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Hypervisors such as Xen, VMware ESXi, or Microsoft Hyper-V provide virtual machines used in data cen-
ters and cloud computing, making them a popular attack target. One potential attack vector is the hypercall
interface, which exposes privileged operations as hypercalls. We present a hypercall logger for the Hyper-V
hypercall interface that logs the inputs, outputs, and sequence of hypercalls. The logs should improve the testa-
bility of the hypercall interface by helping to construct test cases for the hypercall handlers. Related works
in hypercall monitoring analyze less detailed hypercall invocation data with intrusion detection systems. Our
logger extends the WinDbg debugger by adding additional commands to set software breakpoints on the hyper-
call handler entry and exit within a debugging session with the Hyper-V hypervisor. The evaluation confirmed
that the logs are correct and that the breakpoints slow hypercall execution by 100,000 to 200,000. A case
study with the hypercall handler logger helps create test cases for evaluation and demonstrates the logger’s

suitability.

1 INTRODUCTION

Virtual Machines (VMs) are computers whose virtual
hardware is provided by a software layer called Hy-
pervisor (HV). The HV runs on physical hardware
and uses its resources to create the virtual hardware
for the VMs, consisting of Virtual Processors (VPs),
memory, and other devices. VMs are unaware of
this partitioning and behave like running alone on
the hardware, allowing multiple VMs to run on the
same physical hardware. The concept behind this
abstraction is known as virtualization. The fields
of application for HVs and their VMs range from
data centers and Cloud Computing (CC) to malware
analysis and Virtualization-Based Security (VBS) and
beyond (Portnoy, 2023; Hoopes, 2009; Microsoft,
2023b)

For each of the above applications, the HV needs
to protect the virtual environments from interfering
with each other. This interference may be unintended
(heavy workload on one VM affecting another VM),
or caused intentionally by an attacker. Attackers gain
access to a VM, e.g., by renting one in CC, and then
exploit it to attack the HV or other VMs with Denial

https://orcid.org/0000-0003-2512-9292
@ nhttps://orcid.org/0000-0002-8506-2758
¢ https://orcid.org/0000-0001-9742-2063

Beierlieb, L., Bellmann, N., Iffidnder, L. and Kouneyv, S.
Logging Hypercalls to Learn About the Behavior of Hyper-V.
DOI: 10.5220/0012768100003753

Paper published under CC license (CC BY-NC-ND 4.0)

of Service, Sensitive Data Disclosure, Privilege Esca-
lation, or Arbitrary Code Execution (Liu et al., 2019).

While VMs have multiple interfaces to the HV, we
focus on the hypercall interface, a call-based interface
that allows VMs to request services from the HV as
hypercalls. Hypercalls are similar to system calls at
the Operating System (OS) level. As system calls, hy-
percalls run at the highest privilege level with direct
access to physical hardware, turning them into a pow-
erful attack vector (Milenkoski et al., 2014; VMware,
2007).

We decided to research Microsoft Hyper-V for the
following reasons: Hyper-V is widely available be-
cause it is part of Windows since Windows 8 and
Windows Server since Windows Server 2008. Addi-
tionally, Hyper-V supports VBS and makes it usable
for VMs via hypercalls, bringing VBS into the scope
of our work as an additional attack target. Finally,
we chose Hyper-V because, so far, only one critical
vulnerability concerning the hypercall interface has
been found (Common Vulnerabilities and Exposures
(CVE)-2013-3898), which is remarkably few for such
complex software (Portnoy, 2023; Microsoft, 2022c).

To facilitate the search for vulnerabilities, we
developed a Hypercall Handler Logger (HHL) for
Hyper-V, which logs the inputs, outputs, and sequence
of hypercall handler calls during VM execution. The
HHL logs should improve the testability of the hyper-
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call interface by helping to construct test cases for the
handlers and the hypercalls.

