
Trajectory Generation Model: Building a Simulation Link Between
Expert Knowledge and Offline Learning

Arlena Wellßow1,2 a, Torben Logemann1 b and Eric MSP Veith1,2 c

1Adversarial Resilience Learning, Carl von Ossietzky University Oldenburg, Oldenburg, Germany
2OFFIS – Institute for Information Technology, Oldenburg, Germany

fi

Keywords: Modeling, Offline Learning, Simulation, Expert Knowledge.

Abstract: Reinforcement learning has shown its worth in multiple fields (e. g., voltage control, market participation).
However, training each agent from scratch leads to relatively long time and high computational power costs.
Including expert knowledge in agents is beneficial, as human reasoning is coming up with independent solu-
tions for unusual states of the (less complex) system, and, especially in long-known fields, many strategies are
already established and, therefore, learnable for the agent. Using this knowledge allows agents to use these
solutions without encountering such situations in the first place. Expert knowledge is usually available only
in semi-structured, non-machine-readable forms, such as (mis-) use cases. Also, data containing extreme sit-
uations, grid states, or emergencies is usually limited. However, these situations can be described as scenarios
in these semi-structured forms. A State machine representing the scenarios’ steps can be built from thereon to
generate data, which can then be used for offline learning. This paper shows a model and a prototype for such
state machines. We implemented this prototype using state machines as internal policies of agents without a
learning part for four specified scenarios. Acting according to the actuator setpoints the state machines emit,
the agent outputs control the connected simulation. We found that our implemented prototype can generate
data in the context of smart grid simulation. These data samples show the specified behavior, cover the search
space through variance, and do not include data that violates given constraints.

1 INTRODUCTION

The energy grid, a critical national infrastructure
(CNI), evolves into a cyber-physical system called
the smart grid. This results in a more significantly
important adoption of new strategies in grid opera-
tion and control Hossain et al. (2023). This is due to
the introduction of ICT-based control systems. These
components are integrated into the grid to manage the
volatile generation and prosumers. They also enable
the grid operators to handle grids more efficiently.
While providing more usability also leads to a higher
risk of errors and potential dangers of cyber attacks.
Therefore, a higher risk of failure is given. As this
happens, including expert knowledge from grid op-
erators and Information and Communications Tech-
nologies (ICT) specialists becomes more critical.

Until now, the risk of a failure within the energy

a https://orcid.org/0009-0005-7295-000X
b https://orcid.org/0000-0002-2673-397X
c https://orcid.org/0000-0003-2487-7475

system was adequately hedged by the redundancy of
the physical system (N-1 rule) (De Nooij et al., 2010).
With the need for an ever-efficient operation of power
grids, which heralds an extensive integration of ICT,
this is no longer the case, as ICT integration poses
its own risks and redundancy of the whole grid is too
cost heavy. The failure of physical systems can lead
to the failure of ICT systems. Redundancy is, there-
fore, still relevant. However, failures of ICT systems
can also lead to failures of physical systems. These
risks can no longer be solved by redundancies alone
and must be mitigated by new technologies (e.g., safe
communication protocols, encryption) (Mayer et al.,
2020; Schütz et al., 2022).

The power grid transforms, making it highly
non-deterministic as an overall system. Due to the
high complexity, the introduction of machine learn-
ing (ML) systems for optimization, the proliferation
of prosumer roles, the emergence of (localized) en-
ergy markets, and the high share of distributed renew-
able energy sources (DERs) to achieve the necessary
efficiency goals require testing through extensive sim-

Wellßow, A., Logemann, T. and MSP Veith, E.
Trajectory Generation Model: Building a Simulation Link Between Expert Knowledge and Offline Learning.
DOI: 10.5220/0012764900003758
Paper published under CC license (CC BY-NC-ND 4.0)
In Proceedings of the 14th International Conference on Simulation and Modeling Methodologies, Technologies and Applications (SIMULTECH 2024), pages 91-102
ISBN: 978-989-758-708-5; ISSN: 2184-2841
Proceedings Copyright © 2024 by SCITEPRESS – Science and Technology Publications, Lda.

91

ulations for developing mitigations.
However, this development carries a high effort in

terms of time needed for development and financial
efforts as this time spent has to be paid (Uslar, 2015;
Uslar et al., 2019).

Therefore, previous approaches have employed
agent-based systems, often based on Deep Reinforce-
ment Learning (DRL), to generate suitable mitiga-
tion strategies for hitherto unknown scenarios (Fis-
cher et al., 2019). However, there is a lot of expert
knowledge in energy systems that AI agents do not
have by default. For example, agents do not know
strategies when starting with random sampling (e.g.,
using the Soft Actor Critic (SAC) algorithm with ran-
dom sampling) and do not know about conflicting ac-
tors that rewards can not cover. This knowledge needs
to be obtained through training to operate as well as
or better than human operators. But even if agents
are trained for quite some time, they might lack the
knowledge for rare occurring situations (for example,
misbehavior (Veith et al., 2024)). Sampling efficiency
is critical here. If insufficient data is given, even of-
fline learning algorithms cannot learn. This is espe-
cially relevant in critical situations that do not occur
often enough to be learned by an agent using histori-
cal data for training. These situations will be covered
by adding scenario data or injection of expert knowl-
edge.

A current best practice in the domain of the elec-
tric energy system is the description of system (mis-
)behavior utilizing specially designed templates based
on the (mis-)use case methodology. This data is usu-
ally available only in semi-structured, non-machine-
readable forms.

