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Abstract: A formal formulation for reputation is presented as a time series of daily sentiment assessments. Projections of

reputation time series are made using three methods that replicate the distributional and auto-correlation prop-

erties of the data: ARIMA, a Copula fit, and Cholesky decomposition. Each projection is tested for goodness-

of-fit with respect to observed data using a bespoke auto-correlation test. Numerical results show that Cholesky

decomposition provides optimal goodness-of-fit success, but overestimates the projection volatility. Express-

ing reputation as a time series and deriving predictions from them has significant advantages in corporate risk

control and decision making.

1 INTRODUCTION

The title gives the flavour of this study in the order

of its words. Reputation is derived from Sentiment

as a Time Series which is used for Prediction. The

sequence starts with wanting to know about product

and company performance.

There has been a huge increase since year 2000

in interest in and progress with the analysis of peo-

ples views on products and services, fuelled by tech-

nological advances (Liu, 2015). Increased develop-

ment of the internet, the rise of on-line media (both

social and ’traditional’ - newspapers and broadcast-

ing), has made it possible for consumers to formulate

their own views on products and services in advance

of making a decision on purchase or use. Fundamen-

tal to such decision making is the concept of reputa-

tion. Informally, reputation is ”the opinion that peo-

ple in general have about someone or something, or

how much respect or admiration someone or some-

thing receives, based on past behaviour or character”

(Cambridge, 2023). The same reference gives an in-

formal definition for sentiment: ”a thought, opinion,

or idea based on a feeling about a situation, or a way

of thinking about something”. We will give formal

definitions for both in Section 3.4. The informal defi-

nitions are, however, remarkably close to the ideas we

wish to convey formally. We will distinguish between

reputation, sentiment and opinion, and link them in a

formal way.

a https://orcid.org/0000-0002-9845-4435

The purpose of this paper is to predict how the

reputation of a corporate body may develop in the

future. Reputation is expressed as a time series, to

which time series methods apply naturally. However,

reputation time series express distinct characteristics

which makes it difficult to apply standard methods

without some degree of conditioning. In particular,

they are highly auto-correlated, are subject to rapid

reversals in profile (they look ’spiky’), exhibit high

volatility, and are not always stationary. Others have

sparse, or almost no sentiment expression. Reputation

time series are built using expressions of sentiment,

so an initial discussion sets out formal definitions for

sentiment and reputation.

We consider predicted reputation because there is

some evidence that ”reputation means money” (Cole,

2012), (Weber-Shandwick, 2020). On that basis,

reputation was quantified in terms of share price in

(Mitic, 2024). Specifically, impaired reputation can

lead to effects such as loss of profit, share price re-

duction, and reduced ability to attract and retain staff.

These, and similar reports are not quantified in a

transparent way, but nevertheless convey the message

that a positive reputation matters. Consequently, pre-

dicting future reputation also matters.

1.1 Reputation Time Series Example

In this section we show an example of a reputation

time series. Figure 1 shows Toyota’s reputation for

the first 6 months of 2023, and a simple exponential
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smoothed version of it. The plot shows time, mea-

sured in days, on the horizontal axis, and numerical

expressions of sentiment on the vertical axis on a

scale -100 to +100. The trace shows that during that

period, Toyota’s reputation was entirely negative.

To see why, would require detailed analysis of each

sentiment value, but a major contributor was the

change of Toyota’s leadership. That news was widely

reported in the financial press at the time. A typical

example, which is part of a longer article, appeared

in a Reuters report on 26 January 2023. 1

Reactions to Akio Toyoda stepping down as Toyota

CEO. TOKYO, Jan 26 (Reuters) - Toyota Motor

Corp (7203.T) said on Thursday that Akio Toyoda

will step down as president and chief executive to

become chairman from April 1, ...

Figure 1 shows the date 26th January 2023. Inter-

estingly, reputation improved after that date, perhaps

indicating that the news was received positively, al-

though that rise did not last long. The reputation trace

shows typical features: peaks and troughs in a macro-

structure, with a micro-structure of much smaller vari-

ations. Toyota’s autocorrelation structure is shown in

Figure 2. The plot shows typical features of signifi-

cant autocorrelations at high lags, with some positive

and negative regions.

Figure 1: Toyota reputation January-June 2023. Data
source: Penta Group.

