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Abstract: Verifying the integrity of files during transfer is a fundamental operation critical to ensuring data reliability and

security. This is accomplished by computing and comparing a hash value generated from the file’s contents by

both the sender and the receiver. This process becomes prohibitively slow when dealing with large files, even

in scenarios involving sparse disk images where significant portions of the file may be unallocated. We in-

troduce blkhash, the first hash construction tailored specifically for optimizing hash computation performance

in sparse disk images. Our approach addresses the inefficiencies inherent in traditional hashing algorithms by

significantly reducing the computational overhead associated with unallocated areas within the file. Moreover,

blkhash implements a parallel computation strategy that leverages multiple cores, further enhancing efficiency

and scalability. We have implemented the blkhash construction and conducted extensive performance eval-

uations to assess its efficacy. Our results demonstrate remarkable improvements in hash computation speed,

outperforming state-of-the-art hash functions by up to four orders of magnitude. This substantial acceleration

in hash computation offers immense potential for use cases requiring rapid verification of large virtual disk

images, particularly in virtualization and software-defined storage.

1 INTRODUCTION

In the realm of virtualization, efficient disk space

management is paramount for resource utilization.

One approach is the utilization of sparse disk images

for virtual disks. Sparse disk images offer a flexi-

ble and efficient means of disk allocation, particularly

beneficial in scenarios where disk space conservation

and dynamic allocation are priorities. Sparse disk im-

ages differ from pre-allocated disk images in their al-

location strategy. Rather than pre-allocating the entire

disk space upon creation, sparse disk images dynami-

cally allocate storage space as data is written, utilizing

only the space necessary to store actual data. Unallo-

cated areas in the file are represented by file metadata

to minimize storage space. This dynamic allocation

makes sparse disk images particularly advantageous

in environments where disk space is at a premium.

Virtual disk images are typically sparse. A virtual

machine that is reading from a sparse virtual disk is

oblivious to the fact that the disk is sparse and unallo-

cated areas are seen as areas full of zeros (null bytes).

A sparse virtual disk can be stored as a sparse file on a
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file system supporting sparseness, or a non-sparse file

using image format supporting sparseness.

Virtual disk images are mostly empty. When pro-

visioning a new virtual machine we install an operat-

ing system into a completely empty disk. While the

virtual machine is running more data is added, how-

ever discarding deleted data can punch holes in the

image. If the disk becomes too full it can be extended,

adding large unallocated areas. Typically large por-

tions of the image remain unallocated for the entire

lifetime of the virtual machine. Figure 1 shows a typ-

ical disk image space allocation.

unallocated area

(read as zeros)data

500 GiB

29% data 71% zeros

Figure 1: A typical sparse virtual disk image. In this exam-
ple 71% of the image is unallocated.
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Disk utility tools are aware of image sparseness

and take advantage of it when processing disk im-

ages. When a tool such as qemu-img (Bellard and

the QEMU Project developers, 2003) copies a disk

image, it first detects the allocated areas in the image

using file system or image metadata. Using this info it

skips reading unallocated areas from storage. Further-

more, when reading allocated areas, it uses zero de-

tection to discover areas full of actual zeros, and treat

them as unallocated areas. When writing to the target

image, it can use efficient system calls to write zeros

to storage. The entire software stack works in concert

to enable efficient handling of zeros, leading to dra-

matic speed up and minimize I/O load when reading

or writing sparse images.

However, existing checksum1 tools like

sha256sum, using the SHA256 algorithm (Hansen

and 3rd, 2006), are not aware of sparseness, and do

not take advantage unallocated areas in the image

or areas full of zeroes. Such tools read the entire

image from storage, possibly transferring gigabytes

of zeros over the wire when using remote storage.

Then they compute a hash for the entire image, bit by

bit. They do the same work regardless if the image

is completely empty or completely full, which makes

them very slow for typical virtual disk images.