The big picture of our research aims to integrate
expert knowledge into AI based experiments to make
training of rare situations easier as well as reduce
computation expenses.

We have already shown that experiment genera-
tion from Misuse Cases is possible and feasible for
automation (Veith, 2023a; Wellssow et al., 2024).

In these templates, it is also possible to describe
scenarios stepwise. These steps can be converted into
a state machine. With this, we can rebuild the whole
scenario as a state machine. For now this is done by
hand and will be automated in the ongoing research
process.

Afterward, this approach sets in. We use the de-
fined state machines, step through them while running
a smart grid simulation, and collect their data.

In the big picture shown in Figure 1 can be seen
that this data is then used for offline training. As with
state machine generation automation and everything
before and after these steps, this is not part of this

work and will be shown in later publications.
Our paper is structured as follows: First, we in-

troduce other research work related to this topic. Af-
terward, needed background information is given, and
the framework we used is presented. In the fourth sec-
tion, we present our model with the fundamental con-
cepts. The subsequent section contains our first pro-
totype that was implemented using this model. In the
sixth section, we conclude our findings and discuss
our results. Lastly, we give a view of future work.

2 RELATED WORK

The section of related work covers parts of the big
picture concerning the research presented in this pa-
per and a subsection regarding offline learning data
sampling in the literature.

2.1 Usecase Methodology

The IEC 62559 standard outlines the methodology
for use cases, providing a systematic procedure for
eliciting and describing them. Following this stan-
dard, IEC 62559-2 also furnishes a standardized and
structured template for use case descriptions. This
template encompasses essential information, includ-
ing the use case’s name, identifier, scope, objectives,
conditions, and narrative in natural language. Addi-
tional details, such as its relationship with other use
cases, prioritization, and related Key Performance In-
dicators (KPIs), are also included.

The second section of the use case template
presents use case diagrams. A technical information
summary is provided, listing all acting components
and offering a step-by-step analysis for each situation
associated with the use case. Processes related to the
use case, including lists of exchanged information and
requirements, are linked to these analyses. The doc-
umentation concludes with the inclusion of common
terminologies and specific details.

IEC 62559 is a series of standards widely em-
ployed in various fields, as exemplified by Gottschalk
et al. (2017).

2.2 Offline Reinforcement Learning for
Deep RL

In numerous real-world scenarios, such as large
power grids, conducting experiments in the actual en-
vironment can be unsafe or computationally expen-
sive, making collecting new data in real-time chal-
lenging or risky. This is where offline reinforcement

SIMULTECH 2024 - 14th International Conference on Simulation and Modeling Methodologies, Technologies and Applications

92

Figure 1: The proposed toolchain of the big picture this work is a part of. [Wellssow et al. (2024)].

learning, also called batch reinforcement learning,
becomes relevant (Ernst et al., 2005; Lange et al.,
2012; Prudencio et al., 2022; Panaganti et al., 2022).

Offline reinforcement learning enables agents to
learn from existing data without direct interaction
with the environment. By leveraging pre-existing data
that contains observations, actions, and next step ob-
servations, agents can enhance their decision-making
capabilities efficiently and safely. In this context,
safety regards the possible damages caused by faulty
operation in the environment. Offline learning is cru-
cial in critical infrastructure cases, such as optimal
voltage control in power grids, where making in-
formed decisions without additional data collection is
paramount.

Several building blocks and techniques are em-
ployed to achieve effective offline reinforcement
learning. These are presented in the following para-
graphs.

policy constraints (Fujimoto et al., 2018; Kumar
et al., 2019; Wu et al., 2019)modify the objective of
the learned policy, ensuring adherence to the behav-
ior policy derived from the existing dataset. These
constraints enforce a divergence metric between the
known and behavioral policies, such as minimizing
the discrepancy between their distributions to prevent
the agent from deviating too far from the data-driven
behavior. Another approach involves estimating the
advantage function, which describes the relative im-
provement of actions, rather than directly estimating
the behavioral policy itself (Peng et al., 2019).

Importance sampling (Precup et al., 2000; Jiang
and Li, 2016) is another technique employed in offline
reinforcement learning, where weights are assigned to
samples in the dataset. However, to ensure efficiency,
minimizing the variance of these weights is crucial, as
their product grows exponentially with the length of
trajectories.

Regularization (Haarnoja et al., 2018) in offline
RL involves adding a regularization term to the objec-
tive function and aims to make the agent’s value func-
tion estimates more conservative, preventing over-
estimation and discouraging the selection of out-of-
distribution (OOD) actions that could be harmful or

suboptimal. An extension of this is uncertainty esti-
mation, which allows the agent to dynamically adjust
the penalty term based on estimated uncertainty, en-
abling a flexible trade-off between conservative and
naive off-policy deep reinforcement learning methods
(Levine et al., 2020).

Model-based methods (Kidambi et al., 2020; Yu
et al., 2020) tackle offline reinforcement learning by
estimating the dataset’s transition dynamics and re-
ward functions. For example, a surrogate model for
a power grid (e.g. as shown by Balduin et al. (2019))
can be learned from a collection of power flow calcu-
lations obtained during simulations. However, incor-
porating uncertainty estimation techniques becomes
essential without precise world models, as it helps
prevent the agent from transitioning to OOD states.

One-step methods (Brandfonbrener et al., 2021;
Kostrikov et al., 2021) in offline reinforcement learn-
ing involves collecting multiple states to estimate the
action-value function, followed by a single policy im-
provement step. This differs from iterative actor-critic
methods, ensuring that the action-value estimates al-
ways represent the distribution of the given dataset,
eliminating the need to evaluate actions outside of the
data distribution.