2 RELATED WORK

Reputation time series as described in Section 3.4

are a natural extension of much earlier work on

opinion, sourced by survey. The first prominent

example of a survey was a correct prediction of

the 1936 US Presidential election by the Gallup

Company (founded in 1935) (Gallup and Rae,

1https://www.reuters.com/business/autos-transportatio
n/toyota-leader-akio-toyoda-step-down-president-chief-e
xecutive-2023-01-26/

Figure 2: Toyota autocorrelation: 100 lags.

1968), although there is a record of an opinion

poll from 1824 in the Harrisburg Pennsylvanian

(https://www.referenceforbusiness.com/history2/

84/The-Gallup-Organization.html). Gallup took the

view that an opinion poll was simply a reflection

of public opinion. There is an interesting counter

opinion due to Lippman (Lippman, 1922) that

opinion polls manipulate public opinion. The point

is discussed in (Jacobs and Shapiro, 1995). In 1995

the internet was relatively young, but since then

the means to manipulate opinion have emerged in

the form of blogs, social media platforms (such as

Facebook, WhatsApp or Twitter (”X”)), and product

reviews on websites such as Amazon, Google and

others. Problems of sample bias are discussed in

(Durant, 1954). They centre on location, respondents,

and questionnaire design, with additional factors

related to administration, cost, and whether or not the

results represent a general population.

There is evidence of bias in contemporary opin-

ion procurement. The term ’negative bias’ was intro-

duced by (Rozin and Royzman, 2001), and clear nu-

merical illustrations are presented in (Zendesk, 2013).

Early research on sentiment and opinion is sum-

marised in, for example, (Das and Chen, 2007). The

emphasis was then on sentiment extraction using lex-

icons (word lists with tags showing related words

or parts of speech), lexical grammar (rules for ma-

nipulating a lexicon), and classifiers (Bayes, Voting,

Naive, Vector-Distance, Discriminant). Those meth-

ods still form the basis of ’traditional’ sentiment anal-

ysis, and act as a benchmark for assessing later ap-

proaches using artificial intelligence.

Prediction of reputation has, to date, been some-

what neglected, largely because of a lack of appro-

priate data. The problem was tackled, albeit in a dif-

ference sense of the word ’prediction’ by (Loke and

Kachaniuk, 2020), using a bi-directional LSTM. That

study used manual labelling of thousands of product

reviews, evaluated on a 3-point scale, aimed at pre-

dicting individual review results. Our study aims to

produce a forward projection in time, and uses much

simpler prediction methods. Penta Group, as part
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of their reputation intelligence website 2 available to

subscribers, shows a basic forward (in time) predic-

tion based on exponential smoothing.

2.1 Alternative Sources of Reputation

Intelligence

In this section we summarise the state of online Repu-

tation Intelligence. The term Reputation Intelligence

has been used in the past ten years to refer more gen-

eral aspects of sentiment and reputation. A reputa-

tion time series is one of them. Others include, for

example, analysis of sentiment sources (e.g. tradi-

tional/social media), analysis of regional sentiment,

comparison with peers, and Environmental, Social

and Governance (ESG) issues.

Artiwise, produced by Istanbul Technical Uni-

versity (https://www.artiwise.com) provides (to sub-

scribers) bespoke sentiment analysis services, and

calculates a short-term sentiment score based on

a limited number of sources to order. The Cali-

fornian company Reputation (https://reputation.com/)

provides the same type of service, and makes a

Reputation Experience Management - RXM platform

available to customers. In New York, Social360

(https://www.social360monitoring.com) provides be-

spoke analysis of online comments, and tracks influ-

ential reporting agents. They specialise in social me-

dia checking. Social360 has recently be acquired by

(SignalAI, 2024).

An earlier, and different, approach is typified by

the RepTrak Pulse metric (Fombrun et al., 2015),

published twice yearly by the Reputation Institute

(https://www.reptrak.com/). RepTrak is an updated

version of its predecessor, the Reputation Quo-

tient (Fombrun et al., 2000). Both are multi-

factor snapshot assessments of reputation. Rep-

Trak Pulse exports ”Good overall reputation”, ”Good

feeling about”, ”Trust”, and ”Admire and Respect”,

all condensed comments amassed throughout the

six months prior to publication. In contrast, the

Net Promoter Score - NPS from Bain and Co.

(https://www.bain.com/) is very simple, but limited

(Reichheld, 2003). It is based on one question: On

a scale of 0-10, how likely are you to recommend this

company to a friend or colleague?. The NPS is then

the difference between the percentage of 9-10 (pro-

moter) scores and the percentage of 0-6 scores (de-

tractors). Scores 7 and 8 are regarded as ”passive”.

