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Abstract: The Internet of Things (IoT) integrates smart devices that collect real time data from the environment. These
data are leveraged to propose innovative services which transform the individual lives in a particular context
such as smart homes. The Service Oriented Architecture (SOA) is adopted to support the composition of
services. However, the service composition faces the problem of security, where data can illegitimately be
shared with unauthorized services. This problem is called interference. The key challenge is to ensure end-
to-end security which will guarantee the confidentiality and integrity of data. In this paper, we ensure the
service binding in a blockchain-based SOA architecture and propose an approach based on the information
flow control to protect data confidentiality. Service provider can express the service binding requirements
by considering the service provider, the domain, the trust degree and the type of the operation to perform
in order to secure the service composition. Moreover, we propose to apply a binding mode: a rule-based
binding mode or smart binding based on a machine learning decision tree model. To avoid the interference
issue, we integrate a non-interference verification mechanism by assigning a security level for each service.
Our smart blockchain-based information flow control approach guarantees the confidentiality and integrity of
information in IoT systems.

1 INTRODUCTION

The blockchain is based on the distributed ledger
technology. It is a decentralized and shared a data
ledger that records transactions and is which main-
tained by multiple nodes in a network (public, private,
hybrid, consortium). This technology secures the ex-
change of information from cyberattacks by restrict-
ing the number of users sharing it. However, this se-
curity policy can be violated if there is an information
leak from one application to another or by communi-
cating secret data from a user to an unauthorized one.
This problem is called interference.

For instance, in the context of the blockchain for
the Internet of Things (IoT), we exemplify a smart
home scenario. The smart home technology is based
on the IoT, where devices are interconnected via the
internet. The IoT allows the interconnected devices
to send, receive and share data automatically in or-
der to offer smart services to homeowners. Added to
that, the blockchain tends to collect and store infor-
mation and data. Let us consider a scenario of smart
home application that is composed of units to con-
trol and manage the temperature of the house based

on the presence of people. Each unit is represented
by a service. Indeed, an ”Analyzer” service plays the
role of a server and handles the information received
from a ”Temperature” service and a “Presence” ser-
vice. The application must adjust the temperature of
the home at a certain threshold depending on the pres-
ence of the person. Consequently, the “Analyzer”
service will make the decision to decrease or increase
the temperature to optimize the energy usage. How-
ever, the data exchanged between services are private,
and the “Analyzer” service is authorized to read in-
formation from the ”Temperature” service and the
“Presence” service to adjust the temperature value.
Therefore, the ”Analyzer” service is allowed to read
the “Presence” service data. The “Presence” service
cannot control how the ”Analyzer” service distributes
the information that has been read, which could dis-
close the presence status of a person in their home.
Thus, in this scenario, there is a risk of interference
that allows the disclosure of secret personal informa-
tion of a person. In this case, we should secure and
control the propagation of information.

Several techniques have been proposed to prevent
information disclosure (Shari and Malip, 2022), such
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as access control lists, firewalls, and cryptography.
Nevertheless, all these techniques do not guarantee
the propagation of information. The control of infor-
mation propagation is supported by Information Flow
Control (IFC) (Myers and Liskov, 1997). IFC allows
the providers to track and control the propagation of
data to a fine granularity throughout the system using
the security labels that represent the data security lev-
els. In fact, IFC aims to assign a certain category to a
data in terms of:

• Confidentiality: The value of secret information
should not be assigned to a public variable.

• Integrity: Only users who are authorized can
modify the data content.

To control the flow of data, IFC tends to classify data
into different security levels. Generally, this tech-
nique assigns two classes to classify data: one class
for public information with a low security level L
(Low), and another class for secret information with
a high level of security H (High). If we consider that
class H is more restrictive than class L, then the al-
lowed flows are: from L to L, from L to H and from
H to H. The flow from H to L is not allowed because
it will disclose the secret information of class H.

In this paper, our main contributions are as fol-
lows:

• We propose an approach based on IFC. In this ap-
proach, we present a new program level model
based on a security policy which defines the for-
mal specification of the security requirements for
the interference problem.

• We propose an algorithm which checks whether a
given non-interference policy is satisfied or not.

• We suggest that services are published in a ser-
vice repository and the access is ensured through
the Service Oriented Architecture (SOA) im-
plemented as an application-specific blockchain
(cosmos (Kwon and Buchman, 2019)).