Virtual disk images are commonly published as a

compressed non-sparse image. A checksum is cre-

ated using cryptographic hash function and published

as well for verifying a downloaded image. However

when one transfers the downloaded image to an actual

storage in a virtualization system, the disk content is

not stored in the same format, and the checksum of

the downloaded image cannot be used to verify the

image in the virtualization system. To verify an im-

age using a checksum, you must compute a checksum

of the image content, the same data as seen by the vir-

tual machine using the image, and not a checksum of

the box holding the image data. To do this efficiently,

we need a hash function supporting sparse data. This

is illustrated in Figure 2.

In the past computing a hash was considered much

faster than copying a file, but due to improvements

in network and storage, copying a file can be around

3 times faster than computing a hash2. Bearing in

mind that the hash has to be computed over the en-

tire disk image, while the copy operation is done only

1The term checksum is often used to describe the oper-
ation of computing a succinct representation value and it is
commonly computed using a cryptographic hash function.
In this paper when we use the term checksum, we refer to a
computation of a cryptographic hash function.

2Recent NVMe devices provides read/write throughput
of 6 GiBs, while the best hardware accelerated SHA256 can
achieve at most 2 GiB/s

bbd3e7c2

4f5023a8636b2ac8

Figure 2: Two identical disk images with different physi-
cal representation. Computing a checksum over the phys-
ical representation of the image yields different values,
while computing a checksum over the logical representa-
tion yields the same.

over the allocated parts significantly increases that

gap. Namely, if the image is 80% empty then the data

on which the hash is computed is 5 times larger and

computing the hash can be 15 times slower.

These days most computing devices, including en-

try level phones, have multiple cores. Large servers

can have up to hundreds of cores. However the state

of the art cryptographic hash functions like SHA256

and SHA3-256 (Dworkin, 2015) use only a single core

because the algorithm is is inherently sequential and

cannot be parallelized to leverage the multiple cores.

Consequently, these hash functions, that have to go

over the entire image are limited in their comput-

ing power to a single core. Recent algorithms like

BLAKE3 (O’Connor et al., 2019) can use all avail-

able cores when using regular file via memory map-

ping, but use only one core in other cases, for example

when reading from a block device or a pipe.

We propose a new hash construction optimized for

sparse virtual disk images that is up to 4 orders of

magnitude more efficient, which results in being both

faster and energy efficient compared with state of the

art cryptographic hash functions. Our most impor-

tant contribution is an efficient way to update the hash

with zeros - unallocated areas in the image, without

reading anything from storage, or adding any data to

the hash. When adding actual data to the hash, we use

fast zero detection to treat blocks full of zeros as un-

allocated area, eliminating the computation. In addi-

tion, our construction allows parallel processing, that

scales linearly with the number of threads.

Our solution is a modular construction that turns

any secure hash function into a hash function that

works efficiently with sparse input. This modular

construction that uses two layers enables using either

the same hash function on both the inner and outer

layers or using different ones. Using different hash

functions allows enhancing security or tuning perfor-

mance by adding a stronger or faster hash function.
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2 THE CONSTRUCTION

The blkhash (Soffer, 2021) construction is designed

to work efficiently with sparse disk images. Unlike

common hash functions that go over the entire image

sequentially, including the unallocated areas, blkhash

works more efficiently by:

1. Minimizing the computation over unallocated

blocks or blocks full of zeros.

2. Computing hashes of data blocks in parallel.

Loosely speaking, the blkhash construction is uti-

lizing a two levels Merkle tree (Merkle, 1988) con-

struction. On the first level, we split the input image

into fixed sized blocks and compute the hash value

of every block. In the second level, we perform an-

other hash computation of all the hashed values of the

blocks in the order in which they were split and the re-

sult is the output value of blkhash. This is illustrated

in Figure 3

This enables performing the computation in paral-

lel and utilizing all the available cores. We note that

if two blocks are of the same value then their hash

value is the same. As a result, we do not need to com-

pute the hash value of the all-zero block repeatedly. In

fact, we can pre-compute the hash value of an all-zero

block in advance.

636b2ac8

0000 0000 

0000 0000 

5905 f334 

be3d 6e25

05d4f20b

0000 0000 

0000 0000 

0000 0000 

0000 0000

bbd3e7c2

0000 0000 

0000 0000 

0000 0000 

0000 0000

bbd3e7c24f5023a8

80c8 d2b7 

1582 7280 

5715 ed58 

a34d 41bb

0000 0000 

0000 0000 

0000 0000 

0000 0000

bbd3e7c2

Figure 3: The blkhash construction with a an example im-
age with 5 blocks. We can see that 3 blocks are full of zeros
and have the same hash value. The blkhash algorithm elim-
inates the computation of the zero blocks.