The imbalance appears to induce negative bias. The

study by (Loke and Reitter, 2021) used the same type

of multi-factor analysis to measuring reputation, us-

2https://pentagroup.co/

ing online review data and ’aspect’ extraction by de-

tecting negative sentiment and positive sentiment key-

words.

A third strand of reputation measurement is

demonstrated by the Edelman Trust Barometer

(https://www.edelman.com). Trust is somewhat dis-

tinct from sentiment or reputation, and implies a de-

gree of safety and/or reliability (Cambridge, 2023).

The Edelman method of data sourcing is, again, by

survey, targeted at employees, and produces gener-

alised qualitative reports, with some associated data.

An example is (Russell, 2023). The argument in

(Renner, 2011) is that risk can be minimised by in-

creasing trust, and that corporate reputation is the ve-

hicle to build trust.

A few other attempts to measure reputation have

emerged. (Janson, 2014) recommends spending at

least 10% of a corporate budget on reputational anal-

ysis and sampling, but is otherwise non-specific on

methodology. (Carreras et al., 2013) suggests a rank-

ing method in which company executives rank them-

selves and peers on a multi-factor basis, and produce a

score based on those ranks. Overall, these and similar

alternatives rely on the subjective opinion of selected

individuals.

3 METHODS

We first review data stationarity and a methodology

for measuring the appropriateness of a projected time

series. Three projection methods are then discussed:

ARIMA, Copula and Cholesky.

3.1 Stationarity Test

We cannot assume that distributional properties of

reputational time series do not change over time.

Therefore we stress that the analyses that follow need

to be reviewed periodically. A particular concern is

the way changes in the data structure over time af-

fect the effectiveness of a reputation projection. The

problem is addressed in Section 3.6. The Augmented

Dickie-Fuller (ADF) test for stationarity is used to test

for consistency of mean, variance and autocorrelation

structure for the observed data.

The ADF test showed that approximately 60% of

reputation time series tested were stationary, and 40%

were not. That result is more significant for short pro-

jections, where auto-correlations may be very differ-

ent to the observed data. Longer projections are more

stable with respect to projection length. In all cases,

the general approach is to test whether or not the pro-

jection perturbs the auto-correlations structure of the
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observed data unduly.

3.2 Goodness-of-Fit Test

There are indications from histograms of reputa-

tion data that Normal distributions might be appro-

priate for modelling distributions. The established

goodness-of-fit for normality is the Shapiro-Wilk test

(Shapiro and Wilk, 1965). That test rejected the null

hypothesis of normality in all cases that we encoun-

tered. The reason appears to be that the Shapiro-Wilk

test is weak with respect to distributions with longer

tails (Royston, 1992). Isolated outliers can also cause

the Shapiro-Wilk test to fail. Many reputation time

series have both long tails and/or outliers. As an al-

ternative, we have used the TNA test (Mitic, 2015),

which is a generalisation of a Q-Q plot. The TNA test

is less powerful than the Shapiro-Wilk test, is insensi-

tive to outliers and long data tails, and is not restricted

by data set size. The TNA test indicated that the Nor-

mal distribution is often not the best fit for reputation

data, and the null hypothesis was rejected in approxi-

mately 8% of cases. The Normal Mixture distribution

(Section 3.7) is a better fit in most cases, and is a bet-

ter model for bimodal distributions and for distribu-

tions with long tails. Therefore, we proceed with Nor-

mal Mixture distributions, which also subsume Nor-

mal distributions.

3.3 Data

Data for this study are sourced from Penta Group

(https://pentagroup.co). Penta can, uniquely, provide

time series of daily sentiment scores 3 (i.e. a reputa-

tion profile) for most organisations that are listed on

major world stock exchanges, and a large number of

others that are unlisted. We have concentrated on 125

corporate organisations that represent the principal

world industrial and service sectors: energy, manu-

facturing, travel, education, financial, media, mining,

food production and retail. The data range was two

years: from July 2021 to June 2023. Each recorded

data series comprises 730 daily sentiment readings on

a scale from -100 (the worst possible) to +100 (the

best possible). Zero (or very near to zero) represents

neutral sentiment.