Security researchers benefit from the HHL in mul-
tiple ways. They can use the logged inputs and out-
puts to trace the handlers’ main execution paths and
investigate how they can influence execution to get
to places they previously identified as critical; focus
on handlers having little or no occurrence during VM
execution and, therefore, may have been less tested or
forgotten to adjust during updates; or try to cause a
Denial of Service (DoS) by invoking hypercalls mul-
tiple times or in a different order based on the logged
inputs and sequence. The reliability testing commu-
nity evaluates the ability of the system to fulfill its in-
tended functions under given conditions over a speci-
fied amount of time (IEEE, 1990). The software aging
community analyzes the ongoing degradation of soft-
ware performance and reliability over time (Cotroneo
et al., 2014). Both require inputs that lead to success-
ful hypercall execution. The HHL provides these in-
puts for hypercalls successfully executed during VM
execution.

The remainder of this paper is structured as fol-
lows. Section 2 reviews related work on hypercall
logging. Section 3 gives an overview about Hyper-
V’s hypercall interface before Section 4 describes the
HHL design. Section 5 presents logging results and
evaluates the runtime overhead. Finally, Section 6
summarizes the paper and gives an outlook on future
research opportunities.

2 RELATED WORK

This section discusses related work on hypercall log-
ging to illustrate the state-of-the-art. It briefly ex-
plains each paper and how they differ from our work,
which aims to develop an HHL for the Hyper-V hy-
percall interface to improve its testability. In the fol-
lowing, we consider the hypercall logging part of
hypercall monitoring in Intrusion Detection Systems
(IDSs). Monitoring refers to the ongoing supervision
of processes to determine if they run as intended. Pa-
pers on hypercall monitoring in IDSs often incorpo-
rate a hypercall logger to collect data suitable for anal-
ysis. (NIST, 2023)

These loggers are comparable to our HHL, with
the following differences: First, they have a different
purpose; they create logs to detect attacks while we
provide them to construct test cases. Second, they are
all based on the open-source Xen HV while we work
with the closed-source Hyper-V HV.

Mostafavi and Kabiri (2018) suggested an IDS to
detect repetitive and irregular-order hypercall attacks
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from guest VMs to the Xen HV. In a repetitive hyper-
call attack, the attacker invokes a specific hypercall
repeatedly to waste hardware resources. Irregular-
order hypercall attacks, in turn, refer to the calling of
successive hypercalls in an unintended order to con-
fuse the HV and cause a temporary stall or crash.

Shi et al. (2016) introduced an IDS under Hyper-
visor Introspection (HVI) to detect abnormal hyper-
call sequences with hypercalls that usually do not oc-
cur or do not occur in this order, indicating an attack.
In addition to the previous paper, they consider the
host VM. Their approach relies on nested virtual-
ization, where the IDS resides in the host VM of the
outer HV to protect it from attacks.

Wu et al. (2014) proposed an IDS named
C?Detector to identify covert channels between VMs.
Covert channels are hidden communication channels
through which attackers can leak information. They
arise from the shared physical resources that the HV
manages, such as Central Processing Units (CPUs),
cache, or memory. Cache-based covert channels en-
code sensitive data, e.g., in cache access latencies,
which are measurable on other VMs.

Le (2009) proposed and implemented two ap-
proaches to protect against hypercall attacks on Xen:
authenticated hypercalls and Hypercall Access Table
(HAT). The first approach protects hypercalls with a
Message Authentication Code (MAC). The HAT ap-
proach checks only the call site of the hypercall in the
HV. Itinitially scans the guest OS for call sites, stores
them per hypercall and VM in the HAT, a database in
the HV, and checks incoming hypercalls against it.

3 HYPER-V HYPERCALL
INTERFACE DETAILS

Hyper-V consists of a Type 1 HV, which runs directly
on the physical hardware, and a virtualization stack,
which runs as part of Windows or Windows Server
in a privileged management VM called the root par-
tition, parent, or host. They implement a microker-
nel architecture in which the HV performs only the
virtualization tasks that require the highest privileges.
All others reside in the lower-privileged root parti-
tion, reducing critical HV attack surface. The root
partition has fewer rights than the HV but more than
the other VM, called child partitions or guests. For
example, the root partition can invoke administrative
hypercalls to create, delete, and modify child parti-
tions so that the virtualization stack can manage the
child partitions. Hyper-V distinguishes between en-
lightened and unenlightened child partitions, depend-
ing on whether the OS inside is aware of virtual-



ization (often called para-virtualization) (Microsoft,
2022c,a).