• We extend the SOA architecture by adding a new
module to verify the non-interference security re-
quirements.

The rest of the paper is organized as follows. In
section 2, we review the related literature. In section
3, we formally define a security policy model for the
SOA . Our motivated scenario is presented in section
4. In section 5, we present our extended SOA archi-
tecture and explain how the non-interference security
mechanism is applied. In section 6, we provide the
simulation results. We conclude the paper with a sum-
mary and some future work in section 7.

2 RELATED WORK

The IoT faces the challenge of security, which consti-
tutes research problems (Issa et al., 2023), (Siwakoti
et al., 2023). We find a variety of solutions depend-
ing on the context and the IoT application problem
(Sadeghi-Niaraki, 2023). In this paper, we present
some work focusing especially on data sharing in IoT
applications based on the blockchain (Mathur et al.,
2023), (Shari and Malip, 2022). Based on the de-
centralization property of the blockchain, researchers
have proposed a lot of data processing methods to pre-
serve personal information.

Xie et al. (Xie et al., 2023) put forward a TEE-
and-blockchain-supported data sharing system for the
IoT. In fact, the consortium blockchain was used to
secure user communications based on access control.
Moreover, the TEE applied the Intel SGX to build
SDSS for reducing the storage pressure and to guar-
antee the security of the off-chain data.
Si et al.(Si et al., 2019) suggested a lightweight in-
formation sharing security mechanism to protect the
source data collection and information transactions.
The data blockchain used a consensus mechanism to
form data books to prevent human tampering or de-
struction of collected data. Besides, the chain utilized
a distributed accounting system to achieve tamper re-
sistance and traceability of bills.

Liu et al.(Liu et al., 2022) proposed a new solu-
tion for blockchain-enabled information sharing. This
solution guaranteed anonymity, entity authentication,
data privacy, data trustworthiness, participant stimu-
lation and fairness in a zero-trust context. It could
also detect and filter fabricated information through
effective voting, smart contracts and consensus mech-
anisms. These mechanisms aimed to penalize and
blacklist unauthenticated participants from sharing
garbage information.

Luo et al.(Luo et al., 2019) put forward a
new accountable data sharing scheme based on the
blockchain and SGX. The proposed schema did not
require a trusted third party as the records of users’
data sharing acts were tamper-resistant. Furthermore,
the confidentiality of data sharing was ensured by
SGX.

Cha et al. (Cha et al., 2021) suggested an ap-
proach based on both the blockchain and the cloud
for protecting and securing secret personal informa-
tion. To secure the data of users from the cloud Ser-
vice Provider (SP), the authors used a secret disper-
sion algorithm to recover the original data even if a
particular cloud SP modulated or lost the data and to
verify the integrity of data stored by the cloud SP.

Cecchetti et al.(Cecchetti et al., 2020) suggested
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an approach based on IFC to control security in
blockchain smart contracts. The authors described
how to reduce vulnerabilities while retaining the as-
surance of IFC by restricting designated entry points.

Although researchers have used the blockchain
technology to solve the problem of IoT information
sharing security, the interference problem is still a
challenge, where the propagation of data is not en-
sured. In fact, we shall ensure the security of shar-
ing data with respect to confidentiality and integrity.
A Decentralized Label Model (DLM) (Myers and
Liskov, 1997) is adopted for the interference prob-
lem, which provides a convenient way for expressing
the security user requirements. It enables the tracking
and control of data propagation at a fine granularity.
In fact, we distinguish two categories of blockchains:
Decentralized Applications (DApps) and application-
specific blockchains. For DApps blockchains, such
as Ethereum (Wood et al., 2014), the developer can-
not adjust the execution of transactions, update the
state or build complex applications by writing smart
contracts. The application-specific blockchains, built
using the Cosmos-SDK framework (Kwon and Buch-
man, 2019), allow the developer to build their applica-
tion as part of the blockchain and customize the busi-
ness logic of the application. In contrast to the solu-
tions reported in (Cecchetti et al., 2020) and (Tolmach
et al., 2021), which were proposed for smart contract
blockchains, our solution is based on the application-
specific blockchain.

3 SECURITY POLICY MODEL
FOR SOA

In this paper, we adopt the SOA for the composi-
tion of services. To ensure a distributed environment
for the SOA, we employ the blockchain technology
where the blockchain ledger is leveraged as a service
repository. In this latter, the service descriptions are
published by the SP. The SP must specify and man-
age the security policies of the corresponding service.
The defined policies will be applied in the service
composition.

