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Abstract: This study aims to establish a quantitative construct for enterprise risk assessment and optimal portfolio 
investment to achieve the best aviation security. We first analyze and model various aviation transportation 
risks and establish their interdependencies via a topological overlap network. Next, a multi-objective portfolio 
investment model is formulated to optimally allocate security measures. The portfolio risk model determines 
the best security capabilities and resource allocation under a given budget. The computational framework 
allows for marginal cost analysis which determines how best to invest any additional resources for the best 
overall risk protection and return on investment. Our analysis involves cascading and inter-dependency 
modeling of the multi-tier risk taxonomy and overlaying security measures. The model incorporates three 
objectives: (1) maximize the risk posture (ability to mitigate risks) in aviation security, (2)  minimize the 
probability of false clears, and (3) maximize the probability of threat detection. This work presents the first 
comprehensive model that links all resources across the 440 federally funded airports in the United States. 
We experimented with several computational strategies including Dantzig-Wolfe decomposition, column 
generation, particle swarm optimization, and a greedy heuristic to solve the resulting intractable instances. 
Contrasting the current baseline performance to some of the near-optimal solutions obtained by our system, 
our solutions offer improved risk posture, lower false clear, and higher threat detection across all the airports, 
indicating a better risk enterprise strategy and decision process under our system. The risk assessment and 
optimal portfolio investment construct are generalizable and can be readily applied to other risk and security 
problems.

1 INTRODUCTION 

In the aftermath of the September 11, 2001, terrorist 
attacks, the President of the United States signed the 
Aviation and Transportation Security Act into law 
requiring screening conducted by federal officials, 
100 percent checked baggage screening, and 
expansion of the Federal Air Marshal Service and 
reinforced cockpit doors. The Transportation Security 
Administration (TSA) was subsequently created to 
oversee security in all modes of transportation. 
Specifically, a computer-assisted passenger pre-
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screening system, Computer-Assisted Passenger Pre-
screening System (CAPPS) was developed to 
evaluate all passengers. The current generation, 
Secure Flight, is a risk-based passenger pre-screening 
program that matches passengers' names against 
trusted traveler lists and watchlists and categorizes 
them as high or low-risk (Administration, n.d.). Based 
on information derived from both government and 
commercial databases, Secure Flight conducts risk 
assessments to determine which passengers might be 
eligible for TSA precheck screening or standard 
screening. The results also prevent potential 
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passengers on the No-Fly List and Centers for 
Disease Control and Prevention Do Not Board List 
from boarding an aircraft (Sadler, 2016).  

Security constructs have been designed as multi-
layered systems to incorporate several security 
measures for effective screening. Although numerous 
optimization models have been proposed for aviation 
security prior to 9/11, the first screening models were 
developed post 9/11. These models target checked 
baggage for high-risk passengers screened for 
explosives, selectee, and non-selectee screening, 
where the objectives determine how to deploy and use 
limited baggage screening devices optimally. 
Subsequently, multiple baggage security models were 
developed (McLay, 2011). Other models tackle how 
to match the limited security measures to the number 
of passengers who need to be screened (Poole & 
Passantino, 2003), where findings reveal that a risk-
based system might be more effective than the system 
where all passengers and bags receive equal scrutiny.  

Multilevel allocation criteria where every 
would-be passenger is assigned an assessed threat 
value, which quantifies the risk associated with the 
characteristics of the passenger was also explored 
(McLay, 2011). A similar approach considers how to 
allocate explosive-screening devices for checked 
baggage in multiple airports settings where 
passengers are divided into classes according to their 
perceived risk levels were also studied (Sewell et al., 
2012). For device allocation, Sewell et al.  modelled 
the inherent trade-off decision between using faster, 
more accurate, and expensive devices versus slower, 
less reliable, but less expensive devices, or some 
combination of the two. And Nie et al.  modelled the 
fraction of passengers who are assigned to threat class 
and the staffing needs at each check station within 
each screening group. 

Stewart and Mueller (Stewart & Mueller, 2017) 
are the only publication/s that include all security 
measures, though no mathematical analyses and 
tradeoffs have been performed. There exists no 
mathematical models developed that integrate all 
screenings (Checked baggage, Carry-on baggage, and 
Passenger) into a comprehensive risk-based system.  

In this paper, we integrate passenger, baggage, 
and cargo screening operations to model complex 
airport security paths. The work adds new 
contributions towards the Department of Homeland 
Security (DHS)’s on-going risk enterprise 
management (ERM) efforts and its desire to 
implement an all-encompassing model.  This new 
system allows TSA to perform risk-aware decisions 
to better allocate new resources to benefit overall 
aviation security. It maximizes the policymakers’ 

ability to protect against risks and helps organizations 
to utilize their resources in a smart way to achieve 
their organizational and strategic objectives.  