In the following, we discuss the Hyper-V hyper-
call interface for enlightened partitions. Part of the
information is stated in the Hyper-V Top-Level Func-
tional Specification (TLFS) (Microsoft, 2022c), the
rest is reverse-engineered from the Hyper-V binary.

When invoking hypercalls, the caller passes a Hy-
percall Input Value (HIV) to the HV and receives a
Hypercall Result Value (HRV) after the hypercall ex-
ecution. The exchange of these values happens via
General-Purpose Registers (GPRs). For call-specific
inputs and outputs, there is choice between a register-
and memory-based calling convention. Hypercalls
in Hyper-V fall into four groups: simple hypercall,
rep hypercall, extended hypercall, and Virtual Trust
Level (VTL) call and return (Microsoft, 2022c).
Basic Workflow. First, the caller inside the partition
specifies the hypercall input, consisting of an HIV,
which defines the hypercall to invoke and other hy-
percall properties, and optionally further call-specific
input. The caller triggers a VM exit to the HV. He ex-
ecutes a designated instruction, VMCALL on Virtual-
ization Technology for x86 (VT-x) and VMMCALL
on AMD-Virtualization (AMD-V). The HV abstracts
the different VM exit instructions by providing the
correct one to the caller on a memory page in the
Guest Physical Address (GPA) space, called the hy-
percall page. The VP running the hypercall must be in
kernel mode at the time of the VM exit since Hyper-V
only allows programs in kernel mode to invoke hyper-
calls (Microsoft, 2022c¢).

After the VM exit, the HV takes over the execu-
tion and starts general pre-processing. It evaluates the
reason for the VM exit in the VM Exit handler to call
the appropriate handler. In our case, the reason for
the exit was the VMCALL, so execution passes to the
VMCALL handler, who performs tests (e.g., valid-
ity of HIV, calling from kernel mode) and prepares
the call for the hypercall handler. Towards the end,
the execution splits into extended hypercall, VTL call
and return, register-based, and memory-based call-
ing. The register-based and memory-based callings
split further into simple and rep hypercall. Finally,
the VMCALL handler calls the hypercall handler via
the Hypercall Handler Table (HHT)—an HV-internal
data structure that stores constant hypercall-specific
data. It contains an entry for each hypercall with a
pointer to the handler. The handlers implement the
hypercall-specific functionality. When finished, each
handler returns a value to report its execution status.
It is either O if the execution was successful, or corre-
sponds to a defined error code (Microsoft, 2022c).