The DLM (Myers and Liskov, 1997) is used to
support the computation in an entrusted environment
by annotating data with labels. Each service can de-
fine and express security labels of its data using secu-
rity policies. According to the DLM, security policies
are expressed in terms of principals.

• Principals
Principals represent the main entities that own,
write and read information. They can also release

information to other principals and act-for them.
For example, let Presence,Temperature and
Analyzer represent three principals. If Analyzer
can act-for Presence, then Analyzer inherits all the
privileges of Presence.

This act-for relation is represented by symbol ⪰
and is expressed formally as Analyzer ⪰ Presence.
That is to say, it enables principals to delegate their in-
formation ownership to other principals according to
trust relationships. These relationships are defined by
a principal hierarchy, which is used to model groups
of principals and roles.

• Labels

In the SOA, the principals can be the SP or Service
Consumer (SC). Both principals can create labels to
annotate and protect their data. The SP can man-
age the service labels, while the SC imposes the re-
quired labels to ensure the security policy at a fine-
granularity. In the rest of the paper, we consider
the ”Analyzer” as an SC and the ”Temperature” and
”Presence” are SPs. Label L is expressed by a set of
principals to define a set of policies. A policy is asso-
ciated by an owner and a set of readers. The owner
represents the ownership of the data and the readers
are the allowed principals to read these data. To sim-
plify the notations, we are interested in confidential-
ity; it is well known that integrity policy is treated
dually (Myers and Liskov, 1997).

For example, let Presence,Temperature and
Analyzer represent three principals, where L1 =
{Temperature → Analyzer,Presence} and L2 =
{Presence → Analyzer} denote labels. The own-
ers of labels L1 and L2 are Temperature and
Presence, respectively. The reader set for the
owner Temperature is Analyzer and Presence
(readers(L1,Temperature) = {Analyzer,Presence}).
For the owner Presence, the reader set is Analyzer
(readers(L2,Presence) = {Analyzer}).

This label structure enables owners to specify
an independent flow policy in order to trace the
propagation of their data through the system during
computation. In fact, labels are ordered using the
more restrictive than relation, represented by symbol
⊆ . Given two labels L1 and L2, we say L1 is more
restrictive than L2 iff L1 has more readers and fewer
owners than L2. This means that the owners of L1
are included in L2 and the readers of L2 are included
in those of L1, which can be expressed as follows:

owner(L1)⊆ owner(L2)

∀O ∈ owner(L1),readers(L1)⊇ readers(L2)

For instance, if L1 = {Temperature →
Analyzer,Presence} and L2 = {Presence →
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Analyzer} , we have L1⊆ L2.

• Derived labels

When the program computes two values respectively
labeled with L1 and L2, the result should have the
least restrictive label L which enforces the policies
defined in L1 and L2. The least restrictive label of
L1,L2 is L1∪L2. In fact, the owner set of L1∪L2 is
the union of the owner sets of L1 and L2.

owners(L1∪L2) = owners(L1)∪owners(L2)

In addition, the set of readers is the intersection of
their corresponding reader sets.

readers(L1∪L2,o)= readers(L1,o)∩readers(L2,o)

• Re-labeling

Re-labeling is the process of changing the security la-
bels of data based on certain rules. In fact, the assign-
ment of a value to a variable is re-labeling, during
the system computation. Re-labeling must be safe.
In fact, we distinguish two re-labeling rules: (1) re-
striction which defines the legality of assignment, and
(2) declassification which allows an owner to modify
their flow policy:

Rule1: Restriction. Re-labeling from L2 to L1 is
legal if it is restriction: L1⊆ L2. Restriction aims to
remove/add readers, remove/add owners and/or add

policies.

However, this rule may increase restriction and make
the data unreadable. Hence, the principals that own
the data may need to relax their policies so that other
principals can read them. This is done by a declassi-
fication rule.

Rule2: Declassification. This kind of re-labeling
aims to add readers for some owners O or remove
other owners. Declassification can be done only if

the label ownership act− f or O.
Declassification depends of the principal hierar-

chy with the act-for relation and requires a special
privilege to be performed. In this rule, principals can
delegate their information ownership to other princi-
pals with regard to a trust relation. According to the
hierarchy of principals, information can be relabeled
in a safe way. In fact, owner O can be replaced by
owner O′ iff O trusts O′.