2 METHODS AND DESIGN 

Contribution: In this study, we establish a 
comprehensive enterprise risk management-based 
resource allocation model that expands upon previous 
research and combines all models  and security 
measures into a single multi-objective portfolio 
investment optimization model framework. We also 
introduce the concept of “Risk Posture” to measure 
the TSA’s resilience and capabilities against any 
potential risks. By integrating various aviation 
transportation risks and modeling their 
interdependencies, the ERM-based model provides a 
robust framework for allocating security measures 
efficiently across the U.S. aviation sector. The biggest 
knowledge gap in previous research is that any type 
of optimization model concerning enterprise risk 
management was performed only at an operational 
level.  This work represents the first model that 
encompasses a full multi-tier enterprise risk 
management approach across strategic, tactical, and 
operational levels. It is also the first model to 
establish and focus in depth on risk posture. The 
security measure and device allocation problem, 
combined with a passenger risk assessment policy, 
can be used to structure a risk-based screening 
strategy to use limited screening resources 
effectively. The model is generalizable and can 
accommodate additional / different measures, new 
technology, or new airport setup. 

2.1 Risk Quantification 

The Department of Homeland Security defines risk as 
“the potential for an unwanted outcome resulting 
from an incident, event, or occurrence, as determined 
by its likelihood and the associated consequences” 
(Council, 2010).  By incorporating enterprise risk 
management into its strategy, TSA can use a 
consistent analytic framework to balance risk and cost 
on a common basis across the enterprise (Minsky, 
2013). Risk assessments must be connected to goals 
and activities within a risk taxonomy to give purpose 
and measurement of effectiveness. Only by 
quantifying risks and tolerances upfront and using a 
common framework can the allocation of resources 
be applied to the methods that manage them 
effectively. 
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We will apply network topology to quantify and 
correlate risks. The topological overlap matrix 
(TOM) is a similarity measure for biological 
networks. TOM was first introduced to analyze 
metabolic networks with distinct organisms that are 
organized into connected topological modules that 
combine in a hierarchical manner (Ravasz, 2002). 
The generalized topological overlap measure 
(GTOM) introduces a general class of node 
dissimilarity measures. It can be used to identify 
network modules (sets of tightly connected nodes) 
(Yip, 2007), or define novel measures of node 
connectivity. These GTOM-based connectivity 
measures go beyond the usual nodal degree (number 
of connections) by considering higher-order 
connections. They are useful in the context of gene 
co-expression network analysis.  

A topological representation of the TSA risk 
factors became a natural fit.  GTOM provides a means 
to detail the interdependencies and hierarchy for a 
correlated risk network that operates without 
quantitative values. The resulting risk expressions 
will then be integrated into an objective function 
within the portfolio optimization problem.   

2.1.1 Risk Correlation 

Risk correlation influences the overall risk of projects 
within an organization. Developing the 
interdependencies in enterprise risk for TSA is an 
intricate process. It requires an understanding of the 
TSA enterprise, their risk appetite, and the associated 
risks. Although TSA is a governmental organization 
that does not ascribe to a capitalist set of objectives, 
ERM is still a very critical tool for the organization to 
implement. We proceed by reviewing all current TSA 
enterprise risks, tracking their associated risk 
appetites, and then defining interdependence 
relationships between all the risk factors. Due to 
sensitivity issues, we use generic names to discuss the 
evolution of a risk interdependency mapping for 
TSA, without naming the precise risk terminologies. 

Let 𝐴 = ൣ𝐴௜௝൧ be a symmetric adjacency matrix 
with entries in [0,1]. For an unweighted network, the 
entries take on binary values of 0 or 1 depending on 
whether the two nodes are adjacent (connected). A 
more complex network might depend on the degree 
of interaction between nodes. The matrix is then 
normalized such that the diagonals are equal to 1. The 
off diagonals are scaled values, thereby extending the 
adjacency matrix from the binary case to values in the 
range of [0,1]. In a hierarchical network, nodes can be 
connected by links carrying a weight 𝐽௜௝ . The 

weighted degree of node i is defined as: 𝑤௜ =∑ே௝ୀଵ:௝ஷ୧ 𝐽௜௝. 
The original TOM does not account for the 

presence of weights 𝑂௜௝ = |ேሺ௜ሻ∩ேሺ௝ሻ|ା஺೔ೕ୫୧୬ሼ|ேభሺ௜ሻ|,|ேమሺ௝ሻ|ሽାଵି஺೔ೕ . 

The presence of weights can be accounted for by 
replacing the unweighted adjacency matrix with the 
normalized coupling matrix (𝐽௜௝ /𝐽୫ୟ୶) 𝑂௜௝ = ଵ௃ౣ౗౮ ×∑ೖಿసభ ௃೔ೖ௃ೖೕା௃೔ೕ௃ౣ౗౮୫୧୬{௪೔,௪ೕ}ି௃೔ೕା௃ౣ౗౮ . If 𝑂௜௝ = 1  then the node with 

fewer connections satisfies the conditions that all its 
neighbors are also neighbors of the other node, and it 
is connected to the other node. Alternatively, 𝑂௜௝ = 0 
if 𝑖 and 𝑗 are unconnected and the two nodes do not 
share any neighbors. Table 1 shows the weighted 
topological overlap matrix established for 17 TSA-
identified enterprise risk factors.  

Table 1: The Weighted Topological Overlap Matrix for 17 
TSA-identified enterprise risk factors. 