Imitation learning (Chen et al., 2020), a class of
offline reinforcement learning algorithms, mimics the
behavior policy derived from the dataset. It involves
techniques like behavior cloning, where the learned
policy is trained to replicate the behavior policy us-
ing supervised learning. However, this approach is
subject to distributional shift, as even small mistakes
in the learned policy can lead to compounding errors.
To overcome this, imitation learning methods focus
on filtering out undesirable behaviors from the dataset
and only mimicking the good ones, leveraging value
functions and heuristics to select high-quality trajec-
tories.

Another essential technique in offline reinforce-
ment learning is trajectory optimization (Janner et al.,
2021), which trains a joint state-action model over
entire trajectories based on the behavior policy. An
optimal action sequence with a good model can be
planned from the initial states. The use of sequence

Trajectory Generation Model: Building a Simulation Link Between Expert Knowledge and Offline Learning

93

modeling objectives reduces sensitivity to distribu-
tional shift, and the model can be optimized using
a variety of objectives, such as maximum likelihood
or a combination of maximum likelihood and value
functions.

2.3 Offline Learning Data Sampling

To effectively train offline learning agents, it is imper-
ative to have a large and diverse enough dataset. The
dataset has to represent the learned behavior of the
specified scenarios. This is mainly done by sampling
data. It can be accomplished by sorting and collect-
ing historical data or by iterative data generation with
simulations (Ghysels et al., 2004).

In the smart grid context, data sampling is done
in various attempts (Tu et al., 2017; Kayastha et al.,
2014; Rhodes et al., 2014).

Two main approaches are random sampling and
using Generative adversarial networks (GANs) to
generate data. We chose to structure the here shown
approach as random sampling has a low sample effi-
ciency rate as well as the convolution problem Ger-
ster et al. (2021), while the usage of GANs is com-
putationally expensive and can’t generate data that is
better than the data the GAN was trained on Matchev
et al. (2022).

3 BACKGROUND

3.1 The PalaestrAI Framework

PalaestrAI1 is a software stack that enables exper-
imentation, co-simulation, storage and analysis for
complex simulations of learning agents in cyber phys-
ical systems (CPSs) Veith et al. (2023). The frame-
work provides packages to implement or interface RL
agents, environments, and simulators. Its primary fo-
cus is on ensuring neat and reproducible execution of
experiment runs while coordinating the various parts
of these runs and storing their results for later analy-
sis.

One of palaestrAI’s major design paradigms is
a loose coupling between simulation execution, en-
vironment, and agents through a messaging bus.
This allows for the implementation of well-known
algorithm/rollout-worker splits as they are common
in other implementations, but also enables relatively
easy extensions of existing algorithms with concepts
such as the one presented here. A synchronization be-
tween these components happens on the basis of a Ze-

1https://gitlab.com/arl2

roMQ Major Domo Protocol (MDP) implementation,
which implements message passing on the basis of a
request-reply pattern. In addition, palaestrAI uses
a conductor/watchdog concept that separates module
management from algorithm logic. This results in a
simplified API for developers that facilitates the im-
plementation of new DRL algorithms. This design
decision minimizes the learning curve for developers
and allows them to focus on algorithmic innovation.

Another benefit of palaestrAI’s approach is that
co-simulation softwares can be transparently coupled,
needing only a minimal API adapter. Our setup uses
mosaik (Steinbrink et al., 2019) and the MIDAS sce-
nario framework (Balduin et al., 2023) to create the
power grid and to synchronize the asset models (e. g.,
the battery).

Additionally, palaestrAI strongly emphasizes the
reproducibility of experiments. The arsenAI mod-
ule, specifically designed for experiment design, en-
sures that experiments are meticulously laid out in
YAML files. These files include critical details such
as random seeds, agent specifications, sensor, actuator
configurations, and termination conditions for each
phase. This approach guarantees that experiments can
be replicated while minimizing setup requirements.

Furthermore, palaestrAI allows an unprecedented
level of flexibility in experiment design, implement-
ing an actual Design of Experiments (DoE) process.
Through the arsenAI module, scientists can define
a multitude of parameters and factors. This allows
for extensive variations in agent combinations, sen-
sor/actuator assignments, and hyperparameters. This
versatility enables a comprehensive exploration of di-
verse scenarios.

3.2 Finite Non-Deterministic State
Machines

As defined by Hopcroft et al. (2001) finite non-
deterministic state machines are 5-tuples

M = (Q,Σ,δ,s0,F) (1)

Where Q is a set of states, Σ is the alphabet the ma-
chine is working over, s0 is the initial state, F is the
set of final states, and δ is defined as a relation:

δ : QxΣ
∗→ 2Q (2)

In general, state machines are used in a wide area
of fields like digital event reconstruction (Gladyshev
and Patel, 2004), communication modeling (Brand
and Zafiropulo, 1983), or game development (Jag-
dale, 2021).

In the smart grid context, state machines are used
for modeling (as seen in (Kaygusuz et al., 2018)) or

SIMULTECH 2024 - 14th International Conference on Simulation and Modeling Methodologies, Technologies and Applications

94

for control in an autonomous, non-learning setting (as
seen in (Trigkas et al., 2018)).

For this paper, we use an empty alphabet and do
not make use of the final states as we do not want to
accept sequences but instead use the structure for data
generation in a continuous way.

4 MODEL

We propose a generic state machine model adaptable
for different scenarios. While we consider scenarios
in the smart grid context, we propose that this concept
also applies to other areas.