4 MOTIVATION SCENARIO

To illustrate the main idea of IFC, we propose a use
case scenario of a smart home, as depicted in Fig-
ure 1. For the sake of simplicity, we suppose that the

Figure 1: Use case scenario: Smart home.

smart home is equipped with a motion sensor to de-
tect the presence of a person and a temperature sen-
sor to adjust heat or air conditioning. These sensors
are connected to a gateway which collects the data
and sends it to the application service. The “Temper-
ature” service and “Presence” service descriptions
are published by the SP and stored in the blockchain
ledger to make them available for the service con-
sumers. To optimize the energy consumption, the
“Analyzer” service, considered as the SC, periodi-
cally retrieves the presence data from the “Presence”
service and the temperature value from the “Tempera-
ture” service. Accordingly, it adjusts the temperature
value at home. For example, if no one is at home (i.e.,
presence is equal to 0) and the temperature value is
greater than or equal to 23 degrees Celsius, the “Ana-
lyzer” service reduces the home temperature to 15 de-
grees Celsius. The “Temperature” service is critical,
since according to the temperature value (i.e. public
information), the presence of a person at home (i.e.
confidential information) can be easily deduced. For
instance, a temperature value equals to 15 degrees
Celsius means that no one is at home, while a tem-
perature value equals to 23 degrees Celsius is an in-
dicator that an occupant exists at home. Deducing se-
cret information from public information refers to the
interference security problem. To avoid the interfer-
ence issue, the “Temperature” service and the “Pres-
ence” service must have the same high security level
to make the temperature value and presence informa-
tion confidential. Therefore, we propose to integrate
a non-interference validation process to IFC in order
to check whether the security levels of the “Presence”
service and “Temperature” service are compatible, so
as to allow the “Analyzer” service to perform the re-
quired adjustments on the temperature value.
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5 BLOCKCHAIN-BASED SOA
FOR IoT APPLICATION

The SOA architecture is implemented as an applica-
tion specific blockchain. It consists of two main mod-
ules: the repository module and the validation mod-
ule, as illustrated in Figure 2. Table 1 presents the
main transactions provided by the application-specific
blockchain-based SOA architecture.

5.1 Repository Module

The repository module provides two services: service
management and service discovery.

5.1.1 Service Management

The service management allows the SP to manage the
service description. The service description involves
the metadata of the service, such as the label, the
provider, the domain, the level and the trust degree.
The service level can be high (H) or low (L). A high-
level service means that the service involves sensitive
data that can be shared only with the services hav-
ing the same security level. A low-level service refers
to a service that can be shared with other services.
The trust degree is a score computed, as proposed in
(Adewuyi et al., 2021), based on the workflow, rel-
evant partial trust scores of the SPs and the weights
assigned by the service requester. The trustworthi-
ness management of services is out of the scope of
this paper.

To publish a service, the SP sends a
Tx publish service transaction containing the service
description. Once the transaction is successfully
executed, the service description is stored in the
service store. The SP can update or delete the service
metadata by sending a Tx update service transaction
or a Tx delete service transaction, respectively.

Additionally, the SP can optionally define a set of
binding rules that represent the requirements needed
to be fulfilled by the SC in order to allow ser-
vice binding. The service binding requirements
can be the provider, the domain, the trust degree
and the type of the operation to be performed on
the requested service, for instance the get() oper-
ation to retrieve the current temperature value and
the set() operation to increase or decrease the tem-
perature value. The SP adds, updates and deletes
a binding rule by sending a Tx add binding rule
transaction, a Tx update binding rule transaction, a
Tx delete binding rule transaction, respectively.

Table 1: Transactions provided by blockchain-based SOA.
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5.1.2 Service Discovery

The service discovery allows a service consumer to
find a service by sending a Tx find service transac-
tion. It is out of the scope of this paper.
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Figure 2: Blockchain-based SOA for an IoT application.

5.2 Validation Module

The validation module provides three services: val-
idation log, service binding verification and non-
interference validation.

5.2.1 Validation Log

The validation log service records all the non-
interference validation transactions. Each log con-
tains the metadata of the service requester as well
as the metadata of the requested services, the non-
interference decision and the validation operation tim-
ing. The validation logs are stored in the validation
store to be used by the service binding verification.