 

TSA employs a system of interconnected security 
layers to deter, detect, and prevent the exploitation of 
commercial aviation by terrorists. Figure 1 shows an 
example of layers of U.S. aviation security (Kean et 
al., 2004). The analysis herein incorporates all current 
and newly tested measures but is not a comprehensive 
list of security measures employed. Each security 
measure has an interdependent relationship with the 
enterprise risk factors identified by TSA risk 
management leaders. Table 2 shows a security 
measure assignment (SMA) matrix that shows the 
direct relationships between 26 security measures 
against the 17 TSA-identified enterprise risk factors.  
The assignment matrix allows us to relate the risk 
taxonomy to the security measures put in place. 
Depending on the security measure, a failure to detect 
a threat could impact multiple risk elements of the 
taxonomy. 

R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 R11 R12 R13 R14 R15 R16 R17
R1 1.00 0.22 0.13 0.17 0.07 0.07 0.07 0.13 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
R2 0.17 1.00 0.17 0.07 0.07 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
R3 0.07 0.17 1.00 0.00 0.17 0.07 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
R4 0.11 0.14 0.14 1.00 0.14 0.11 0.33 0.21 0.00 0.00 0.00 0.00 0.17 0.00 0.17 0.00 0.00
R5 0.00 0.07 0.17 0.00 1.00 0.17 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
R6 0.00 0.00 0.08 0.00 0.20 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
R7 0.06 0.06 0.06 0.33 0.06 0.06 1.00 0.33 0.00 0.00 0.00 0.00 0.22 0.00 0.22 0.00 0.00
R8 0.24 0.24 0.24 0.30 0.24 0.24 0.33 1.00 0.19 0.00 0.00 0.00 0.20 0.00 0.20 0.11 0.00
R9 0.33 0.33 0.33 0.00 0.33 0.33 0.00 0.33 1.00 0.14 0.00 0.00 0.20 0.00 0.20 0.11 0.00

R10 0.18 0.26 0.22 0.10 0.22 0.18 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
R11 0.00 0.00 0.00 0.00 0.40 0.40 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.29 0.00 0.00 0.00
R12 0.27 0.21 0.27 0.19 0.27 0.33 0.22 0.22 0.30 0.33 0.29 1.00 0.41 0.33 0.41 0.24 0.22
R13 0.00 0.00 0.00 0.19 0.00 0.00 0.22 0.22 0.22 0.11 0.00 0.00 1.00 0.00 0.38 0.00 0.00
R14 0.00 0.00 0.11 0.00 0.33 0.33 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00
R15 0.26 0.36 0.30 0.33 0.30 0.23 0.22 0.13 0.00 0.00 0.00 0.00 0.17 0.00 1.00 0.14 0.07
R16 0.21 0.18 0.26 0.14 0.26 0.26 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.17
R17 0.25 0.18 0.25 0.14 0.23 0.25 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.14 1.00
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Figure 1: Layers of U.S. Aviation Security (Kean et al., 
2004). 

Table 2: Security Measure Assignment (SMA) Matrix. 

 

2.1.2 Risk Posture 

We introduce the term “Risk Posture” to describe the  
overall readiness to take risks, which is an accurate 
description of TSA’s strategy to always be prepared. 
We develop a method to calculate the risk posture 
evaluation metric as a means to integrate the risk 
factors and security measures that are put in place by 
TSA. Our goal is to maximize the overall risk posture. 
This allows us to utilize the probability of detection 
versus the probability of attack. While the exact 
values for the probability of detection are unknown,  
there are estimated values of the conditional 
probability of detection for device type d given a 

particular type of threat, 𝑝ௗ  ∀ 𝑑 ∈ 𝐷, that are derived 
from manufacturer capability tests.  

The risk posture is calculated by multiplying the 
adjusted risk values by the selected security 
measures, as summarized below: 
 Risk Impact Values (RIV) = TOM*SMA  
 Adjusted Risk Values (ARV) = 𝑝ௗ ×  𝑅𝐼𝑉ௗ 
 Risk Posture =  ∑஽ௗୀଵ 𝑥ௗ × 𝐴𝑅𝑉ௗ         (OBJ1) 

2.2 Data Collection and Inclusion 

In the context of the type of passenger prescreening 
system exemplified by Secure Flight, we want to 
determine an optimal allocation of threat detection 
devices and measures for screening checked baggage, 
carry-on baggage, and passengers across a set of 
airports so as to maximize the risk posture, maximize 
the number of threats to be detected, and minimize the 
overall false clear rate while considering passenger 
threat classification. We impose constraints on time 
available at each check station, flow capacity at 
security stations, budget, as well as staffing needs at 
each check station. 

At airports, all passengers and items pass through 
various check stations, with each outfitted with 
several security measures for threat detection. It is 
standard practice that all passengers and items are 
subjected to a series of screenings at mandatory 
check-ins. For example, document verification, walk 
through metal detectors/body scanners, baggage 
scanners, etc. After inspection of a passenger/item, 
the screening measure or personnel will give a clear 
signal (No Threat) or an alarm signal (Threat). There 
are four types of alarms, and while all four are 
critically important, the two alarms that we are most 
concerned with are true alarms and false clears. True 
alarms correctly detect existing threats, and false 
alarms give an alarm when no threat exists. 

