homomorphic schemes.
This is because KNN requires handling of complex
encrypted sorting. Hence, we explore this standard
ML model on encrypted data with FHE representa-
tion on distributed edge network (Raspberry Pi). To
the best of our knowledge, this is the first effort in
literature to realize end-to-end encrypted KNN pro-
cessing on distributed edge nodes.

In this work, we mostly use NuFHE library (NuF,)
which is the extension of TFHE(TFH,) and OpenFHE
(Ope,). Due to the limitation of space, we are omit-
ting the details.(follow the link for more details: https:
//eprint.iacr.org/2024/648).

In TFHE or its variant, bootstrapping is the most
costly operation and reduction of bootstrapping in
overall computation remains an important area of
research. There have been many improvements to
the efficiency of bootstrapping in TFHE, but it re-
mains a challenging problem. OpenFHE imple-
ments improved bootstrapping proposed in (Miccian-
cio and Polyakov, 2021), which is fastest (75ms) com-
pared to earlier bootstrapping (126ms). This im-
proved bootstrapping makes OpenFHE faster com-
pared to NuFHE library. Hence, in this work we con-
sider NuFHE as well as OpenFHE implementation re-
sults where NuFHE may exploit GPU advantages and
OpenFHE can support faster bootstrapping.

2 LIMITATIONS OF ADAPTING
SINGLE EDGE ENCRYPTED
KNN IMPLEMENTATION FOR
DISTRIBUTED PLATFORM

The KNN is a supervised learning classifier that op-
erates in a non-parametric manner. It leverages the
proximity of data points to classify or predict the
grouping of a given individual data point. The query
data point is assigned a class label based on plurality
voting among K (an integer) nearest neighbors, with
each representing a specific label. The major steps in
implementing the KNN algorithm are: (a.) Distance
computation between test data points (Ti) and training
data points (Tri), (b.) Sorting of the computed dis-
tances to find out the K nearest neighbors and (c.) K
nearest neighbors voting based on the class label of
neighbors.

Implementing the KNN algorithm in an encrypted
domain presents a significant challenge, as it requires
the execution of all these steps on encrypted data

Encrypted KNN Implementation on Distributed Edge Device Network

681

throughout. This entails encrypting the dataset, per-
forming distance calculations, and making predic-
tions, all in an encrypted manner. Encrypted KNN
implementation was explored in (Reddy and Chatter-
jee, 2019). However, direct adaptation of that existing
implementation is not feasible in distributed scenario.
To highlight this point, we revisit the encrypted sort-
ing step explained in (Reddy and Chatterjee, 2019).
The proposed encrypted sorting in (Reddy and Chat-
terjee, 2019) is feasible for single nodes only, where
all computed distances are present in a single dis-
tance matrix. However, it cannot be adapted for dis-
tributed platform as individual distance submatrices
are present in each node, and it will not be useful
to sort the encrypted distance matrices of individual
nodes as that will not improve the complexity of sort-
ing over a single node technique. Here, we select K
nearest neighbours from each of the distance subma-
trices, so that K ∗ n values need to be sorted finally
in the single node. Since the number of nodes in the
cluster n is much smaller than the total number of data
points, the complexity of sorting K ∗ n data is very
small. With this observation, in distributed frame-
work, we implement parallel sorting in edge cluster
to minimize the computational overhead of encrypted
sorting. Partition-based sorting algorithms like merge
sort are indeed popular for their efficiency in parallel
sorting. However, when applied to FHE data, these
kinds of partition-based sorts are not applicable. The
reason is that FHE allows computations on encrypted
data without decryption, but it introduces complexi-
ties like the inability to detect exact partition indices
and handling encrypted condition-based loops, as ex-
plained in (Chatterjee and Sengupta, 2015).

In this context, we propose distributed encrypted
sorting and the modified framework for encrypted
KNN computation on distributed Raspberry Pi clus-
ter.