3.4 Definitions

Following a slightly modified definition from (Liu,

2015) Opinion is defined in terms of a numerical

value, representing the thought, idea or view that

3Data are available to subscribers only

is held or expressed (as defined in, for example

(Cambridge, 2023)), Liu’s view is slightly differ-

ent. He represents Opinion as an ordered pair: a

polarity value (+1, 0, or -1) for positive, neutral or

negative view respectively, with a positive number

representing its intensity. We assume that the view is

quantifiable numerically. In principle, the range of

permitted values does not matter, but in practice, a

meaningful symmetric scale that presents a positive

score for positive sentiment and a negative score

for negative sentiment (between real numbers -r and

+r) is useful. Opinion also incorporates the holder,

h of the view, its target, T, and a date/time stamp

t. In addition, Liu labels the opinion value with a

type flag, used to designate it as either rational or

emotional. We prefer a wider range type, aimed at

assessing the influence or importance of the holder,

and denote it by u. The definition of Opinion,

Equation 1, incorporates all of those components.

The numerical view is denoted by x, and the values

of h and T are best identified with reference to a

set of unique identifiers W (positive integers or guids).

Definition: Opinion.

Ot(x,h,T,u) = F (x|h,T,u); x ∈ [−r,r];

t ∈ Z
+; u ∈ (0,1); h,T ∈W (1)

At this point, it is acceptable, in principle, to use

the terms Opinion and Sentiment interchangeably.

However, to facilitate the ensuing discussion of

Reputation, it is useful to define Sentiment as a

function Ψ of a set of holders H = {h1,h2, ...} ⊂ W ,

each having expressed corresponding numeric views

X = {x1,x2, ...}, and each with having corresponding

numeric influences U = {u1,u2, ...}, referred to a

single target T on a single day t. The function Ψ acts

on the elements of X to produce a single real number

in the same range as the xi, namely [−r,r].

Definition: Sentiment.

St(X ,H,T,U) = Ψ

(

{Ot(xi,hi,T,ui)}

)

;

hi ∈ H; xi ∈ X ; ui ∈U (2)

St is a single real number representing a set of sen-

timents at time t. In practice, it is more useful to use

a ”day” stamp rather than a ”time” stamp, so that St

refers to the sentiment on ”day t”. It is then easy to

define reputation as a sequence of such numbers as t

varies. Equation 3 shows a date range from times t1 to

date t2. No assumption are made about periods within

that range that have no sentiment data.
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Definition: Reputation.

yt(T ) = {St(T )}; t1 ≤ t ≤ t2 (3)

The definition of reputation in Equation 3 is hinted

at in, for example, (Loke and Vergeer, 2022), in

which phrases such as ”collective view” and ”built

over time” are used. Loke and Vergeer make the point

that attempts to quantify corporate reputation are lim-

ited. We believe that we have made a significant ad-

vance in that respect. (Loke and Kisoen, 2022) argue

that, essentially, reputation is a summary of internal

and external perceptions of an organisation. We argue

that reputation should extend much further. Specifi-

cally, broadcasting, news reports and trade presenta-

tions represent a further strand that provides a more

objective view. Reports from the ’popular’ press are

often not objective. Nevertheless, they are there, and

present an opinion. The same applies to reports that

contain mistakes or lies.

3.5 Initial Data Preparation

The common basis of the Copula and Cholesky auto-

correlation models used in this analysis is an auto-

correlation matrix, A, which contains sequences of

lagged data. If a time series of length n has L lags,

A takes the form given in Equation 4. The S-values

are the daily sentiments in Equation 2.

A =







S1 S2 ... Sn

S2 S3 ... Sn+1

... ... ... ...

Sn SL+1 ... Sn+L−1






(4)

Following construction of A, we calculate a rank

correlation matrix (Spearman or Kendall) rather than

Pearson’s product moment variety, since the latter as-

sumes a linear relation between co-variates.

3.6 Auto-Correlation Success Criterion

Comparing the autocorrelations of any two subsets of

the data cannot be expected to give similar correlation

structures. Therefore we adopt an alternative strategy,

which is to test whether or not a projected simulation

does not perturb the correlation structure of the ob-

served data. The test applied is to calculate the auto-

correlation function (ACF) of the observed data and

compare it the observed data augmented by the sim-

ulated data. With a fixed number of lags L (typically

between 50 and 100), the two applications of an ACF

function yields parallel sequences of auto-correlation

components cO
i and cOS

i (equation 5).

{

{cO
1 ,c

O
2 , . . . ,c

O
L } Observed

{cOS
1 ,cOS

2 , . . . ,cOS
L } Observed + Simulated

(5)

Since the two sequences are paired, a two sam-

ple t-test can be used to determine significance of

the augmentation of the observed data by the sim-

ulation. If the means of the sequences in Equation

5 are denoted by µ(cO) and µ(cOS) respectively, the

null and alternative hypotheses are µ(cO) = µ(cOS)
and µ(cO) 6= µ(cOS) respectively, and significance is

tested at 5% and 1%.