False alarm and false clear probabilities are 
performance measures for the screening system. 
Higher performance means lower values of these 
probabilities. False alarms increase inspection delays 
and mean that the system is not as reliable as we hope, 
while false clears can be potentially fatal for allowing 
threats to go undetected. 

Risk-based security paradigms classify 
passengers into different security classes based on the 
perceived risk of each passenger, where the 
passengers and their checked and carry-on baggage 
are screened using pre-specified combinations of 
detection devices (e.g., magnetometer, x-ray 
machine) and procedures (e.g., hand search, pat-
down). Within each security class, a passenger or bag 
may undergo screening from multiple devices or 
procedures. A passenger or bag clears the security 

SM1 SM2 SM3 SM4 SM5 SM6 SM7 SM8 SM9 SM10 SM11 SM12 SM13 SM14 SM15 SM16 SM17 SM18 SM19 SM20 SM21 SM22 SM23 SM24 SM25 SM26
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 0 0 0 1 1 1 1 0 1 1 0 0 0 1 1 1 1 1
0 0 0 1 1 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 1 1 0 0 0 0 0 0 0 0
0 0 1 1 1 1 1 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 1 0 0 1
0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0
1 1 0 0 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 0 0 0 0 0
0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 0 0 0 0 1 1 0 1 1 0 0 0 0 1 1 1 1 1 1 0 0 0 0 0
0 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 1 1 1
1 0 1 1 1 1 1 1 0 0 0 0 0 0 1 0 1 1 1 1 1 1 1 1 1 1
1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Security Measure
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checkpoint only if all devices and procedures used in 
this class detect no threat. If a threat is detected or if 
reasonable suspicion of a threat arises, then the 
passenger or bag undergoes additional screening, 
usually through a more threat-specific, time-
consuming process. The use of devices as part of the 
security operations endures costs associated with 
installing, operating, and maintaining the devices. 
The preponderance of costs associated with screening 
procedures is associated with employing personnel 
and implementing these procedures. The fixed costs 
are associated with installing devices and maintaining 
the devices for screening procedures. The costs 
associated with operating the devices are based on the 
expected life and time in the operation of each device, 
while the implementation costs of screening 
procedures are based on the employee compensation 
of security personnel. In addition to these cost 
restrictions, each device is manufactured to provide a 
maximum throughput capacity. Thus, the expected 
number of passengers in each security class aids in 
determining the capacity requirements for deploying 
existing and new detection devices at each airport.  

These decisions are highly influenced by resource 
constraints, including cost, personnel, and space 
availability, hence the decision as to the type and 
number of devices and procedures to use for 
screening high-risk and low-risk passengers to 
maximize the total security (probability of threat 
detection) can be very challenging. This is especially 
so when considering a limited number of devices 
available to deploy across a set of airports, each with 
its own individual resource constraints. 

2.3 Multi-Objective Mixed Integer 
Program Portfolio Investment 
Model 

Several assumptions are made when formulating our 
mathematical model for this problem.  
 A passenger pre-screening system (Secure Flight) 

is used in a risk-based security screening approach 
to quantify the perceived risk of each passenger.  

 The resulting threat assessment is viewed as an 
accurate representation of the passenger’s true 
risk to the air transportation system, based on 
intelligence gathered by the TSA pertaining to 
prior travel history, origin and destination 
itinerary, ticket purchase method, current 
behavioral attributes, and other security-sensitive 
information.  

 The detection devices used to screen passengers 
and their baggage operate independently of one 
another, such that the use of one type of device 
does not affect the cost or threat detection 

performance associated with any other device 
under consideration.  

 There is no cost associated with removing existing 
devices from an airport security checkpoint. 
 

In the context of the type of passenger 
prescreening system exemplified by Secure Flight, 
we want to determine an optimal allocation of threat 
detection devices and measures for screening checked 
baggage, carry-on baggage, and passengers across a 
set of airports so as to (1) maximize risk posture, (2)  
minimize the overall false clear rate, and (3)  
maximize the number of threats to be detected while 
considering passenger threat classification. We 
impose constraints on time available at each check 
station, flow capacity at security stations, local and 
overall budget, as well as staffing needs at each check 
station. 

The parameters and decision variables used in the 
model are summarized as follows. 