After the hypercall handler, the VMCALL handler
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takes over again and starts post-processing. It pre-
pares the potential output of handlers for transfer to
the caller and creates the HRV, which provides the
caller with feedback about the hypercall execution in
the HV. Finally, the VM Exit handler passes control
back to the caller.
Hypercall Input Value. The HIV is a 64-bit value
parameterizing the hypercall properties. Relevant
for the logger are the 16-bit call code identifying
the call, a bit flag indicating the calling conven-
tion (register/memory), one byte specifying variable
header size, and rep count a start index for rep hy-
percalls. The RCX register transfers the value (Mi-
crosoft, 2022c).
Hypercall Result Value. The HRV is a 64-bit value
giving the status of the hypercall execution. Similar to
the return value of the hypercall handler, it indicates
the overall call execution status. A value of reps com-
pleted exists for rep hypercalls. The HV returns the
HRYV in RAX (Microsoft, 2022c).
Register- vs. Memory-Based Calling Convention.
Hypercalls with input and output values besides the
HIV and HRV allow the caller to choose between a
register-based or memory-based calling convention.
The register-based concept is faster but only works for
calls with a limited input or output size. In basic form,
hypercalls with no call-specific output and two or
fewer input are supported, with inputs stored in RDX
and R8. The XMM Fast Hypercall extension allows
using the 128-bit registers XMMO to XMMS. Thus,
the possible input size is 112 bytes. Additionally, it
allows the return of output values in the XMM regis-
ters that don’t carry input values (Microsoft, 2022c¢).
With the memory-based calling convention, the
transfer occurs via two memory pages; one for the
input, one for the output. The caller-provided mem-
ory pages are 4 KiB in size, sufficient for the in-
put and output of every hypercall. The caller stores
their addresses in the registers RDX and R8, respec-
tively (Microsoft, 2022c).
Simple vs. Rep Hypercalls. Simple hypercalls be-
have as described so far; they get called, perform their
task, and return. Rep hypercalls, in contrast, facilitate
multiple executions of the same operation with a sin-
gle call, comparable to a series of simple hypercalls.
The input next to the HIV consists of a list of input
list elements and possibly an input parameter header.
The input list elements are the inputs for the individ-
ual operation runs, processed in list order. The header
contains data that is the same for all list elements. The
output comprises an HRV and a list of output list el-
ements if the operation generates one. The transmis-
sion of input and output remains the same (Microsoft,
2022c).
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The rep count in the HIV reports the number of
repetitions to the HV, which equals the number of in-
put list elements. The rep start index, also part of the
HIV, indicates the index of the first unprocessed el-
ement in the input list because the HV tries to limit
the execution time of hypercalls in the HV to 50 us or
less before returning control to the calling VP. At this
point, some input list elements may still be open, and
the rep start index tells the HV which element to con-
tinue with when execution resumes. The purpose of
the timeout is to prevent the hypercall execution from
blocking, e.g., the handling of pending interrupts or
the scheduling of other VPs for too long. The HV up-
dates the index, not the caller. The caller doesn’t no-
tice the interruption because the HV doesn’t advance
the Instruction Pointer Register (RIP) of the VP, so
the RIP continues to point to the VMCALL instruc-
tion. Accordingly, a resume of the VP leads to a new
VM exit with an increased rep start index. Hyper-V
refers to this concept as hypercall continuation. Reps
complete in the HRV reports the number of completed
repetitions to the caller (Microsoft, 2022c).

VTL Call and Return. These calls belong to VBS.
With a VTL call, it is possible to switch to the next
higher VTL, with a VTL return, to the next lower.
They undergo individual pre- and post-processing just
before and after the handler because not the caller de-
fines the HIV but the code on the hypercall page, there
is no output, not even an HRV, and the calling conven-
tion is register-based and demands an input of HIV
and a 64-bit control input (Microsoft, 2022c).
Hypercall Handler Table. The HHT is a table in the
HYV that stores constant data about hypercalls. It con-
tains an entry for each hypercall indexed according to
the call code. The first element of an HHT entry is
a function pointer to the hypercall handler. The sec-
ond element is the call code of the hypercall. The
third element is the Hypercall Control Vector (HCV)
and contains flags for program control. The follow-
ing four elements specify the input and output size in
bytes, excluding HIV and HRV. Simple hypercalls
can have input and output parameters, i.e., for simple
hypercalls, fields one and three of the four size fields
are relevant. Rep hypercall can have an input param-
eter header and an input and output list. The input
parameter header size is in the field where the input
parameter size is in the simple hypercall. The input
list size results from field two’s input list element size
multiplied by the rep count in the HIV. Analogously,
the output list size arises from field four. The statis-
tical hypercall group number organizes the hypercalls
into groups for which the HV records the number of
executions. Padding aligns the HHT entry to a multi-
ple of eight.
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4 LOGGING APPROACH

This section describes the design of our HHL for
Hyper-V, which should log the inputs, outputs, and
sequence of hypercall handler calls during VM exe-
cution. We designed the HHL with WinDbg, as this
seems to be the only option for us to create the logger
with reasonable effort. For example, inserting hooks,
as a related paper does with the open-source Xen HV,
is not as easy with closed-source software. WinDbg is
a debugger for Windows OSs, which can also debug
the Hyper-V HV (Microsoft, 2018).

The description of the HHL design proceeds step-

by-step. First, we deal with hypercall input logging,
output logging, then call sequence logging.
Logging of Hypercall Handler Input. First, we need
to localize the hypercall handlers in the virtual ad-
dress space of the HV at runtime. Searching for the
handler’s name is not an option because Microsoft
does not publish debug symbols for the HV (ERNW,
2019; Microsoft, 2022b).