3.7 Normal Mixture Distribution

In this section we define a distribution that fits the rep-

utation time series in this study. Although a Normal

distribution is a good fit in most cases, a Normal Mix-

ture distribution is usually better. We call it NMix for

short.

NMix is a weighted sum of two Normal distribu-

tions, with parameters {µ1,σ1,µ2,σ2,b}. Its density

function is φM(t) and the corresponding distribution

function is denoted by ΦM(t) (on day t). The inverse

distribution (quantile) function takes a probability p

as parameter, and is denoted by Φ−1
M (p). The quan-

tile function is needed for the Copula algorithm in

Section 3.8. In the following equations, x ∈ [−r,r],
p ∈ (0,1). The parameter ranges are µ1,µ2 ∈ (−r,r),
σ1 > 0,σ2 > 0, and b ∈ [0,1].

φM(t,µ1,σ1,µ2,σ2,b) =

bφ(t,µ1,σ1)+ (1− b)φ(t,µ2,σ2) (6)

ΦM(b,µ1,σ1,µ2,σ2,b) =∫ t

−r
φM(z,µ1,σ1,µ2,σ2,b)dz (7)

Φ−1
M (p,µ1,σ1,µ2,σ2,b) =

t | ΦM(t,µ1,σ1,µ2,σ2,b) = p (8)

As an example, we return to the Toyota data pre-

sented in Figure 1, but plot a density histogram in-

stead. An NMix distribution has been fitted and over-

laid. The bimodal nature of the data is clear from

the histogram, and the fitted NMix distribution echoes

that. In this case, a Normal distribution is a poorer fit,

but nevertheless satisfies the TNA goodness-of-fit test

described in Section 3.2.

Specifically, the NMix parameters were µ1 =
−23.16,σ1 = 4.13,µ2 =−10.72,σ2 = 4.37,b= 0.56,

and the p-value for the NMix fit was 0.011. The Nor-

mal distribution parameters were µ = −17.69,σ =
7.49, with p-value 0.025.
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Figure 3: Toyota Normal Mixture and Normal distribu-
tion fits (black and grey respectively). Data source: Penta
Group.

3.8 Copula Model

In Algorithm 1, the symbols used are: Reputation

time series R, Lag L, required simulation length n.

The internal variables are the auto-correlation matrix

A, a multi-variate Normal copula C, uniformly dis-

tributed marginal distributions of C Gi, i = 1...n, Nor-

mal Mixture-distributed marginals Yi, i = 1...n, and

their corresponding auto-correlation p-values αi, i =
1...n. The process uses a procedure FIT(D) to fit a

distribution D (in this case D is a Normal Mixture ), a

function MVN (from the R package mvtnorm) to ini-

tialise a multi-variate normal copula, a function AC to

test the marginal effect of the simulated data on the

autocorrelation of the input data, and a Loess smooth-

ing function LO.

Data: R, L, n

Result: Simulation of length n

Calculate best fit parameters p = FIT (R(D));
Derive auto-correlation matrix A(R);
Initialise copula: C = MVN(A);
Generate uniform marginals G = Φ(C);
for i in 1:L do

Yi = LO(Φ−1
M (Gi, p)) (NMix marginals) ;

Test auto-correlation: αi = AC(R,Yi);

end

Select optimal auto-correlation: αopt ,Yopt ;

Return {Yopt ,α};

Algorithm 1: Copula simulation.

3.9 ARIMA Model

The ARIMA modelling incorporates both auto-

regressive (AR) and moving average (MA) compo-

nents, although we suspect that the AR components

are much more important. With AR, MA and differ-

encing parameters p, q and d respectively, plus a con-

stant µ, λ and error term εt , the ARIMA model used is

given in 9. The values of p, q and d are determined us-

ing the auto-ARIMA method of Hyndman and Khan-

dakar (Hyndman and Khandakar, 2008). Parameter

d is determined by carrying out successive unit-root

tests (D. Kwiatkowski and Shin, 1992) until a station-

ary series results. There is a correction for seasonal

data, although we would not expect reputation data to

exhibit any degree of seasonality since reputation is

event-driven. Parameters p and q are determined by a

stepwise algorithm in which target values of p and q

are tested against for minimal AIC.

xt = µ+λ
p

∑
i=1

pixt−i +
q

∑
i=1

qiεt−i + εt (9)

Having determined the parameter values, the

ARIMA fit is done using maximum likelihood via

a state-space representation of the ARIMA process.