3 PROPOSED ENCRYPTED KNN
ALGORITHM FOR
DISTRIBUTED PLATFORM

This section introduces our framework tailored to
expedite secure ML utilizing distributed HE, illus-
trated in Figure 1, which performs encrypted pre-
diction within distributed Raspberry Pi nodes. The
framework comprises two primary phases: initial-
ization and prediction, as depicted in Figure 1. In
the initialization phase, the client generates a public-
secret key pair, encrypts the data using these keys and
transfers the encrypted data to edge Node1. Node1

Figure 1: Proposed Distributed Edge Network.

distributes encrypted datasets to all nodes (Node1,
Node2, Node3, . . . Node n) to perform encrypted par-
tial prediction steps concurrently on distributed data
independently. For our work, star topology is the per-
fect fit where Node1 works as the central master node
and due to its scalability we can add or remove nodes
which does not affect the rest of the network. We have
ensured that communication and computation time
overlap to prevent wasting significant time only for
communication between master and secondary nodes.

In the next few subsections, we discuss encrypted
KNN implementation following the steps mentioned
in Section 2. For that, we revisit the design of a
few FHE operations (distance computation, encrypted
sorting, etc.) to make them suitable for distributed
platforms.

3.1 Distance Computation

To find the nearest data points to the test instance,
the first step is to compute the distance from each
train data point. Let us consider the train point vector
as Tr = {C1,C2,C3, . . . ,Cm} and the test point vector
as T = {Ct1,Ct2,Ct3, . . . ,Ctn}, where m and n are the
number of features for train and test instances respec-
tively, and Ci, Ct j indicate the feature instance of train
data and test data respectively, where i ∈ [1,m] and
j ∈ [1,n].

There are various types of distance available, such
as Minkowski distance, Euclidean distance, Manhat-
tan distance, Hamming distance, and Cosine distance.
The Euclidean distance function is the most popular
one among all of them, but since the multiplication

SECRYPT 2024 - 21st International Conference on Security and Cryptography

682

operation is costly in the encrypted domain compared
to other addition and subtraction operations, we con-
sider the Manhattan distance here for the computa-
tion of the distance matrix. Manhattan distance is
computed as follows: Manhattandistance(Tr,T) =
∑

m
i=1 |Ci−Cti|

In this work, we have distributed encrypted dis-
tance (Enc distance) matrix computation operations
across n number of Raspberry Pi edge devices. The
encrypted train data points are split into n groups
and sent over n edge nodes (Node1, Node2,...Noden)
along with the encrypted test data. For each group
of test data, the Enc distance submatrices dist1[i][j],
dist2[i][j],...dist1[i][j] are calculated. Here, distk[i][j]
is the distance submatrix for node k, where i is the in-
dex of the Enc train data and j = 0 shows the value of
Enc distance, and j = 1 shows the label of the Enc -
train data.

For the computation of the Manhattan distance,
two sub-operations are performed in the encrypted
domain (Reddy and Chatterjee, 2019): FHE subtrac-
tion (FHE Subtraction) and encrypted absolute value
computation of the FHE Subtraction result. In case
the FHE Subtraction result is negative, to get the ab-
solute value, we need to take the two’s complement
of the result.

To compute the two’s complement in the en-
crypted domain, first, all bits are inverted for the en-
crypted data, and then Enc(1) is added to get the abso-
lute value of the encrypted data (Chatterjee and Sen-
gupta, 2018).

Since it is important to check if the FHE -
Subtraction result is positive or negative, this en-
crypted decision-making is done using FHE mul-
tiplexer (FHE Mux) (Reddy and Chatterjee, 2019),
where the most significant bit (MSB or sign bit (sbit))
of the subtraction result is given as the selection line.
If the FHE Subtraction result is positive, then the sbit
is Enc(0), selecting the FHE Mux result as (Ci−Cti).
Otherwise, if the FHE Subtraction result is negative,
then the sbit is Enc(1), selecting the FHE Mux re-
sult as −(Ci −Cti) . After computation of absolute
values of encrypted distance for individual features,
these distances are added together with FHE Adder
(Reddy and Chatterjee, 2019) circuit to compute the
final Enc distance between two encrypted data points.
Final computed Enc distance values are stored in dis-
tance submatrices (distk[i][j]) of each node. Further,
encrypted sorting is performed on these distance sub-
matrices to find out K nearest neighbours from each
distributed dataset.