  
Parameter Description 

T The total number of airports under consideration  
k Index for airport k=1, 2,…,T  
D The number of screening device types 
d Detection device type d=1, 2,…,D 
J Number of screening groups (e.g., checked bags, 

carry-on bags, passenger ID check, passenger 
screening) 

j Screening group j = 1,…, J 
D(j) Detection devices d within screening group j 
Mk Number of passenger classes at airport k 
C Index for passenger class c=1, 2,…,Mk  (e.g., high-

risk, regular, precheck)  
Ack Average value of perceived risk for passengers 

assigned to class c at airport k 
Bck Number of checked bags per hour screened in 

class c at airport k 
Gck Number of carry-on bags per hour screened in 

class c at airport k 
H’ck Number of passengers (ID) per hour screened in 

class c at airport k 
Hck Number of passengers (body) per hour screened 

in class c at airport k 
Cj Maximum throughput (passengers or bags/hour) 

within screening group j 
Edk Number of existing devices of security measure 

type d at airport k 
Fd Fixed Cost ($/device) associated with device type d 
Kdk The capacity of device d at airport k 
Id Installation cost ($/device) associated with device 

type d 
Od Operating cost ($/device) associated with device 

type d 
Pd Conditional probability of detecting a threat given 

there is a threat for device type d 
cpc Probability of a passenger belonging to passenger 
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class c 𝛼௖ The conditional probability that passenger carries 
a threat given they belong to class c carries a 
threat 𝛽௝௖ The conditional probability that there is a threat 
in screening group j given a class c  

qd Conditional probability of clearing a non-threat 
item given there is no threat for device type d 

TBk Total hourly budget ($) available at airport k 
td Time taken to check one passenger or bag at 

device d 
Ud Number of device type d available for installation 
zd Time multiplier to verify any alarm at any device 

  
Decision Variables Description 

xcdk Binary variable where xcdk = 1(0), if security 
measure type d is (not), used to screen class c 
passenger at airport k 

ydk Number of security measure type d to be used at 
airport k (integer) 

sdk Number of security measure type d to be installed 
at airport k (integer) 

 
The number of devices of type 𝑑 to be installed at 

each airport, 𝑠ௗ௞ ,  Equation (M1), is found by 
subtracting the number of devices of type 𝑑 currently 
existing from the number of devices of type 𝑑 used in 
total at each airport. 

 𝑠ௗ௞ = 𝑦ௗ௞ − 𝐸ௗ௞                  ሺDevice Installation Constraintሻ           (M1)  
 

provided 𝑦ௗ௞ ≥ 𝐸ௗ௞  (and 0 otherwise), for 𝑑 =1,2, … ,𝐷 and 𝑘 = 1,2, … ,𝑇. 
Using the notation provided, the installation, 

operating, and total fixed costs at each airport 𝑘 can 
be found such that the combined installation, 
operating, and fixed costs satisfy the total hourly 
budget, 𝑇𝐵௞, for airport 𝑘 = 1,2, . . . ,𝑇.  

For discussion, let {B, G, H’, H} denote the four 
screening groups: checked bag, carry-on bag, 
passenger ID check,  and passenger screening, 
respectively. In what follows, we use checked bag, 
group B, as an example. 

We next consider the number of new devices (for 
each screening group) to be installed at each airport, 𝑦ௗ௞(௝) , Equation (M2). This relies on the capacity 
performance of the screening devices, captured by the 
number of checked bags (screening group B) each 
device type can handle per hour, 𝐶ௗ, and the number 
of bags screened in each class within a particular 
airport, 𝐵௖௞. Dividing the hourly rate of bags screened 
in class c at airport k by the maximum throughput of 
device type 𝑑 yields the number of security devices 
of type 𝑑 = 1,2, … ,𝐷 necessary to screen all checked 
bags using this particular device, 

 

𝑦ௗ௞(஻) = ቦ෍ெೖ
௖ୀଵ 𝐵௖௞𝑥௖ௗ௞/𝐶ௗቧ   𝑑 = 1,2, … ,𝐷,  𝑘 = 1,2, … ,𝑇       (M2)(Resource Capacity Constraint) 

 
Lastly, Constraint (M3) reflects device resource 

availability, namely the number of new devices 
installed at all airports must be less than or equal to 
the total number of new devices available. 

 ෍்௞ୀଵ 𝑠ௗ௞ ≤ 𝑈ௗ , ∀𝑑 = 1,2, … ,𝐷            (M3) (Resource Availability Constraint) 
 
We next model the expectation of false alarms, 

time logistics and staffing needs at each check station 
within each screening group. 

 ෍ெೖ
௖ୀଵ (1 − 𝛼௖)𝑐𝑝௖෍௃௝ୀଵ ቌ1 − ෑௗ∈஽(௝) 𝑞ௗ𝑥௖ௗ௞ቍ   ≤ 𝛿  𝑘  = 1,2, … ,𝑇                                (M4) 

෍𝐻′௖௞ெೖ
௖ୀଵ 𝑐𝑝௖ ෍ௗ∈஽(௝) 𝑥௖ௗ௞ ×

⎝⎜
⎜⎜⎛1 + 𝑧ௗ

⎝⎜
⎜⎛ 𝑝ௗ෍ெೖ

௖ୀଵ 𝛽ுᇱ௖𝛼௖𝑐𝑝௖ +
(1 − 𝑞ௗ)෍ெೖ

௖ୀଵ (1 − 𝛼௖)𝑐𝑝௖⎠⎟
⎟⎞
⎠⎟
⎟⎟⎞𝑡ௗ  

           ≤ ෍ 𝐶ுᇲௗ∈஽(௝) 𝐾ௗ௞      𝑘 = 1,2, … ,𝑇  (M5) 