Our approach to locating hypercall handlers is the
HHT, which stores a function pointer to the handler
for each hypercall. The HHT resides at the beginning
of the CONST segment. We get the beginning of the
segments from their section headers. These are part of
the Portable Executable (PE) format, which describes
the structure of Windows executables. The executable
in PE format starts at the image base. The section
headers are behind the DOS header, DOS stub, and
NT headers. Starting from the NT headers, we obtain
the base address of the section headers by adding the
field offset and the size of the optional header. The
field offset results from the NT header structure.

The HHT holds one entry for each hypercall, in-
dexed by the call code and with a size of 24 bytes.
The function pointer to the hypercall handler is the
first element of the entry and has 64 bits or 8 bytes as
a memory address on a 64-bit architecture. The mem-
ory on the x86-64 architecture is byte accessible, i.e.,
one address per byte of data. Thus, we find the func-
tion pointer per hypercall by reading the first 8 bytes
at the address CONST base + 24 - call code (Intel,
2023). The VirtualAddress field in the section header
may change when Microsoft releases a new version
of the Hyper-V HV as a new build of the HV executa-
bles but remains constant between restarts of the HV.
However, this doesn’t apply to the image base, which
changes with every restart due to Address Space Lay-
out Randomization (ASLR). WinDbg provides func-
tions to determine the image base at runtime (Scar-
gall, 2020; Microsoft, 2021b).

Logging can be enabled by placing a Breakpoint
(BP) on the begin of the handler. During kernel or



HV debugging, only 32 BPs are available, which is
insufficient to log all hypercall handlers simultane-
ously (Microsoft, 2023a).

Next, we must log the input after a handler call
has triggered a BP. Reverse engineering of the HV
code showed that the handlers of different hypercall
types return different parameters. We extracted them
from the code to understand the input. For logging, it
is necessary to know the number of parameters, their
order, data types, and meanings. We require mean-
ing and order because the handlers receive pointers to
input and output areas whose size comes from other
parameters, e.g., the size of the input list of a rep hy-
percall depends on the rep count.

We apply the knowledge gained about the param-
eters to read the handlers’ input and write it to a log
file with a timestamp and the call code. The remaining
section covers our findings on the parameters, divided
into the three hypercall types. The hypercall type re-
sults from the HCV in the HHT entry of the hypercall.

The HCV of a simple hypercall is O or 2, i.e., no
flags or only the Variable-Sized Input flag at the 2nd-
bit position is active. The first parameter is a pointer
to the hypercall input parameters. Reading the hy-
percall input parameters via the pointer requires their
size, which stands in the HHT. The second parame-
ter is a pointer to the hypercall output parameters. It
doesn’t provide data to the handler but tells it where
to store its output. We record the output parameters
for output logging to know where the output is after
the handler execution. The variable header size is the
optional third parameter of the handler for calls with
variable-sized input.

Rep hypercalls have an HCV of 1 or 3; the Rep
Hypercall flag at the 1st-bit position is mandatory, and
the Variable-Sized Input flag at the 2nd-bit position is
optional. The first handler parameter is a pointer to
the input parameter header and input list. The size
of the inputs derives from the HHT, rep count, and,
if applicable, variable header size. The rep count is
the second handler parameter, encoded in 12 bits of
the HIV. The rep start index is the third handler pa-
rameter, also stored in the HIV. The last two param-
eters are output parameters specifying the address to
return the output list and reps complete. As with sim-
ple hypercall handlers, we keep the output parameters
for output logging. The variable header size is an op-
tional parameter.

VTL calls and VTL returns have a set VIL Call
and Return flag at the 4th-bit position of the HCV,
yielding an HCV value of 4. The first parameter is a
pointer to the HV-internal data structure of the calling
VP. It is a large and complex structure of unknown
size and composition. Therefore, we cannot log and
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interpret its contents but instead log the pointer, which
acts as a kind of runtime ID of the VP since the ad-
dresses of the VP structures do not change at runtime
and thus can reveal patterns. The second parameter
is a flag that specifies whether the caller is running in
a 32-bit or 64-bit mode. The third parameter is the
control input.