3.2 Proposed Distributed Sorting
Algorithm

Algorithm 1: Encrypted Sorting on Distributed Platform.
Compute Enc distances submatrices in
Node1,Node2,...Node n

Enc sort on Node1,Node2,...,Node n:
1: for k← 0 to n do
2: for i← 0 to len(distk) do
3: for j← 0 to len(distk)− i−1 do

create temporary variable v1,v2
4: v1[0]← distk [j][0]
5: v1[1]← distk [j][1]
6: v2[0]← distk [j+1][0]
7: v2[1]← distk [j+1][1]
8: temp← FHE Subtraction(v1[0],v2[0],size)
9: sbit← temp[size−1]
10: snbit← sbit
11: distk [j][0]← FHE Mux(sbit,v1[0],v2[0])
12: distk [j+1][0]← FHE Mux(snbit,v1[0],v2[0])
13: distk [j][1]← FHE Mux(sbit,v1[1],v2[1])
14: distk [j+1][1]← FHE Mux(snbit,v1[1],v2[1])
15: end for
16: end for
17: end for

#get smallest k (number of neighbours) elements from all n nodes and
store in Dist[i][j] matrix

18: for i← 0 to n do
19: for i′← 0 to K−1 do
20: Dist[i×K + i′][0]← disti[i′][0]
21: Dist[i×K + i′][1]← disti[i′][1]
22: end for
23: end for

#Enc sort k×n neighbours in Dist matrix with the same algorithm
24: for i← 0 to len(Dist) do
25: for j← 0 to len(Dist)− i−1 do

create temporary variable v1,v2
26: v1[0]← Dist[j][0]
27: v1[1]← Dist[j][1]
28: v2[0]← Dist[j+1][0]
29: v2[1]← Dist[j+1][1]
30: temp← FHE Subtraction(v1[0],v2[0],size)
31: sbit← temp[size−1]
32: snbit← sbit
33: Dist[j][0]← FHE Mux(sbit,v1[0],v2[0])
34: Dist[j+1][0]← FHE Mux(snbit,v1[0],v2[0])
35: Dist[j][1]← FHE Mux(sbit,v1[1],v2[1])
36: Dist[j+1][1]← FHE Mux(snbit,v1[1],v2[1])
37: end for
38: end for

In this work, we have proposed a distributed en-
crypted sorting (Enc sort) algorithm on n number of
edge nodes. After Enc distance computation, the
Enc distance submatrices distk[i][j] are obtained for
each edge node. Bubble sort is applied to each en-
crypted distance submatrix, where two consecutive

Encrypted KNN Implementation on Distributed Edge Device Network

683

elements are compared and swapped if the first ele-
ment is greater. To compare encrypted data, we use
FHE Subtraction and the sign bit (sbit) (Enc(0) or
Enc(1)) of the result is used to check which data is
greater, then FHE Mux circuit is used to store data in
a sorted manner, using the sbit as a selection line, as
shown in sorting Algorithm 1 in lines[2− 16]. This
process runs concurrently in n edge devices, reducing
significant timing overhead.

To decide K nearest neighbors in the entire en-
crypted train dataset, K nearest data from all n nodes
Enc distance submatrices are collected in Dist[i][j]
matrix at Node1 and sorted again with bubble sort to
obtain the final K nearest neighbors as shown from
line 24, in sorting Algorithm 1. These final K neigh-
bours will be used for voting.

3.3 K Nearest Neighbours Voting and
Class Label Assignment

After getting K nearest neighbours, the next step is
plurality voting based on class labels of the neigh-
bours and the majority voted label is assigned to test
data input. Here train data labels (Li) are taken as +1
(positive class) and -1 (negative class) in plaintext. To
assign plurality-voted label to test data input, we need
to check which label count is greater than the thresh-
old value (half of the number of neighbours(K/2)). To
perform this, we add MSBs (most significant bits) of
the labels for K neighbours using FHE Adder circuit
(Reddy and Chatterjee, 2019), which will be Enc(0)
for +1 label and Enc(1) for −1 label. If positive class
labels (+1) are more than negative class labels (-1),
then the FHE Adder result will be less than K/2 and
vice versa. This FHE Adder result is compared with
the threshold value (K/2) with the help of the FHE -
Subtraction circuit and the MSB of FHE Subtraction
is used as the selection line of FHE Mux to predict
the label of test data.