We now describe the construction more formally.

Let us denote by H our blkhash function that uses two

collision resistant hash functions hinner and houter. In

practice, the inner and outer hash functions are ex-

pected to be the same function, but they can also dif-

fer and we discuss this case later. Let x ∈ {0,1}∗ be

the input to H. We denote by l the length of x in bytes.

We set the block size to k and we split x into blocks

of size k. We note that if the length of x is not a mul-

tiplicity of k, then the final block will be shorter than

k. We calculate the number of blocks n =
⌈

l
k

⌉
.

The resulting split looks as follows:

x = x1
︸︷︷︸

k

|| . . . ||(xn−1)
︸ ︷︷ ︸

k

|| xn
︸︷︷︸

≤k

where n− 1 blocks are of size k and the final block

may be shorter than k.

We compute blkhash H as follows:

H(x) = houter(hinner(x1)|| . . . ||hinner(xn)||l)

Namely, we hash each of the blocks separately us-

ing Hinner and then hash the resulting values in the

original order along with the length of x using Houter.

This construction enables parallel computation for the

inner block hashes, since computing a hash of one

block does not depend on the hash of the previous

blocks. This enables linear scaling with number of

threads computing the block hashes.

Blocks that are unallocated or full of zeros results

in the same hash value, and can use a pre-computed

zero block hash value.

Input :

Houter : collision resistant hash

Hinner : collision resistant hash

k : block size

x : message to hash

Output: Hash value of message x

hzero← Hinner(zero block of length k);
i← 0;

while i < |x| do

xi← x[i, i+ k];
if |xi|= k and xi is a zero block then

add hzero to Houter;

else

hi← Hinner(xi);
add hi to Houter;

end

i← i+ k;

end

add |x| to Houter;

return the result of Houter evaluation;

Algorithm 1: The blkhash construction.

Detecting zero blocks is done in 2 ways:

1. Detect the unallocated areas in the image from

file system or image metadata, avoiding reading

the data from storage and eliminating all the com-

putation. This is the most important optimiza-

tion, speeding up processing by multiples orders

of magnitude.

2. Efficiently detect blocks full of zeros (e.g. using

memcmp) and avoiding the computation of block

hashes. Scanning blocks for zeros is faster than

computing a hash, even when using a fast crypto-

graphic hash such as BLAKE3, that can take ad-

vantage of widest SIMD instructions.

Note that zero block optimization only affects the

performance of computing the inner hash. The com-
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putation yields the same hash value regardless of the

efficiency of the computation.

3 PROOF OF SECURITY

Collision resistance is a fundamental property of

cryptographic hash functions. Collision resistance

guarantees that it is computationally infeasible to find

two distinct inputs that hash to the same output value.

This property is vital for maintaining data integrity as

it prevents malicious actors from producing two dif-

ferent files with identical hash values 3.

In this section we prove that if the underlying hash

functions hinner and houter are collision resistant then

so is our construction.

Assume toward contradiction that one can find

two inputs x and x′, such that H(x) = H(x′), then we

show a collision either for hinner or houter.

We split our proof into two cases:

• Case 1: x and x′ are of different length

• Case 2: x and x′ are of the same length

In case 1 since the length is part of the input to the

houter, then the input for houter is different when x and

x′ are of different length. Thus, if H(x) = H(x′) then

we have a collision in the outer hash function.

More formally, let us denote by l the length of x

and by l′ the length of x′.

H(x) = houter(· · · ||l)

= houter(· · · ||l
′) = H(x′)

(1)

and since l 6= l′, if H(x) = H(x′) then we get a

collision for houter.

In case 2, we focus on block i in which xi 6= x′i,

noting that there has to be at least one such block,

otherwise x and x′ are identical.

If hinner(xi) = hinner(x
′
i) then we have a collision

for hinner.