෍𝐵௖௞ெೖ
௖ୀଵ 𝑐𝑝௖ ෍ௗ∈஽(௝) 𝑥௖ௗ௞ ×

⎝⎜
⎜⎜⎛1 + 𝑧ௗ

⎝⎜
⎜⎛ 𝑝ௗ෍ெೖ

௖ୀଵ 𝛽஻௖𝛼௖𝑐𝑝௖ +
(1 − 𝑞ௗ)෍ெೖ

௖ୀଵ (1 − 𝛼௖)𝑐𝑝௖⎠⎟
⎟⎞
⎠⎟
⎟⎟⎞𝑡ௗ  

           ≤ ෍ 𝐶஻ௗ∈஽(௝) 𝐾ௗ௞     𝑘 = 1,2, … ,𝑇   (M6) 

෍𝐺௖௞ெೖ
௖ୀଵ 𝑐𝑝௖ ෍ௗ∈஽(௝) 𝑥௖ௗ௞ ×

⎝⎜
⎜⎜⎛1 + 𝑧ௗ

⎝⎜
⎜⎛ 𝑝ௗ෍ெೖ

௖ୀଵ 𝛽ீ௖𝛼௖𝑐𝑝௖ +
(1 − 𝑞ௗ)෍ெೖ

௖ୀଵ (1 − 𝛼௖)𝑐𝑝௖⎠⎟
⎟⎞
⎠⎟
⎟⎟⎞𝑡ௗ  

           ≤ ෍ 𝐶ீௗ∈஽(௝) 𝐾ௗ௞    𝑘 = 1,2, … ,𝑇        (M7) 

෍𝐻௖௞ெೖ
௖ୀଵ 𝑐𝑝௖ ෍ௗ∈஽(௝) 𝑥௖ௗ௞ ×

⎝⎜
⎜⎜⎛1 + 𝑧ௗ

⎝⎜
⎜⎛ 𝑝ௗ෍ெೖ

௖ୀଵ 𝛽ு௖𝛼௖𝑐𝑝௖ +
(1 − 𝑞ௗ)෍ெೖ

௖ୀଵ (1 − 𝛼௖)𝑐𝑝௖⎠⎟
⎟⎞
⎠⎟
⎟⎟⎞𝑡ௗ  

 ≤ ෍ 𝐶ுௗ∈஽(௝) 𝐾ௗ௞      𝑘 = 1,2, … ,𝑇 (M8) 
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Here, Constraint (M4) ensures that the false alarm 
probability is within the upper bound, 𝛿, set by the 
appropriate security authority. Constraints (M5) – 
(M8) guarantee that checking of baggage or 
passengers at each screening group is completed 
within the allotted time.  

Both false alarms and false clears at airport 
screening can pose significant challenges and risks, 
but they have different implications. While false 
alarms take up unnecessary resources, slow down 
airport operations, and lead to delays, inconvenience 
and stress for travellers, false clears typically are 
considered more serious as they can potentially allow 
dangerous items or individuals to bypass security 
measures, compromising safety. Our model 
emphasizes on maximizing safety. The objective 
function, Equation (OBJ2), describes the probability 
of false clear across each airport. 

 ෍ெೖ
௖ୀଵ 𝑐𝑝௖𝛼௖෍

௃
௝ୀଵ 𝛽௝௖ ෑௗ∈஽(௝) (1 − 𝑝ௗ)𝑥௖ௗ௞  ∀𝑘 ∈ 𝑇  (𝐎𝐁𝐉𝟐) 

 
Equation (M9) formulates the probability of 

detecting a threat within security class 𝑐 at airport 𝑘, 𝐿௖௞,   and is calculated as the probability that at least 
one of the device types used in that class detects the 
threat correctly.   

 𝐿௖௞(௝) = 1 −∏ௗ∈஽(௝) (1 − 𝑃ௗ) 𝑥௖ௗ௞              (M9) ∀ 𝑐 = 1,2, … ,𝑀௞ , 𝑘 = 1,2, … ,𝑇, 𝑗 ∈ {𝐵,𝐺,𝐻ᇱ,𝐻}     
The risk level of each class, 𝑅௖௞, is defined as the 

average perceived risk value of the passengers in 
security class 𝑐 at airport 𝑘 times the rate of baggage 
/ passenger screened within that class. This value is 
normalized between zero and one by dividing over 
the total risk associated with all security classes 
within airport 𝑘 , as shown in Equation (M10):  

         𝑅௖௞(஻) = 𝐴௖௞𝐵௖௞∑ெೖ௖ᇲୀଵ 𝐴௖ᇲ௞𝐵௖ᇲ௞                (M10) 

 
The risk level of each security class relies heavily 

on the assumption that the prescreening system 
provides an accurate (estimation of) risk perception 
of the passenger population. 