The state machine is finite. This allows modeling
the complete state machine, as we do not consider in-
finite state sets.

The general concept is depicted in Figure 2 with
states named si. We use the state machine definition
as defined by Hopcroft et al. (2001) with additions to
the state and transition definitions.

Mtg = (Q,Σ,δ,q0,F)

with
(q,({cq} ∈ ActuatorSet points,
{iq} ∈ TimeStepIntervals)) ∈ Q
(i ∈ Q,n ∈ Q,{sc} ∈ StepConstraints) ∈ δ

(3)

Our concept resolves around four significant traits
that can be featured in the state machines used in this
approach:

Non-Determinism. Non-Determinism plays a mas-
sive role in this concept, allowing the same state ma-
chine to generate differing data. This is because de-
veloping differing timelines with one state machine is
possible, as the nondeterministic feature allows data
generation with state changes at differing time points.
Although we consider this to be the most helpful part
of generating differing datasets and using it for each
presented example, the concept is also usable with de-
terministic state machines.

State Actuator Constraints Cq. State Actuator
Constraints operate as the control output. In these
constraints, an interval for every output of every asset
the agent controls determines the possible setpoints
in this state. This interval can be given as an array
for one controlled actuator or a combination of a dic-
tionary containing the actuator name as a key and an
interval of possible setpoints as a value.

The action spaces of the correlating actuator defi-
nitions determine valid setpoints.

s1

i1, c1

s2

i2, c2

sx

ix, cx

sy

iy, cy

[sc1,2]

[...][...]

[...][...]

Figure 2: State centered depiction of the proposed state ma-
chine concept [own representation].

Time-Step Intervals Iq. Time-Step Intervals are a
second kind of interval given. This interval deter-
mines the timesteps, an agent is set to be in this state
with the lower bound being the least amount of steps
the agent has to stay in this state and the upper bound
being the maximal amount of steps.

Constrained Steps Sci,N . Contrained Steps allow to
limit a step to certain conditions. This is especially
helpful in each situation where a step is not after a
certain time in the scenario but if (or if not) a certain
condition is satisfied. Constrained steps are defined
between two states and are therefore named with the
numbers of both states.

4.1 Combination with Online Learning
Approaches

To demonstrate how our concept could be connected
to online learning agents, we show an exemplary
combination with the well-known AWAC offline
learning algorithm (Nair et al., 2020) shown in
algotithm 1.

Algorithm 1: AWAC-Algorithm as derived from Nair et al.
(2020).

Dataset D = {(s, a, s’,r) j};
Initialize buffer β = D;
Initialize πθ,Qφ;
for iteration i = 1,2, . . . do

Sample batch (s, a, s’,r)∼ β;
y = r(s,a)+ γEs′,a′ [Qφk−1(s’, a’)];
φ←arg minφED[Qφ(s, a)− y2];
θ←arg maxθEs,a∼β[logπθ(a|s)

exp(1
λ

Aπk(s, a))];
if i > num offline steps then

τ1, . . . ,τK ∼ pπθ
(τ);

β← β
⋃
{τ1, . . . ,τK}

end
end

Trajectory Generation Model: Building a Simulation Link Between Expert Knowledge and Offline Learning

95

06:00

Aug 7, 2020

08:00 10:00 12:00 14:00 16:00 18:00 20:00 22:00
0

50

100

0

2

4

Battery State Battery (Dis-) Charge

Time

S
ta

te
 o

f
C

h
a
rg

e
 [
%

]

C
h
a
rg

e
/D

is
ch

a
rg

e
 [
M

W
]

Figure 3: Simple Battery Experiment: Battery Loading State in percent and the agent’s setpoints for (dis-)charging over time.
[own representation].

06:00

Aug 7, 2020

08:00 10:00 12:00 14:00 16:00 18:00 20:00
0

50

100

0

2

4

Battery State Battery (Dis-) Charge

Time

S
ta

te
o
f
C

h
a
rg

e
[%

]

C
h
a
rg

e
/D

is
c
h
a
rg

e
 [
M

W
]

Figure 4: Multiple Actuators Experiment: Battery Loading State in percent and the agents setpoints for (dis-)charging over
time. [own representation].

06:00

Aug 7, 2020

08:00 10:00 12:00 14:00 16:00 18:00 20:00

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

midas_powergrid.Pysimmods-0.Photovoltaic-0.q_mvar Photovoltaic 0 Q setpoint
Time

R
e
a

c
tiv

e
P

o
w

e
r

O
u

tp
u

t
[M

V
A

r]

R
e
a

c
tiv

e
 P

o
w

e
r

S
e
tp

o
in

t
[M

V
A

r]

Figure 5: Multiple Actuators Experiment: Setpoints for PV control. [own representation].

As seen in algorithm 2, when combining the two
algorithms, our approach runs first as it generates the
data needed for the AWAC algorithm. This means,
data is generated first and then used for training with
the AWAC implementation.

We iterate through the state machine until the
maximum of steps is completed. While doing so, we
save the states of the simulation before (s) and after
(s’) each action (a). Mtg.advance() covers the process
of constraint checking and stepping in the state ma-
chine. When a constraint for a state transition is not

satisfied, this transition is not callable, and therefore,
the state connected with this transition is not reach-
able. If there are multiple possible transitions, the
transition is chosen in a non-deterministic way based
on predefined probabilities. In each step, a reward (r)
is calculated for the grid state given by the simulation
and then stored with the states and action set.

The AWAC implementation can work with the
stored data in the same way as with every other
dataset in the original implementation.