Logging of Hypercall Handler Output. For output
logging, we need BPs that trigger once handler execu-
tion is complete. We achieve this by placing a BP on
the return address of the handler. The return address
of a function is the memory address of the first in-
struction the processor executes after the function re-
turns. The calling function stores it on the stack, and
a Return (RET) instruction within the called function
loads it into the RIP at the end of the function. So,
the return address is a single address that executes af-
ter each handler execution and is accessible within the
handler; in comparison, the addresses of the handler’s
RET instructions, which mark the end of the handler,
are unknown and require as many BPs as there are
RET instructions.

Output logging with BPs on the return addresses
of the hypercall handlers involves two challenges.
Firstly, the return addresses lie outside the handlers,
where all finished hypercalls pass execution to. Calls
not supposed to be logged would mistakenly activate
the output BPs. For this reason, we add the output
BP during input logging and turn it into a one-shot
BP, which triggers once and then removes itself. In
other words, we insert the BP on each handler call,
and the BP triggers and removes itself when the exe-
cution reaches the return address. During input log-
ging, we are in the handler and can access the return
address on the stack.

Secondly, the hardware can have more than one
Logical Processor (LP), and the HV offers more than
one VP. The VPs run on the LPs, which operate in
parallel on the HV code. LPs running in parallel trig-
ger the output BP set by another LP if they perform
a hypercall with the same pre-processing and reach
the return address earlier. Moreover, they overwrite
each other’s output BP if they run hypercalls with the
same return address, and we want to log them. We
prevent this by making the output BP LP-dependent,
i.e., only triggers when the respective LP passes the
address. LPs can execute the same hypercall for dif-
ferent VPs simultaneously. Therefore, the HHL needs
LP contexts to store the output parameters per hyper-
call and assign them to the LP during output logging.
The hypercall execution of a VP runs on a single LP,
as there are no context switches between VPs during
hypercall execution in the HV (Microsoft, 2022c). If
this were not the case, the output BP would lose its
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assignment to the VP after a context switch since the
BP remains, but the LP now runs a different VP. In
addition, the HHL would need VP contexts.

Each LP can place an output BP. Hence, with out-
put logging, we can no longer set 32 software BPs
to track 32 hypercall handlers, but only 32 minus the
number of LPs.

We log the handler output on BP triggering in step
two. We take the output parameters stored during in-
put logging to read the hypercall output. Furthermore,
we read the return value of type HV_STATUS, which
each handler returns to indicate its execution status.
The result goes to the log file with a timestamp.

The VTL call and return handlers have no out-
put parameters and, thus, don’t require consideration.
Handlers of simple hypercalls have one output param-
eter: the pointer to the hypercall output parameters.
Reading them requires their size, given in the HHT as
the size of output parameters. Handlers of rep hyper-
calls have two output parameters: the pointer to the
output list and the pointer to reps complete. The out-
put list size results from multiplying the rep count and
the size of the output list element in the HHT.
Logging of Hypercall Handler Call Sequenc.e This
goal includes recording a timestamp, the call code,
the partition ID, and the VP index to track the tempo-
ral order of handler calls per VM and VP. The HV
guarantees that the partition IDs are unique until an
HYV restart (Microsoft, 2022c¢).

The assignment between root VP and LP is con-
stant, i.e., a root VP always runs on the same LP.
Guest partitions can have, at most, as many VPs as
there are LPs. Unless the system administrator con-
figures a fixed assignment, their VPs can be scheduled
on any LP (Microsoft, 2012, 2020).

The location of the partition ID in the Hyper-V
HV appears in the handler of hypercall 0x46 HvGet-
Partitionld, which returns the ID of the partition that
issued the hypercall. Accordingly, we could deduce
that the partition ID in the HV can be obtained at
runtime as [GS Base + 0x103A0] + 0x2380. This
query is build-dependent, i.e., only valid until Mi-
crosoft changes the HV-internal data structures. This
happens frequently, but determining the new value is
not elaborate.