The threat detection objective function for the 
allocation model is obtained by weighting each 
airport by the rate at which passengers/checked 
bags/carry-on bags must be screened at that airport 
and the risk level associated with screening these 
groups using either new or existing detection devices. 
Using Equations (M9) and (M10), the objective 
function value at  each airport for checked bag 

screening is defined as the expected number of 
detected threats in Equation (M11), 

 𝑆𝐿௞(஻) = ෍ெೖ
௖ୀଵ 𝐿௖௞(஻)𝐵௖௞𝑅௖௞(஻)               (M11) 

 
By summing over all the screening groups and  
airports under consideration, the total security level 
captures the expected total number of detected 
threats, as given by Equation (OBJ3):  
 ∑ 𝑆𝐿௞௞்ୀଵ =  ∑௞்ୀଵ ∑ 𝑆𝐿௞(௝)௝ =∑ ∑ 𝐿௖௞(ுᇲ)𝐻′௖௞𝑅௖௞(ுᇲ)ெೖ௖ୀଵ௞்ୀଵ + 𝐿௖௞(஻)𝐵௖௞𝑅௖௞(஻) +𝐿௖௞(ீ)𝐺௖௞𝑅௖௞(ீ)+𝐿௖௞(ு)𝐻௖௞𝑅௖௞(ு).                         (𝐎𝐁𝐉𝟑) 

  
Combining the three objectives Equations 

(OBJ1), (OBJ2), and (OBJ3), the security measure 
allocation problem for multiple airports can be  
formulated as a nonlinear multi-objective integer 
program.   

 
Nonlinear Multi-Objective Portfolio Optimization 
for Security Measures Allocation  

Maximize  ෍ெೖ
௖ୀଵ ෍஽ௗୀଵ 𝑥௖ௗ௞𝑝ௗ × 𝑅𝐼𝑉ௗ        𝑘 = 1,2, … ,𝑇 (𝐎𝐁𝐉𝟏) 

       −෍ெೖ
௖ୀଵ 𝑐𝑝௖𝛼௖෍

௃
௝ୀଵ 𝛽௝௖ ෑௗ∈஽(௝) (1 − 𝑝ௗ)𝑥௖ௗ௞  𝑘        = 1,2, … ,𝑇                     (𝐎𝐁𝐉𝟐) ෍ெೖ

௖ୀଵ ෍஽ௗୀଵ 𝑆𝐿௞𝑥௖ௗ௞        𝑘 = 1,2, … ,𝑇    (𝐎𝐁𝐉𝟑) 

                      
Subject to  𝑠ௗ௞ ≥ 𝑦ௗ௞ − 𝐸ௗ௞, 𝑑 = 1,2, … ,𝐷, 𝑘 = 1,2, … ,𝑇 

(M1) 

𝑦ௗ௞ = ቦ෍ெೖ
௖ୀଵ 𝑗௖௞𝑥௖ௗ௞/𝐶ௗቧ ,𝑑 = 1,2, … ,𝐷(𝑗),                  𝑗 ∈ {𝐵,𝐺,𝐻ᇱ,𝐻},   𝑘 = 1,2, … ,𝑇     (M2) ෍்௞ୀଵ 𝑠ௗ௞ ≤ 𝑈ௗ          𝑑 = 1,2, … ,𝐷.         (M3) 

෍ெೖ
௖ୀଵ (1 − 𝛼௖)𝑐𝑝௖෍௃௝ୀଵ ቌ1 − ෑௗ∈஽(௝) 𝑞ௗ𝑥௖ௗ௞ቍ   ≤ 𝛿     𝑘 = 1,2, … ,𝑇                                (M4) 
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෍𝑗௖௞ெೖ
௖ୀଵ 𝑐𝑝௖ ෍ௗ∈஽(௝) 𝑥௖ௗ௞
×
⎝⎜
⎜⎜⎛1 + 𝑧ௗ

⎝⎜
⎜⎛ 𝑝ௗ෍ெೖ

௖ୀଵ 𝛽௝௖𝛼௖𝑐𝑝௖ +
(1 − 𝑞ௗ)෍ெೖ

௖ୀଵ (1 − 𝛼௖)𝑐𝑝௖⎠⎟
⎟⎞
⎠⎟
⎟⎟⎞𝑡ௗ  

≤ ෍ 𝐶௝ௗ∈஽(௝) 𝐾ௗ௞ , 𝑗 ∈ {𝐵,𝐺,𝐻ᇱ,𝐻},𝑘 = 1,2, … ,𝑇  (M5) − (M8) 

෍஽ௗୀଵ (𝑦ௗ௞𝐹ௗ + 𝑠ௗ௞𝐼ௗ) + ෍ெೖ
௖ୀଵ ෍஽ௗୀଵ 𝑥௖ௗ௞𝑂ௗ𝐵௖௞ ≤ 𝑇𝐵௞,    𝑘 = 1,2, … ,𝑇                                  (M12) 𝑥௖ௗ௞ ∈ {0,1}, 𝑦ௗ௞ ∈ 𝑍ା, 𝑠ௗ௞ ∈ 𝑍ା 

 
Constraint (M1) is the device installation 

constraint, and Constraint (M2) reflects the resource 
capacity based on the screening rates for each of the 
four screening groups. Constraint (M3) models the 
overall resource availability. Constraint (M4) ensures 
that the false alarm probability is within an upper 
bound, 𝛿 , set by the appropriate security authority. 
Constraints (M5) - (M8) guarantee that screening for 
each group at each station is completed within the 
allotted time. Constraint (M12) describes the budget 
at each airport.  