This predicted encrypted label result is sent to the
client side, where it is decrypted using the secret key
to find out the final class label of the test instance.

4 RESULTS

In this section, we showcase the experimental out-
comes validating the effectiveness of our framework.
To demonstrate its efficacy, we conduct comparisons
with a centralized HE learning framework, where
overall processing is done on a single Raspberry Pi
node. Additionally, we perform ablation studies to an-
alyze the pivotal factors influencing the performance
of our framework. These comparative analyses allow

Table 1: Six NAND Gate Operations Distribution on Edge
Nodes.

Node1 Node2 Node3 NuFHE
(Time)

OpenFHE
(Time)

6 0 0 65.7sec 44.68sec
4 2 0 42.84sec 29.82sec
3 3 0 34.59sec 22.38sec
2 2 2 22.14sec 14.91sec

us to assess the impact and advantages of our pro-
posed framework clearly and concisely.

Table 2: Arithmetic Operations on Edge Device.

Operation NuFHE (Time) OpenFHE (Time)
Addition 56.79sec 32.31sec

Subtraction 43.40sec 39.31sec
Multiplication 32.46min 23.89min

We have employed an encrypted ML algorithm on
a distributed edge cluster. The client side, responsible
for encrypting data and decrypting results, utilizes an
Intel CoreTM i7-8700 CPU @ 3.20GHz × 12 running
Ubuntu 22.04.3 LTS. For performing encrypted oper-
ations on the encrypted data, the edge device Rasp-
berry Pi 4 model B (Broadcom BCM2711, quad-core
Cortex-A72 (ARM v8) 64-bit SoC @ 1.5GHz, 8GB
RAM) is employed. Encrypted data file sharing and
parallel task execution are facilitated using the Fabric
API. All processes operate in the multicore environ-
ment of Raspberry Pi boards and to alleviate computa-
tion overhead, operations are distributed across mul-
tiple Raspberry Pi devices, forming a distributed edge
device network.

Before implementing encrypted KNN, first, we
distributed basic gate logic operations among edge
nodes to observe the timing gain using FHE primi-
tive gates provided by NuFHE and OpenFHE library.
However, in the OpenFHE library, serialization and
file writing for binary context (BinFHEContext) are
not supported in Python currently. Consequently, our
OpenFHE implementations have been restricted to
single-node setups. Nevertheless, we have included
estimated execution times for distributed edge clus-
ters to facilitate comparison. This is in anticipation
of the possibility of enabling file writing in the fu-
ture. We have distributed 6 NAND gate operations,
and the timing overhead is reduced significantly af-
ter distributing among edge nodes as shown in Table
1. Certain mathematical operations, including addi-
tion, subtraction, and multiplication, were also ana-
lyzed after being translated in their encrypted form
on a single pi board(Table2).

Following the successful evaluation of the ba-
sic gate-level performance, the subsequent step in-
volved implementing the encrypted KNN algorithm

SECRYPT 2024 - 21st International Conference on Security and Cryptography

684

Table 3: Distributed KNN prediction time for K = 3, 5, 7.

S.N.
No. of Edge
Nodes (n)

NuFHE
(Time)

OpenFHE
(Time)

NuFHE
(Time)

OpenFHE
(Time)

NuFHE
(Time)

OpenFHE
(Time)

K=3 K=5 K=7
1 1 11.06hr 7.31hr 11.12hr 7.38hr 11.16hr 7.54hr
2 2 5.54hr 3.66hr 5.55hr 3.71hr 5.57hr 3.77hr
3 3 3.67hr 2.43hr 3.70hr 2.48hr 3.72hr 2.50hr
4 6 1.84hr 1.20hr 1.85hr 1.23hr 1.87hr 1.25hr

on a distributed edge network. The experimentation
was conducted using varying numbers of edge nodes
and different standard neighbor values (K), specifi-
cally 3, 5, and 7. The comparison results for NuFHE
and OpenFHE framework for distributed encrypted
KNN computation are presented in Table3. It is ob-
served that NuFHE with its supported parallel pro-
cessing power works better when more than 20 cores
are present in the selected platform. However, in
our Raspberry Pi board only 4 cores are present and
OpenFHE with the improved bootstrapping works
better in this scenario.