SIMULTECH 2024 - 14th International Conference on Simulation and Modeling Methodologies, Technologies and Applications

96

06:00

Aug 7, 2020

08:00 10:00 12:00 14:00
0

50

100

0

2

4

Battery State Battery (Dis-) Charge

Time

S
ta

te
o
f
C

h
a
rg

e
[%

]

C
h
a
rg

e
/D

is
c
h
a
rg

e
[M

W
]

Figure 6: Constrained Step Experiment: Battery Loading State in percent and the agents setpoints for (dis-)charging over
time. [own representation].

06:00

Aug 7, 2020

07:00 08:00 09:00
0

50

100

0

2

4

Battery State Battery (Dis-) Charge

Time

S
ta

te
o
f
C

h
a
rg

e
[%

]

C
h
a
rg

e
/D

is
c
h
a
rg

e
[M

W
]

Figure 7: Multiple PathsExperiment: Battery Loading State in percent and the agents setpoints for (dis-)charging over time.
[own representation].

Algorithm 2: AWAC-Algorithm combined with our data
generation approach.

Initialize Simulation S;
Statemachine Mtg = (Q,Σ,δ,s0,F);
maximal steps = x;
for j ≤ x do

s = S.state;
a←{c} ∈ (Mtg.state,cMtg.state) ∈ QMtg ;
r← reward(a);
s’ = S.step(a);
store to database(s, a, s’, r);
Mtg.advance();

end
Dataset D = {(s, a, s’,r) j} from database;
Initialize buffer β = D;
Initialize πθ,Qφ;
for iteration i = 1,2, . . . do

Sample batch (s, a, s’,r)∼ β;
y = r(s,a)+ γEs′,a′ [Qφk−1(s’, a’)];
φ←arg minφED[Qφ(s, a)− y2];
θ←arg maxθEs,a∼β[logπθ(a|s)
exp(1

λ
Aπk(s, a))];

if i > num offline steps then
τ1, . . . ,τK ∼ pπθ

(τ);
β← β

⋃
{τ1, . . . ,τK}

end
end

5 IMPLEMENTED PROTOTYPE

The implemented prototype2 is constructed as a mus-
cle in palaestrAI. This means it can control given ac-
tuators based on sensor information. Normally, each
learning agent in palaestrAI contains a muscle and
a brain part in which the agent learns from previous
steps. We implement the model as a muscle only, as
we do want to use the proposing of actions by the
muscle. The model works without a brain part, as
there is no learning, and the state machine provides
the strategy by which the agent works. The use of
palaestrAI ensures that the format of the trajectories
from the data generation matches the one used for
training the agents. Therefore, the data can be used
for offline learning afterward without reformatting.

As seen in Figure 8 our prototype contains two
classes: The AgentStateMachine, which contains the
actual state machine, and the StateMachineAgent,
which is wrapped around this state machine. The state
machine is built with the python package pytransi-
tions3, which enables all essential state machine func-
tions like stepping, keeping the state, and returning
the state the machine is in.

As seen in Figure 9, the agent loops while gener-

2Our code can be found here: https://gitlab.com/arl2/
state-machine-data-generation

3https://github.com/pytransitions/transitions

Trajectory Generation Model: Building a Simulation Link Between Expert Knowledge and Offline Learning

97

Figure 8: Uml Class diagram of our StateMachineAgent implementation [own representation].

State Machine Agent

submits action
to the

environment

gets new
simulation state

from environment

saves state, action
and

next state to
database

checks conditions

performs a
step in the

state machine

gets actions for each
actuator from the

step machine

Figure 9: Implemented loop of the StateMachineAgent in
an abstract visualization [own representation].

ating data until the maximum amount of steps given
before is reached. It starts with getting actions from
the state machine for the initial simulation state. Af-
terward, the actions are submitted to the co-simulated
environment, and a new state is reported after the co-
simulation has performed those actions. Afterward,
the tuple of state, action, next state, and reward is
saved to the database and will later serve as part of the
sampled data. The StateMachineAgent then checks
the conditions (possibly) given for the transitions of
the state machine before performing a step. After-
ward, actions are provided by the state machine, and
the loop begins again.

This is used to iterate over the state machine while
the simulation is running. We ran four different exper-
iments with this prototype:

• Simple battery experiment

• Multiple actuators experiment

Table 1: Actuator Mapping for Experiments.

Experiment Actuator(s)

Simple Battery Experiment Battery
Multiple Actuators Experiment Battery, PV
Multiple Paths Experiment Battery
Constrained Step Experiment Battery

• Multiple paths experiment

• Constrained step experiment

Simple Battery Experiment. This is our simplest
experiment. It contains just two states (S1 and S2) and
two kinds of transitions (step and keep) connecting
them.

Mtg,A = (Q,Σ,δ,s1,F)

with Q and F as depicted in Figure 10
(4)

This state machine is depicted in Figure 10. We used
one battery as an actuator to control. The states differ
between loading and discharging.

The results of this experiment can be seen in Fig-
ure 3. In this chart, the non-deterministic behavior of
the state machine is observable through the changes
between charging and discharging that happen after
differing amounts of timesteps.