The innovations and their variances are found by a

Kalman filter (Gardner et al., 1980). In the ARIMA

algorithm below, the auto-ARIMA function used to

determine the ARIMA parameters (Hyndman and

Khandakar, 2008) is denoted by FC(R), and the sim-

ulation function is denoted by FSim(R, . . .).

Data: R, L, n

Result: Simulation with length n

Extract ARIMA order {p,d,q}= FC(R);
if (p > 0 & d > 0) then

ARMA: Y = FS(R, p,q);
end

if (p > 0 & d = 0) then

AR: Y = FS(R, p);
end

if (p = 0 & d > 0) then

MA: Y = FS(R,q);
end

if (p = 0 & d = 0) then

White noise: Y = FS(R,0,0,0);
end

Return(Y)

Algorithm 2: ARIMA simulation.

In practice we have never encountered the White

noise case.

3.10 Cholesky Model

Cholesky decomposition is an established way to de-

rive data that is correlated with a given data set. The

autocorrelation matrix, derived from the observed

data forms the basis of the Cholesky decomposition.

As such, the correlation matrix A must be positive
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definite. That is, it must be symmetric with posi-

tive eigenvalues. A proof may be found in, for ex-

ample, (Golub and van Loan, 1992) (Section 4.2.7).

Further details, including points arising from numer-

ical calculations, and supporting literature may be

found in (Higham, 1990). Appendix A shows how

this result applies to auto-correlation matrices. We

have found empirically that, in all cases examined,

a Cholesky decomposition is successful (i.e. all au-

tocorrelation matrices encountered are positive defi-

nite). Consequently we have not needed to provide for

non-positive definite autocorrelation matrices. There

is a work-around for that possibility. (Rebonato and

Jaeckel, 2000) describe two methods to cast a non-

positive definite matrix into a positive definite state:

hypersphere decomposition and spectral decomposi-

tion.

A Cholesky decomposition presents problems in

the context of autocorrelation. First, the ’base’

Cholesky result is a matrix that has the same num-

ber of columns as the correlation matrix used to de-

rive it. Effectively, in our context where many auto-

correlation components are close to 1, each column

is an almost carbon copy of the original data. The

problem then is to find a reasonable way to derive

a single simulation from those columns. To address

this problem for an auto-correlation matrix A of di-

mension L×L, assuming that a simulation of length

n is required, L vectors each of length n are gener-

ated from a probability distribution D (NMix in the

case of reputation data). The calculated Cholesky ma-

trix is applied to a matrix of the D-distributed vectors,

thereby generating L correlated vectors. Each corre-

lated vector is assessed using the autocorrelation test

(Section 3.6), and the optimal vector (given by maxi-

mum p-value in the auto-correlation t-test) is selected

as the simulation.

Data: R, L, n

Result: Simulation, with length n

Calculate best fit parameters p = FIT (R(D));
Generate random samples Z = G(L,D,n);
Smooth samples Z = LO(Z);
Derive auto-correlation matrix A(R);
Cholesky decomposition: C′ =Chol(A);
Generate correlated samples Y = XC′;

for i in 1:L do

Test auto-correlation: αi = AC(R,Yi);
end

Select optimal autocorrelation

αopt = max(αi(pval));
Select optimal sample vector Yopt ;

Return {Yopt ,αopt};

Algorithm 3: Cholesky simulation.

In Algorithm 2, the symbols used are the same as

in Algorithm 1: Reputation time series R, Lag L, re-

quired simulation length n. Chol(A) is a function that

calculates the Cholesky decomposition of a matrix A.

In addition, G(L,D,n) is a function that generates L

random samples, each of length n, and each with Nor-

mal Mixture distribution D.

4 RESULTS

4.1 Prediction Accuracy

The first set of results is a comparison of actual and

predicted reputations. The starting point for these re-

sults is a partition of the available data into a training

set (the first 75%: days 1 to 547) and a test set (the

remaining 25%: days 548 to 730). Projections be-

yond 730 days were not used. Predictions were made

using the training data only, and the essential details

of the configured models were noted. For the ARIMA

model, the only necessary component was the ARIMA

fit object, calculated using the auto.arima function in

the R forecast package. The corresponding Cholesky

objects were the Cholesky decomposition matrix and

the fitted Normal Mixture parameters. For the Copula

model, the Copula correlation matrix and the fitted

Normal Mixture parameters were needed. Predictions

were then made using the test data with the objects

derived in the training phase.