If hinner(xi) 6= hinner(x
′
i) then we get that

H(x) = houter(· · · ||hinner(xi)|| · · · ||l)

= houter(· · · ||hinner(x
′
i)|| · · · ||l) = H(x′)

(2)

and we got a collision for houter.

3Consider an attacker that can create two files, one be-
nign and one containing malware, that result in the same
hash value, then he can get the benign version signed by
a trusted authority and then have the malware version dis-
tributed along with the same signature.

4 SPECIFICATION

Here we specify how a single threaded blkhash hash

function can be implemented.

The construction requires the following parame-

ters. Changing any of the parameters changes the con-

struction and the hash value.

• outer-hash-algorithm - a collision resistant hash

algorithm.

• inner-hash-algorithm - a collision resistant hash

algorithm.

• block-size - block size in bytes. A power of 2,

equal or larger than 64 KiB is recommended to

match common image formats internal structure.

The construction must maintain the following

state:

• outer-hash - an instance of outer-hash-algorithm.

The hash must be initialized before feeding data

into the hash function.

• input-length - if the input length in bytes is un-

known when creating the hash, initialize it to 0,

and update it incrementally when feeding data

into the hash.

To implement zero optimization (as noted before,

zero optimization is optional), the construction must

also maintain the following state:

• zero-block-hash - a hash value of an all zero block

of length block-size bytes, computed using inner-

hash-algorithm.

Split the input of the hash function to fixed size

blocks of block-size bytes. If the input length is not

a multiple of the block size, the last block may be

shorter than block-size, but it cannot be empty. If the

input length is zero no block need to be processed.

For each input block perform the following oper-

ations:

1. If the block length is equal to block-size and zero

optimizations are implemented, check if the block

contents are zeros. We have 2 cases:

• If file system or image metadata are available,

and the image is known to read as zeros.

• Otherwise if no metadata is available, check if

the block is full of zeros.

If block contents are zeros, update outer-hash

with the pre-computed zero-block-hash value.

2. Otherwise compute a hash value of the block

using the inner-hash-algorithm, and update the

outer-hash with the computed hash value.
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When all input blocks were processed, update the

outer-hash with input-length as a 64 bit little-endian

integer.

Finalize the outer-hash, producing the hash value.

This is the blkhash hash value of the input.

5 EMPIRICAL RESULTS

We measured the throughput of blkhash hash function

using both BLAKE3 and SHA256 provided by openssl

(The OpenSSL Project, 2003) for the outer and inner

hash functions. SHA256 is considered the industry

standard and recent CPUs also feature hardware ac-

celeration of it. BLAKE3 is an extremely fast hash

function on 64-bit platform supporting AVX-512 in-

structions. These functions demonstrate how blkhash

adapts the most widely used cryptographic hash func-

tions into sparse optimized hash functions.

We use the notation blk-ALGORITHM to describe

application of blkhash using ALGORITHM for the

outer and inner hash functions.

Real disk images are typically comprised of three

types of data and blkhash’s performance varies ac-

cording to it. We generated these input types and mea-

sured how blkhash performs on each of them. The

three types are:

• data: all blocks in the input are non-zero. This

is the worst case where blkhash must compute a

hash for all blocks.

• zero: all blocks in the input contain only zeros.

This is a better case, where all blocks must be

scanned to detect zeros, but no hash is computed

for any block.

• hole: all blocks are unallocated. This is the best

case where no data is scanned and no hash is com-

puted for any block.

We ran the tests on two AWS bare metal instances:

• c7i.metal-24xl (Amazon Web Services, 2023b)

powered by 4th Generation Intel Xeon Scalable

processor (Sapphire Rapids 8488C), featuring 48

cores and 96 vCPUs. We tested with Hyper-

Threading disabled since it is not a good match

for this type of workload.

• c7g.metal (Amazon Web Services, 2023a) pow-

ered by Arm-based AWS Graviton3 processors,

featuring 64 cores.

We measure using the blkhash-bench (Soffer,

2022) program, providing an easy to use command

line interface to measure any input type with any con-

figuration supported by the blkhash library. The pro-

gram allocates a fixed size pool of buffers and feed

the data as fast as possible to the blkhash hash func-

tion without doing any I/O. Actual results with real

images will be much lower since reading data from

storage is typically the bottleneck.