Hyper-V models the VP state with a set of reg-
isters that it stores internally and loads into the LP
on a context switch if there is a physical counter-
part. The VP index is in the VP register HvRegis-
terVplndex with register name 0x00090003. It has no
physical counterpart, hence the HV-defined Model-
Specific Register (MSR). For MSR access, the HV
code maps the address of the MSR to the name of the
VP register and the register name to the HV-internal
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VP structure. We found the implementation part that
maps 0x00090003 to the HV-internal VP structure
by searching for 90003h and 40000002h and trac-
ing the execution path. We verified it by placing a
software BP that triggered when we ran Read From
Model Specific Register (RDMSR) 0x40000002 in
WinDbg while debugging the root partition’s ker-
nel (Microsoft, 2022c).

Then, we found a function that receives the
VP register name via the GPR ECX. It loads the
address of the running VP’s HV-internal structure
(gs:10398h) into RDI. Then, it evaluates the register
name to access the VP structure. The first name tested
is  0x00090000 (HvX64RegisterVpRuntime (Mi-
crosoft, 2022¢)): the function subtracts 0x90000 from
the name and branches with Jump if Zero (JZ) if the
result is 0. Afterward, the test for 0x00090003 fol-
lows: the function reduces the name by another three
and checks again with a JZ to 0. Consequently, we
end up in the lower right block, where the upper Move
(MOV) instruction retrieves the index of the running
VP from its VP structure.

Reverse engineering the handler of the HvRegis-
terVplndex hypercall, we determined we can query
the VP index in the HV at runtime using the HV-
internal VP structure at [GS Base + 0x10398] +
0x394. This request is again build-dependent, but de-
terminable with reasonable effort.

The approach enables us to comprehend the rela-
tionship between 32 hypercall (limited by BPs). Un-
fortunately, Hyper-V has 271 hypercalls, 69 are re-
served, i.e., they only block call codes for possible
future calls. Their function pointers in the HHT point
to a default handler implementation, which returns a
value indicating an invalid call code.

As an alternative, we considered logging the call

sequence on HHT access of the pre-processing when
it reads the HHT entry. It only requires one soft-
ware BP. However, a test has shown that the traffic
at this site is so high that frequently occurring hyper-
calls suppress infrequent ones.
Implementation. The whole approach is imple-
mented as a DbgExtEng extension for WinDbg, ex-
posing the four debugger commands: hhl_log, hhl._-
log_entry, hhl_log_exit, and hhl_convert. However,
the user should only enter hhl_log and hhl_convert;
hhl_log_entry and hhl_log_exit are for internal pur-
poses. (Microsoft, 2021a)

The code is available on GitHub'.

Thttps://github.com/DescartesResearch/HyperV-hyperc
all-logger
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S EVALUATION

Figure 1 shows the testbed for the evaluation of the
HHL. It consists of a control machine and a test ma-
chine. The HHL is part of a WinDbg instance that
runs on the control machine and maintains a connec-
tion to the HV on the test machine. From there, the
HHL logs the hypercall handler calls in the HV trig-
gered by hypercalls from the root/child partitions. In
the case study, these hypercalls originate from the VM
execution. For the performance measurements, a ker-
nel injection driver issues them from Ring O of the
root or child partition. The connection between the
control machine and the test machine for HV debug-
ging exists via a network.

We turned off Secure Boot in the BIOS of the test
machine to enable network debugging for the Hyper-
V HV. VBS demands Secure Boot. It is possible
to bypass this requirement in the Windows Registry.
However, we don’t know how this affects VBS and
decided not to activate it in the root partition. We can
use VBS within the guest partition by selecting Se-
cure Boot in the guest VM settings, but only in the
case study, as we need to turn on TESTSIGNING to
run the injection driver, which is only possible with-
out Secure Boot. TESTSIGNING is permanently ac-
tive on the root partition.