Treated in this way, the train/test environments

provide a measure of the accuracy of the test predic-

tion compared to the training prediction, via the mean

absolute error (MAE) for both. To that effect, the pro-

portionate change in MAE, ∆(MAE), was calculated for

each target organisation (Equation 10).

∆(MAE) =
MAE(train)−MAE(test)

MAE(train)
(10)

The distribution of values of ∆(MAE) then gives an

indication of gross deviations of MAE between the

training and test environments, for every organisation

considered . Figure 4 shows a plot of ∆(MAE) (on the

horizontal axis) against quantile (on the vertical axis).

The value ∆(MAE) = 1 represents a 100% increase in

MAE for the test environment relative to the training

environment. The corresponding low quantile values

shows that in the majority of cases, an order of mag-

nitude difference, which would indicate instability in

a model, is absent. Only one value of ∆(MAE) out of

125 exceeded the nominal order of magnitude limit:

14.19 using the Cholesky model. A second instance

of the Cholesky model had a ∆(MAE) value of 9.63:

just below the limit. The largest ∆(MAE) values for
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the ARIMA and Copula models were 1.17 and 3.82

respectively.

Figure 4: Comparison of MAE in training and test environ-
ments.

4.2 Auto-Correlation Results

The principal results of this analysis are presented in

this section. The auto-correlation test (Section 3.6)

for the three prediction methods (sections 3.8, 3.9 and

3.10) are shown at two significance levels: 5% and

1%. Using five runs in each case, Tables 1, 2 and 3

show the means and standard deviations of the num-

ber of organisation that ’passed’ the auto-correlation

test. A ’pass’ is a p-value greater than 0.05 for 5%

significance and greater than 0.01 for 1% significance.

Column heading ’Simulation length’ refers to the per-

centage augmentation of observed data by simulated

data.

The auto-correlation results for the three predic-

tion methods are consistent in that the ’success’ rate

reduces as the prediction length increases. Of the

three, Cholesky provides optimal ’success’. There

are indications, particularly from the Cholesky results,

that the ’success’ rate levels off for large prediction

lengths. It is likely that this effect is due to converg-

ing resemblance of the predicted data structure to the

observed data structure.

4.3 Simulation Illustrations

This section contains examples of the three simula-

tion modes, to which we add qualitative comments on

the characteristics of the simulations. In each case,

the observed data is shown in red, the three simu-

lations are shown in green, and the median simula-

tion is shown in blue. The illustrations are for Mi-

crosoft, which has a typical reputation profile of many

large corporates, subject to the general sentiment level

(positive, negative or neutral). Microsoft’s sentiment

is mostly positive, and has the characteristic ’jagged’

Table 1: Augmentation of observed data by simulated data:
Copula method.

Simulation Mean SD

length 5% 1% 5% 1%

5% 0.979 1.000 0.004 0.000

10% 0.779 0.906 0.004 0.007

15% 0.672 0.760 0.018 0.009

20% 0.587 0.702 0.012 0.009

25% 0.541 0.603 0.017 0.004

33% 0.448 0.544 0.016 0.006

Table 2: Augmentation of observed data by simulated data:
ARIMA method.

Simulation Mean SD

length 5% 1% 5% 1%

5% 0.950 0.990 0.009 0.000

10% 0.794 0.896 0.018 0.019

15% 0.623 0.755 0.030 0.013

20% 0.557 0.701 0.036 0.022

25% 0.541 0.663 0.025 0.032

33% 0.475 0.592 0.018 0.033

Table 3: Augmentation of observed data by simulated data:
Cholesky method.

Simulation Mean SD

length 5% 1% 5% 1%

5% 0.981 1.000 0.007 0.000

10% 0.837 0.933 0.017 0.012

15% 0.722 0.810 0.015 0.019

20% 0.712 0.800 0.032 0.017

25% 0.667 0.739 0.022 0.026

33% 0.662 0.717 0.046 0.040

reversing pattern with prolonged upward and down-

ward movements. The two year profile is shown in

Figure 5, for which the sentiment mean and standard

deviation were 10.76 and 8.10 respectively. The end

of the observed data period is marked at day 730. For

each simulation type illustrated, the simulation is for

110 days: 15% more than the length of the observed

data. Only the latest six months of the observed data

are shown, in order to better highlight the profile of

each simulation.