5.2.2 Service Binding Verification

If the binding rules are not specified, the SP can send a
Tx train transaction to the service binding verification
in order to generate a smart binding decision model
for a specific service. The service binding verifica-
tion retrieves the non-interference validation logs as-
sociated with the specified service from the validation
store and trains a machine learning decision tree.

5.2.3 Non-Interference Validation

To bind the SC to the requested services,
the service composition sends a transac-

tion’Tx check non interference to the non-
interference validation service. This latter verifies the
binding requirements and checks the compatibility
of the security levels. Algorithm 1 represents the
pseudocode of the validation process.

• Step 1: The validation process starts by extracting
the metadata associated with the service requester
and the requested services from the service store
in the repository module.

• Step 2: The process verifies the binding re-
quirements. We propose two binding verification
modes: a rule-based binding mode and a smart
verification binding mode. The rule-based mode
leverages the binding rules specified by the SP,
whereas the smart verification mode is based on
the decision tree model generated from the verifi-
cation logs. If the SP specifies a rule-based mode,
the process extracts the set of binding rules, iter-
ates over the rules, checks if there is at least one
selection rule that satisfies the requirements, and
returns the binding decision. In the second case,
when the SP selects a smart verification binding
mode, the process inquires the service binding
verification for a binding decision. For the two
binding modes, the binding decision can be ”To
bind” if the binding requirements are satisfied,
and ”Not to bind” otherwise. If the binding de-
cision is ”Not to bind”, the validation process re-
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turns ”Rejected” as a composition decision. Oth-
erwise, the process checks the compatibility of the
security levels.

• Step 3: The security level compatibility imposes
that the service holding a high level (H) can bind
any service whatever its security level, while the
service holding a low level can bind only services
holding a low level (L). If the security levels are
compatible, then ”Accepted” is returned as a com-
position decision. Otherwise, the composition de-
cision is ”Rejected”.

• Step 4: The validation operation is logged by the
validation log service.

Data: ServiceRequester, RequestedService1,
RequestedService2

Result: Decision
metadata←
ExtractMetadata(ServiceRequester,
RequestedService1, RequestedService2);

v← VerifyBinding(metadata);
if v == true then

Decision←
CheckNonInterference(metadata);

else
Decision← ”Rejected”;

end
SaveValidationLog();
Return Decision;

Algorithm 1: Non-interference validation algorithm.

6 SIMULATION
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Figure 3: Accuracy of decision tree classification model.

We implement our proposed IFC for an SOA on
an application-specific blockchain using the Cosmos-
SDK framework. Then, we evaluate the computation

time leveraged to process the service requests by vary-
ing the number of services. To verify the reliability
and accuracy of the smart binding mode, we eval-
uate the accuracy of the decision-tree-based classifi-
cation model in terms of number of non-interference
validation log records. In the training phase, we use
the log records generated from the non-interference
validation operations performed using the rule-based
mode. Figure 3 shows that the minimum accuracy
value is equal to 0.7 and the maximum accuracy value
is equal to 0.75. We remark that the overall accu-
racy is constant while increasing the number of log
records. Therefore, we conclude that the smart bind-
ing mode based on a decision tree model provides ac-
ceptable decision results. Figure 4 depicts the execu-
tion time needed for the binding requirement verifi-
cation and the non-interference validation. We con-
clude that increasing the number of services from 100
to 1000 results in a slight rise in the time processing
from 0.03s to 3.10s for the smart binding and from
0.05s to 4.25s for the rule-based binding, respectively.
Therefore, the smart binding mode reduces the execu-
tion time compared to the execution time of the rule-
based mode. This comes down to the fact that the
rule-based mode requires more time to check all the
service binding rules specified by the SP.
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Figure 4: Execution time.

7 CONCLUSION

In this paper, we put forward an application-specific
blockchain-based SOA architecture for IoT systems,
such as the smart home. Our blockchain-based SOA
allows the SP to manage the service descriptions. In
addition, it enables the SP to express a set of bind-
ing rules or leverage a machine learning classification
model for the service binding. To prevent the infor-
mation interference, we propose to associate a secu-
rity level with each service, and then check the se-
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curity level compatibility between the requested ser-
vices and the service requester. Our IFC mechanism
ensures the confidentiality and integrity of the data in
the IoT application. As future work, we will extend
our IFC mechanism by considering more security ob-
jectives like the privacy of data.
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