Multiple Actuators Experiment. In the second ex-
periment, we gave the agent a second asset to control.
States and transitions were kept from the simple bat-
tery experiment. For this experiment, we changed our
constraint implementation from an array to a dictio-
nary containing the actuator names and their allowed
setpoints as an array. Except for this, the state ma-
chine was kept the same as in the simple battery ex-
periment. For this experiment, the agent was able to
control two assets in the grid: the battery and a pho-
tovoltaic asset. Both are independent, co-simulated
models to give setpoints to but are modeled within the

SIMULTECH 2024 - 14th International Conference on Simulation and Modeling Methodologies, Technologies and Applications

98

s1

i1, c1

s2

i2, c2

i2=[20,200],
 c2=

[-0.8,-0.8]

i1=[20,200],
c1=[0.8,0.8]

keep()

step()
step()

keep()

Figure 10: State Machine used in the simple battery exper-
iment and the multiple actuators experiments. [own repre-
sentation].

same grid and, therefore, impact each other physically
in the environment.

As seen in Figure 4 and Figure 5, the values for
both assets change according to the changes in the
state machine. More states would allow for more de-
tailed control (e.g., changing the setpoints of just one
of the assets in a state transition).

Multiple Paths Experiment. For the third exper-
iment, we kept the infrastructure of the simple bat-
tery experiment but added another state. This allows
a non-deterministic progression of the state machine.

Mtg,B = (Q,Σ,δ,s1,F)

with Q and F as depicted in Figure 11
(5)

We choose an additional state S3 where the battery
is neither charged nor discharged. The adapted state
machine is depicted in Figure 11. The additional state
is reachable from the initial state S1. The discharging
state (S2) can be reached after the next time state S1
is left.

In Figure 7, the non-deterministic state changes
after the state of charging are shown in the setpoints.
Note, that the battery charge in percent is increas-
ing, as there is non-deterministic change between dis-
charging and keeping the battery charge, while load-
ing is scheduled in every control cycle of the state ma-
chine.

Constrained Step Experiment. In the constrained
step experiment, the infrastructure and the state ma-
chine from the simple battery example are kept. How-
ever, we added a constrained step to the state machine,

s1

i1, c1

s2

i2, c2

i2=[20,200],
 c2=[-0.8,-0.8]

i1=[20,200],
c1=[0.8,0.8]

keep()

step() step()

keep()

i3=[20,200],
 c3=[0.0,0.0]

s3

i3, c3step()

step_b()
keep()

Figure 11: State Machine with additional state used in the
multiple paths experiment. [own representation].

where the machine can only step to the discharging
state S2 when the battery is charged to at least 50 per-
cent. This is shown in Figure 12.

s1

i1, c1

s2

i2, c2

i2=[20,200],
 c2=[-0.8,-0.8]

i1=[20,200],
c1=[0.8,0.8]

keep()

step() step(),
sc1,2={BatteryStorage >= 50%}

keep()

Figure 12: State Machine with constrained step used in the
constrained step experiment. [own representation].

Note that in Figure 6 the battery charge in percent
is risen over 50 percent in each loading cycle. This is
due to the constraint being used in the state machine,
as the charging state s1 has to be kept until the con-
straint is satisfied.

6 CONCLUSION

Within this work, we presented a model for data gen-
eration for offline learning using state machines. We
also showed an implemented prototype and used it to
generate data for four scenarios in the smart grid con-
text. The data generated by the StateMachineAgent

Trajectory Generation Model: Building a Simulation Link Between Expert Knowledge and Offline Learning

99

shows the pattern that was represented by the state
machines. It also varies due to the non-deterministic
nature of the state machines.

Our approach allows the generation of training
data containing specific situations and scenarios. It
is to be mentioned that this approach also enables the
generation of rather significant amounts of (varying)
data in a short amount of time.

Our implemented prototype shows that the non-
deterministic features and changeable intervals for
setpoint determination allow for generating varying
data. The Multiple-Actor-Experiment has proven that
this concept for data generation also supports multi-
ple actuators. The possibility of varying data through
the use of multiple strategies in the state machine
that can be executed in a non-deterministic way is
shown by the Multiple-Path-Experiment. Further, the
Constraint-Step-Experiment indicates that more com-
plex strategies can be encoded in state machines by
applying constraints while generating data.

7 FUTURE WORK

Currently, state machines can only be hard coded and
not be read dynamically via a specification, e.g., by
providing a configuration file. A possible way to do
this is by building state machines in a structured way
with standardised formats, e.g., with YAML. These
could then be given to the StateMachineAgent, which
creates an AgentStateMachine containing the infor-
mation.

Regarding the bigger goal of our research, future
work aims to generate State Machines from structured
expert knowledge automatically. An expert would en-
ter their valuable knowledge in a semi-structured for-
mat, like a misuse case. Afterward, a state machine is
generated from these scenario inputs.

Furthermore, an automated state machine genera-
tion paired with the presented approach adapted with
a YAML read-in, a toolchain could be established, au-
tomatically building datasets (or even offline trained
agents) whenever new expert knowledge is added.

When the toolchain is enabled, our future work
aims to research the limits of its usage. This refers
to limiting the fields the toolchain is applicable for
and listing the requirements and limitations and the
needed amount of available expert knowledge.

It is also planned to include the expert knowledge
toolchain in an agent architecture Veith (2023b) that
involves neuro-evolutionary algorithms that then con-
tinuously revise the rules given in the state machine.

8 FUNDING

The Adversarial Resilience Learning methodology,
extended agents, the continued work on palaestrAI,
as well as the offline learning development, has been
funded by the German Federal Ministry of Education
and Research under the project grant Adversarial Re-
silience Learning (01IS22071).

This work has been funded by the German Fed-
eral Ministry for Economic Affairs and Climate Ac-
tion under the project grant RESili8 (03EI4051A).