5 DISCUSSION

The numerical results in Section 4 invite a choice

of which prediction method to use. Table 3 in-

dicates that Cholesky decomposition is the optimal

method, since it provides a higher proportion of auto-
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Figure 5: Microsoft: Microsoft observed data.

Figure 6: Microsoft: three ARIMA simulations.

Figure 7: Microsoft: three Copula simulations.

Figure 8: Microsoft: three Cholesky simulations.

correlation ’successes’. The Cholesky choice would

be clear, were it not for a qualitative examination of

the predicted data, and of its microstructure. Figure

8 shows that the day-to-day variation in the predic-

tion is greater than the day-to-day variation for the

ARIMA and Copula methods. Further, the predictions

for ARIMA and Copula appear, subjectively, to be less

volatile than the observed data. Examination of sim-

ilar plots for other organisations confirms that view.

We have investigated, albeit briefly, a way to reduce

the volatility of the Cholesky prediction. A scale fac-

tor can be derived as a function of prediction resid-

uals resulting from a piecewise linear fit to the ob-

served data. The same technique can also be used

to increase the volatility of the ARIMA and Copula

predictions. Despite some misgivings, we prefer the

Cholesky method because of its superior conformance

to the observed data auto-correlation.

Normally we would not recommend calculating

predictions that extend far beyond the bounds of the

observed data. A 10-15% extension would be an up-

per limit. We have extended further in this analy-

sis to illustrate the limitations and capabilities of the

overall method. The further extensions have revealed

a slow convergence to what appears to be a limit-

ing value for the percentage ’success’ metric. Con-

vergence is attributable to convergence of the auto-

correlation structures of the observed data and the pre-

diction.

Investigating the predictive nature of reputation is

important because it has implications for risk man-

agement and corporate decision-making. As part of

a generalised risk mitigation process (which nearly

always focuses primarily on monetary risk), estimat-

ing risk due to reputation can provide insights which

balance sheet items cannot. For example, a predicted

downturn in reputation could signal future difficulties

in selling products or in hiring staff. More generally,

tracking reputation following the introduction of new

products can indicate whether or not it is worth in-

troducing similar products at a later stage. The ques-

tion of monetary valuation of reputation was tackled

in (Mitic, 2024), in which reputation was valued in

terms of share price. Share capitalisations for large

corporates are often valued in hundreds of millions of

euros, which is not useful for insights into individual

products. However, if a company tracks sales with

reputation, the possibility of monetising reputation in

terms of sales becomes realistic. Thereafter, reputa-

tion prediction can be used to predict sales. Further

research is required on this topic, but it would proba-

bly have to remain in the domain of individual com-

panies who can track their own sales on a daily basis.

5.1 Further Work

In addition to monetisation of reputation in terms of

product sales (as discussed above), prediction using

statistical properties of reputation time series presents
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possibilities. In particular, neural networks using

Long Short Term Memory (LSTM) is a fruitful area

because LSTM can mimic the “choppiness“ of repu-

tation time series due to its mechanism for selectively

retaining or discarding information using input gates

and forget gates respectively. However, this type of

neural network is very slow to train. Recent work

on this topic in other contexts includes (Yadev and

Thakkar, 2024). Adding attention layers to a neural

network may also be a way forward, provided that the

attention can be directed at particular features of the

data. A recent study (Wen and Li, 2023) in the con-

texts of air quality, electricity and share price is en-

couraging.
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APPENDIX A

Proposition.

An auto-correlation matrix A is positive definite

(ζ′Aζ > 0 for all vectors ζ) , and therefore admits a

Cholesky decomposition.

Preliminary Result.

A positive definite matrix has a Cholesky decomposi-

tion (Golub and van Loan, 1992) (Section 4.2.7)

Proof.

Let A be an L× L auto-correlation matrix and let its

column vectors be z = {z1,z2, . . . zL}. Symmetry is

assured for (auto-)correlation matrices since for any

two vectors zi and z j, cor(zi,z j) = cor(z j ,zi); i, j =
1 . . .L.

By definition, A = E[(z− z̄)(z− z̄)′]. Then, for all

vectors ζ,

ζ′Aζ = ζ′E[(z− z̄)(z− z̄)′]ζ

= E[ζ′(z− z̄)(z− z̄)′ζ]

= E[yy′] where y = ζ′(z− z̄)

= E[var(y)]> 0 ∀y > 0 (11)

Also A is symmetric, and therefore A is positive

definite.
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