To reproduce our results please refer to the

benchmarking documentation in the blkhash repos-

itory: https://gitlab.com/nirs/blkhash/-/blob/paper/

docs/benchmarking.md

5.1 Zero Optimization

This benchmark shows the effect of zero optimiza-

tion on the hash throughput when using different al-

gorithms for the internal hash functions. We focus on

the fastest algorithms for the tested machine, BLAKE3

on Intel Xeon and SHA256 on AWS Gravitron3, using

SIMD instructions or crypto extensions.

Figure 4 shows blkhash throughput on AWS

c7i.metal-24xl instance using BLAKE3 for the outer

and inner hash functions. Hashing unallocated ar-

eas (hole) reached the maximum throughput with

1 thread, 2223 times faster than single threaded

BLAKE3. Hashing blocks full of zeros (zero) is up to

64.3 times faster than single threaded BLAKE3. Hash-

ing blocks full of non-zero bytes (data) is up to 33.6

times faster than single threaded BLAKE3.

0 6 12 18 24 30 36 42 48
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blk-blake3 data
blk-blake3 zero
blk-blake3 hole
blake3

Figure 4: Throughput of blk-blake3, higher is faster.

Figure 5 shows blkhash throughput on AWS

c7g.metal instance using SHA256 for the outer and in-

ner hash functions. Hashing unallocated areas (hole)

reached the maximum throughput with 1 thread,

15323 times faster than single threaded SHA256.

Hashing blocks full of zeros (zero) is up to 270.9

times faster than single threaded SHA256. Hashing

blocks full of non-zero bytes (data) is up to 62.9 times

faster than single threaded SHA256.

5.2 Carbon Footprint

We measured the throughput in cycles per byte as a

good proxy for amount of energy used to compute a
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Figure 5: Throughput of blk-sha256, higher is faster.

hash. Zero optimization not only speeds up hash com-

putation by up to 4 orders of magnitude but it also

lowers the carbon footprint of the computation by 4

orders of magnitude - at the same time.

Figure 6 shows blkhash efficiency on AWS

c7i.metal-24xl instance using BLAKE3 for the outer

and inner hash functions. Hashing unallocated areas

(hole) shows throughput of 0.0002 cycles per byte,

2400.0 times lower than BLAKE3. Hashing blocks

full of zeros (zero) shows constant throughput of 0.1

cycles per byte for any number of threads, 4.8 times

lower than single threaded BLAKE3. Hashing blocks

full of non-zero bytes (data) show constant through-

put of 0.54 cycles per bytes for any number of threads,

1.12 times higher than single threaded BLAKE3.
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Figure 6: Throughput of blk-blake3 in cycles per byte,
lower is better.

6 CONCLUSIONS

As the world increasingly shifts into the cloud, the

demand for secure hash functions of high throughput

becomes more pronounced than ever before. The tra-

ditional approach to verifying file integrity through

hash computation has long been plagued by ineffi-

ciencies when dealing with large files. The perception

that computing the hash value is negligible compared

to the time it takes to copy a file, no longer holds in

modern computing. Optimizing the performance over

sparse disk images needs to consider hash computa-

tion in addition to the copying operation.

The introduction of blkhash marks a new direc-

tion in the realm of hash function design. We address

these challenges head-on by minimizing the computa-

tional overhead associated with empty or unallocated

areas within the file and also by leveraging the multi

core technology by parallelization of the computation.

An important feature of blkhash is its modular design,

which allows it to utilize any existing hash function

as a building block. Whether it be well-established

standards like SHA256 or modern alternatives like

BLAKE3, blkhash seamlessly integrates these hash

functions into its framework. This modular approach

not only enhances the flexibility and versatility of

blkhash, but also leverages the proven security prop-

erties of established hash algorithms. We provide a

reference implementation along with a suite of bench-

marks. Our results reveal that blkhash achieves accel-

eration levels of up to four orders of magnitude, po-

sitioning it as a game-changer for use cases requiring

rapid verification of large virtual disk images.
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