5 CONCLUSION AND FUTURE
WORK

In this work, we have distributed the encrypted com-
putations for KNN among up to six edge devices.
The prediction process takes around 1.2 hours. Al-
though some may argue that the encrypted ML pro-
cessing time is slower than plaintext prediction time
and therefore not practical for real-world applications,
it is important to note that our end-to-end encrypted
framework is suitable for applications where real-time
ML prediction may not be a requirement and out-
comes are acceptable within a few hours. In our future
work, we plan to incorporate other standard ML algo-
rithms in this encrypted ML processing framework on
the edge cluster.

REFERENCES

NuFHE. [Online] https://github.com/nucypher/nufhe.
OpenFHE. [Online] https://www.openfhe.org/.
TFHE. [Online] https://tfhe.github.io/tfhe/.
Chatterjee, A. and Sengupta, I. (2015). Searching and sort-

ing of fully homomorphic encrypted data on cloud.
IACR Cryptol. ePrint Arch., 2015:981.

Chatterjee, A. and Sengupta, I. (2018). Translating algo-
rithms to handle fully homomorphic encrypted data
on the cloud. IEEE Transactions on Cloud Comput-
ing, 6(1):287–300.

Chien, H.-J., Khalili, H., Hass, A., and Sehatbakhsh, N.
(2023). Enc2: Privacy-preserving inference for tiny
iots via encoding and encryption. In Proceedings of
the 29th Annual International Conference on Mobile
Computing and Networking, pages 1–16.

Gouert, C., Mouris, D., and Tsoutsos, N. (2023). Sok: New
insights into fully homomorphic encryption libraries
via standardized benchmarks. Proceedings on privacy
enhancing technologies.

Micciancio, D. and Polyakov, Y. (2021). Bootstrapping in
fhew-like cryptosystems. In Proceedings of the 9th on
Workshop on Encrypted Computing & Applied Homo-
morphic Cryptography, WAHC ’21, page 17–28, New
York, NY, USA. Association for Computing Machin-
ery.

Natarajan, D. and Dai, W. (2021). Seal-embedded: A
homomorphic encryption library for the internet of
things. IACR Transactions on Cryptographic Hard-
ware and Embedded Systems, pages 756–779.

Reddy, B. and Chatterjee, A. (2019). Encrypted Classifica-
tion Using Secure K-Nearest Neighbour Computation,
pages 176–194.

Rizvi, S., Orr, R., Cox, A., Ashokkumar, P., and Rizvi,
M. R. (2020). Identifying the attack surface for iot
network. Internet of Things, 9:100162.

Shrestha, R. and Kim, S. (2019). Integration of iot with
blockchain and homomorphic encryption: Challeng-
ing issues and opportunities. In Advances in comput-
ers, volume 115, pages 293–331. Elsevier.

Singh, S., Sulthana, R., Shewale, T., Chamola, V., Bensli-
mane, A., and Sikdar, B. (2021). Machine-learning-
assisted security and privacy provisioning for edge
computing: A survey. IEEE Internet of Things Jour-
nal, 9(1):236–260.

Sinha, S., Saha, S., Alam, M., Agarwal, V., Chatterjee,
A., Mishra, A., Khazanchi, D., and Mukhopadhyay,
D. (2022). Exploring bitslicing architectures for en-
abling fhe-assisted machine learning. IEEE Trans-
actions on Computer-Aided Design of Integrated Cir-
cuits and Systems, 41(11):4004–4015.

Xiao, Y., Jia, Y., Liu, C., Cheng, X., Yu, J., and Lv, W.
(2019). Edge computing security: State of the art and
challenges. Proceedings of the IEEE, 107(8):1608–
1631.

Encrypted KNN Implementation on Distributed Edge Device Network

685