REFERENCES

Balduin, S., Tröschel, M., and Lehnhoff, S. (2019). Towards
domain-specific surrogate models for smart grid co-
simulation. Energy Informatics, 2(1):1–19.

Balduin, S., Veith, E. M. S. P., and Lehnhoff, S. (2023). Mi-
das: An open-source framework for simulation-based
analysis of energy systems. In Wagner, G., Werner, F.,
and De Rango, F., editors, Simulation and Modeling
Methodologies, Technologies and Applications, pages
177–194, Cham. Springer International Publishing.

Brand, D. and Zafiropulo, P. (1983). On communicating
finite-state machines. Journal of the ACM (JACM),
30(2):323–342.

Brandfonbrener, D., Whitney, W., Ranganath, R., and
Bruna, J. (2021). Offline rl without off-policy eval-
uation. Proc. Adv. Neural Inf. Process. Syst., page
4933–4946.

Chen, X., Wang, Z. Z. Z., Wang, C., Wu, Y., and Ross,
K. (2020). Bail: Best-action imitation learning for
batch deep reinforcement learning. Proc. NeurIPS,
page 18353–18363.

De Nooij, M., Baarsma, B., Bloemhof, G., Slootweg, H.,
and Dijk, H. (2010). Development and application of
a cost–benefit framework for energy reliability: Using
probabilistic methods in network planning and regula-
tion to enhance social welfare: The n-1 rule. Energy
Economics, 32(6):1277–1282.

Ernst, D., Geurts, P., and Wehenkel, L. (2005). Tree-based
batch mode reinforcement learning. Journal of Ma-
chine Learning Research, 6(Apr):503–556.

Fischer, L., Memmen, J. M., Veith, E. M., and Tröschel,
M. (2019). Adversarial resilience learning—towards
systemic vulnerability analysis for large and complex
systems. In ENERGY 2019, The Ninth International
Conference on Smart Grids, Green Communications
and IT Energy-aware Technologies, number 9, pages
24–32, Athens, Greece. IARIA XPS Press.

Fujimoto, S., Hoof, H., and Meger, D. (2018). Address-
ing function approximation error in actor-critic meth-
ods. In Proceedings of the 35th International Confer-
ence on Machine Learning, pages 1587–1596. PMLR.
ISSN: 2640-3498.

Gerster, J., Lehnhoff, S., Sarstedt, M., Hofmann, L., and
Veith, E. M. (2021). Comparison of random sampling

SIMULTECH 2024 - 14th International Conference on Simulation and Modeling Methodologies, Technologies and Applications

100

and heuristic optimization-based methods for deter-
mining the flexibility potential at vertical system in-
terconnections. In 2021 IEEE PES Innovative Smart
Grid Technologies Europe (ISGT Europe), pages 1–6.

Ghysels, E., Santa-Clara, P., and Valkanov, R. (2004). The
midas touch: Mixed data sampling regression models.

Gladyshev, P. and Patel, A. (2004). Finite state machine
approach to digital event reconstruction. Digital In-
vestigation, 1(2):130–149.

Gottschalk, M., Uslar, M., and Delfs, C. (2017). The use
case and smart grid architecture model approach: the
IEC 62559-2 use case template and the SGAM applied
in various domains. Springer.

Haarnoja, T., Zhou, A., Abbeel, P., and Levine, S. (2018).
Soft actor-critic: Off-policy maximum entropy deep
reinforcement learning with a stochastic actor.

Hopcroft, J. E., Motwani, R., and Ullman, J. D. (2001). In-
troduction to automata theory, languages, and compu-
tation. Acm Sigact News, 32(1):60–65.

Hossain, R. R., Yin, T., Du, Y., Huang, R., Tan, J., Yu,
W., Liu, Y., and Huang, Q. (2023). Efficient learn-
ing of power grid voltage control strategies via model-
based deep reinforcement learning. Machine Learn-
ing, pages 1–26.

Jagdale, D. (2021). Finite state machine in game develop-
ment. algorithms, 10(1).

Janner, M., Li, Q., and Levine, S. (2021). Offline reinforce-
ment learning as one big sequence modeling problem.
Proc. NeurIPS, page 1273–1286.

Jiang, N. and Li, L. (2016). Doubly robust off-policy value
evaluation for reinforcement learning. Proc. ICML,
page 652–661.

Kayastha, N., Niyato, D., Hossain, E., and Han, Z. (2014).
Smart grid sensor data collection, communication,
and networking: a tutorial. Wireless communications
and mobile computing, 14(11):1055–1087.

Kaygusuz, C., Babun, L., Aksu, H., and Uluagac, A. S.
(2018). Detection of compromised smart grid devices
with machine learning and convolution techniques. In
2018 IEEE International Conference on Communica-
tions (ICC), pages 1–6. IEEE.

Kidambi, R., Rajeswaran, A., Netrapalli, P., and Joachims,
T. (2020). Morel : Model-based offline reinforcement
learning. Proc. NeurIPS, page 21810–21823.

Kostrikov, I., Nair, A., and Levine, S. (2021). Offline rein-
forcement learning with implicit q-learning.

Kumar, A., Fu, J., Tucker, G., and Levine, S. (2019). Learn-
ing new attack vectors from misuse cases with deep
reinforcement learning. Proc. NeurIPS, pages 1–11.

Lange, S., Gabel, T., and Riedmiller, M. (2012). Reinforce-
ment learning, chapter Batch reinforcement learning,
page pages 45–73. Springer.

Levine, S., Kumar, A., Tucker, G., and Fu, J. (2020). Offline
reinforcement learning: Tutorial, review, and perspec-
tives on open problems.