Case Study. Which hypercalls occur during the boot
and desktop idle of the root and a guest partition?
This is an exciting question and was one of the ini-
tial motivations to create the HHL. The logging re-
sults” list the 74 hypercalls occurring in the four sce-
narios, marked by an “x” in the columns of the sce-
narios where they occur. DIdle is short for desk-
top idle. The hypercall names originate from the
HvGdk.h header file (Ionescu, 2020), as it is more
up-to-date than the TLFS (Microsoft, 2022c). The
case study ran in the testbed described in Section 5
under the following conditions. The boot process be-

Zhttps://github.com/DescartesResearch/HyperV-hyperc
all-logger/blob/main/logging_results/logging_results.pdf
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gins when the computer starts and ends when the lo-
gin screen appears. The recording of hypercalls dur-
ing desktop idle lasts 2 minutes. The BP hit limit is
1 to record each handler call only once. It should en-
sure that the test machine doesn’t hang up and that
the HHL captures all hypercalls, not just the most fre-
quent ones. This was necessary because calls like
HvCallUpdatePerformanceStateCountersForLp were
called much more frequently than the rest. Having
detailed information about the exact rates of different
hypercalls during idle would be very interesting; un-
fortunately, the rates are considerably too high for the
BP-based HHL to keep up. This is a limitation regard-
ing the utilized technology. On the other hand, for
the targeted security-, stress-, and dependability test-
ing, the appearing input and output values are usually
worth more than the “natural” rate of occurrence of
the calls.

Performance Measurements. We examine the in-
fluence of the logging overhead by issuing hypercalls
with and without HHL. The test hypercall is 0x46 Hv-
GetPartitionld. We refrain from analyzing different
hypercalls, callers, and input and output sizes since
the overhead caused by the BP events is so dominant
that all other factors play a subordinate role.

Each test run issues 1,000 hypercalls with a delay
of 0.1 s. The delay is necessary for the WinDbg BPs
to work. Without delay or with a delay that is too
short, WinDbg will eventually stop triggering BPs,
and the HHL will miss the handler entry or exit. In
addition, a shorter or longer delay increases the likeli-
hood that the BPs will get stuck during repeated exe-
cution. In such a case, a BP constantly triggers and
prevents execution from continuing, even in single
steps. The 0.1 s is an empirical value for hypercall
0x46, with which we could execute the test runs with-
out the errors mentioned. The test run without HHL
also has a 0.1 s delay to ensure identical conditions.

Figure 2 contains the box plots for the test runs
with HHL in logging modes 0, 3, 4, and 7. Logging
mode 0 is the bare minimum. It logs the LP ID, the
call code, and the handler entry timestamp with a BP
on the handler entry. Logging mode 3 involves han-
dler input and call sequence logging, mode 4 handler
output logging, and mode 7 handler input, output, and
call sequences logging. We skipped logging modes 1,
2, 5, and 6 as the hypercall execution times of 0 and 3
or 4 and 7 hardly differ, so examining their interme-
diate states 1 and 2 or 5 and 6 provides little informa-
tion.

The median execution time without logging was
1.2us, the highest outlier was 4.7us - around 100.000x
faster than modes with one breakpoint and 200.000x
faster than modes with two.
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Figure 2: Execution Time of Hypercall 0x46 with HHL.

6 CONCLUSION

The paper presented an HHL for the Hyper-V hyper-
call interface that logs the inputs, outputs, and se-
quence of hypercall handler calls during VM execu-
tion, with the aim of improving the testability of the
hypercall interface.

The most evident follow-up work is to use the
HHL for its intended purpose: support in creating test
cases for the handlers and the hypercalls. In addition,
the HHL provides the foundation for logging other
properties of the handlers, the hypercall interface, or
the Hyper-V HV, e.g., global handler variables, test
results during pre- or post-processing, or MSR ac-
cess. We omitted extended hypercalls and hypercall
0x6. Therefore, a possible future task is to add them.

An alternative to the WinDbg BP approach could
be hooking, which we excluded in this work due to
its complexity. For example, one could modify the
HV code with WinDbg and apply a system call hook-
ing technique, which overwrites the function pointer
to the hypercall handler in the HHT with a pointer to a
function that performs input logging, calls the original
handler, and finally logs the output. It would be con-
siderably faster and more reliable than the WinDbg
BP approach.
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