Matchev, K. T., Roman, A., and Shyamsundar, P. (2022).
Uncertainties associated with gan-generated datasets
in high energy physics. SciPost Physics, 12(3):104.

Mayer, C., Brunekreeft, G., Blank-Babazadeh, M., Stark,
S., Buchmann, M., Dalheimer, M., et al. (2020).
Resilienz digitalisierter energiesysteme. Blackout-
Risiken Verstehen, Stromversorgung Sicher Gestalten.

Nair, A., Gupta, A., Dalal, M., and Levine, S. (2020). Awac:
Accelerating online reinforcement learning with of-
fline datasets. arXiv preprint arXiv:2006.09359.

Panaganti, K., Xu, Z., Kalathil, D., and Ghavamzadeh, M.
(2022). Robust reinforcement learning using offline
data. Advances in neural information processing sys-
tems, 35:32211–32224.

Peng, X. B., Kumar, A., Zhang, G., and Levine, S. (2019).
Advantage-weighted regression: Simple and scalable
off-policy reinforcement learning.

Precup, D., Sutton, R., and Singh, S. (2000). Eligibility
traces for off-policy policy evaluation. Proc. ICML,
page 759–766.

Prudencio, R. F., Maximo, M. R. O. A., and Colombini,
E. L. (2022). A survey on offline reinforcement learn-
ing: Taxonomy, review, and open problems.

Rhodes, J. D., Upshaw, C. R., Harris, C. B., Meehan, C. M.,
Walling, D. A., Navrátil, P. A., Beck, A. L., Naga-
sawa, K., Fares, R. L., Cole, W. J., et al. (2014). Ex-
perimental and data collection methods for a large-
scale smart grid deployment: Methods and first re-
sults. Energy, 65:462–471.

Schütz, J., Uslar, M., and Clausen, M. (2022).
Digitalisierung. Synthesebericht 3 des SINTEG
Förderprogramms, Studie im Auftrag des BMWK,
Berlin. Berlin.

Steinbrink, C., Blank-Babazadeh, M., El-Ama, A., Holly,
S., Lüers, B., Nebel-Wenner, M., Ramı́rez Acosta,
R. P., Raub, T., Schwarz, J. S., Stark, S., Nieße, A.,
and Lehnhoff, S. (2019). Cpes testing with mosaik:
Co-simulation planning, execution and analysis. Ap-
plied Sciences, 9(5).

Trigkas, D., Ziogou, C., Voutetakis, S., and Papadopoulou,
S. (2018). Supervisory control of energy distribu-
tion at autonomous res-powered smart-grids using a
finite state machine approach. In 2018 5th Interna-
tional Conference on Control, Decision and Informa-
tion Technologies (CoDIT), pages 415–420. IEEE.

Tu, C., He, X., Shuai, Z., and Jiang, F. (2017). Big data
issues in smart grid–a review. Renewable and Sus-
tainable Energy Reviews, 79:1099–1107.

Uslar, M. (2015). Energy Informatics: Definition, State-
of-the-art and new horizons. In Kupzog, F., editor,
Proceedings der ComForEn 2015 Vienna, Wien. TU
Wien, OVE Verlag.

Uslar, M., Rohjans, S., Neureiter, C., Pröstl Andrén, F.,
Velasquez, J., Steinbrink, C., Efthymiou, V., Migli-
avacca, G., Horsmanheimo, S., Brunner, H., et al.
(2019). Applying the smart grid architecture model
for designing and validating system-of-systems in the
power and energy domain: A european perspective.
Energies, 12(2):258.

Veith, E., Balduin, S., Wenninghoff, N., Wolgast, T.,
Baumann, M., Winkler, D., Hammer, L., Salman,
A., Schulz, M., Raeiszadeh, A., Logemann, T., and
Wellßow, A. (2023). palaestrAI: A training ground

Trajectory Generation Model: Building a Simulation Link Between Expert Knowledge and Offline Learning

101

for autonomous agents. In Proceedings of the 37th an-
nual European Simulation and Modelling Conference.
EUROSIS.

Veith, E., Logemann, T., Berezin, A., Wellßow, A., and Bal-
duin, S. (2024). Imitation game: A model-based and
imitation learning deep reinforcement learning hybrid.
arXiv preprint arXiv:2404.01794.

Veith, E. M. (2023a). An architecture for reliable learn-
ing agents in power grids. In ENERGY 2023, The
Thirteenth International Conference on Smart Grids,
Green Communications and IT Energy-aware Tech-
nologies, pages 13–16, Barcelona, Spain. IARIA XPS
Press.

Veith, E. M. (2023b). An architecture for reliable learning
agents in power grids.

Wellssow, A., Kohlisch-Posega, J., Veith, E. M. S. P., and
Uslar, M. (2024). Threat modeling for ai analysis:
Towards the usage of misuse case templates and uml
diagrams for ai experiment description and trajectory
generation. IEEA ’24, accepted to be published, New
York, NY, USA. Association for Computing Machin-
ery.

Wu, Y., Tucker, G., and Nachum, O. (2019). Behavior reg-
ularized offline reinforcement learning.

Yu, T., Thomas, G., Yu, L., Ermon, S., Zou, J., Levine,
S., Finn, C., and Ma, T. (2020). Mopo: Model-
based offline policy optimization. Proc. NeurIPS,
33:14129–14142.

SIMULTECH 2024 - 14th International Conference on Simulation and Modeling Methodologies, Technologies and Applications

102