The resulting integer program is nonlinear due to 
the product of the 𝑥௖ௗ௞ decision variables contained 
in the false alarm constraint in (M4), and in the threat 
detection term, 𝐿௖௞ , in (M9). Constraint (M3) 
effectively ties together the decision variables across 
all airports, potentially impacting the ability to 
decouple the problem and solve for each individual 
airport. 

2.4 Computational Challenges 

Computationally, the formulated nonlinear MIP 
instance (with 45,760 decision variables and 35,666 
constraints) is intractable by existing commercial or 
research solvers. To linearize the risk structures, a 
decomposition is necessary. Dantzig-Wolfe 
decomposition can be applied to reduce the original 
decision variables to a single composite binary 
decision variable representing whether or not a 
specific security measure combination for the threat 
classes at airport 𝑘  is applied. This changes the 
problem structure and looks at a full enumerated 
security measure combination list for all 440 airports. 
There are 1,048,576 possible security measure 
combinations for two classes of passengers and 26 
security measures. The resulting decomposed model 

has 461,373,440 binary and integer decision variables 
and 466 constraints.  

We apply sensible and knowledge-based 
preprocessing to reduce the number of decision 
variables to 128,480,000. Decomposition increases 
the number of decision variables, but drastically 
decreases the number of constraints, hence reducing 
the size of the Simplex basis. However, the model 
remains intractable. We derive fast heuristics to 
obtain near-optimal solutions that offer the best set of 
security measures (with respect to the objectives) for 
each airport. 

2.4.1 Optimization Strategies 

Numerous studies have been  conducted to compare 
and contrast various optimization approaches for 
solving multi-objective models. Sawik provides a 
comprehensive analysis of weighting, lexicographic, 
and reference point approaches to multi-objective 
portfolio optimization (Sawik, 2011). A hierarchical 
or lexicographic approach assigns a priority to each 
objective and optimizes the objectives in decreasing 
priority order. At each step, the best solution is found 
for the current objective, but only from the solutions 
that do not degrade the solution quality for higher-
priority objectives. Lexicographic optimization 
generates efficient solutions by sequential 
optimization of the objectives. For our 
implementation, we normalize the three objectives 
into comparable values and weigh them equally for 
unbiased analyses.   
 
Multi-Swarm Particle Swarm Optimization  
Particle swarm optimization (PSO) is a fast heuristics 
that works by having a population of candidate 
solutions (particles) and moving the particles around 
in the search space based on the particles’ position 
and velocity.  

The PSO is initialized with a group of random 
particles (mixed-integer variable solutions). The 
algorithm searches for optima by updating the 
generations of particles. In each iteration, the particles 
are updated by two “best” values.  First, the algorithm 
records the best solution (fitness, objective function 
value) achieved by the particle thus  far. The objective 
value is stored as pbest. Second, the algorithm also 
records the best value obtained thus far by any 
particle in the population, known as the global best 
and stored as gbest. When a particle takes part of the 
population as its topological neighbors, the best value 
is a local best and is denoted by lbest. The formulation 
of the swarm is determined by the specific problem, 
and in this study, each particle represents a complete 
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set of portfolio  (a set of security measures) selected 
for all the airports. Therefore, each particle of a 
swarm (denoted by index i) must include the decision 
variables rikj = 1(0)  denoting if security measure 
combination portfolio j is (not) selected for airport k, 
and zidk ∈ 𝑍ା denoting the quantity of each security 
measure assigned to airport k. 

After finding the two best values, the particle 
updates its velocity and position according to  
Equations (P1) to (P3). Here 𝜔ଵ  and 𝜔ଶ  denote 
uniform random numbers between 0 and 1.  t denotes 
the iteration number while 𝑣𝑧௜ௗ௞௧  denotes the velocity 
of variable z within particle i, and 𝑣𝑟௜௞௝௧   denotes the 
velocity of variable r within particle i.  𝑣𝑧௜ௗ௞௧   will be 
updated if security measure d is selected by the 
portfolio of security measures within particle i at 
iteration t+1. Thus, particle i moves at iteration t+1 
as follows: 

 𝑣𝑟௜௞௝௧ାଵ = 𝑣𝑟௜௞௝௧ + 𝑐ଵ𝜔ଵ൫𝑟୮ୠୣୱ୲ − 𝑟௜௞௝௧ ൯+ 𝑐ଶ𝜔ଶ൫𝑟௚௕௘௦௧ − 𝑟௜௞௝௧ ൯               (P1) 𝑟௣௜௧ାଵ = 𝑟𝑜𝑢𝑛𝑑 ቀ ଵଵା௘షഇ − 𝛼ቁ ,𝑤ℎ𝑒𝑟𝑒 𝜃 = 𝑟௜௞௝௧ +                            𝑣𝑟௜௞௝௧ାଵ 𝑎𝑛𝑑 𝛼 is set to 0.06            (P2) 𝑣𝑧௜ௗ௞௧ାଵ = 𝑣𝑧௜ௗ௞௧ + 𝑐ଵ𝜔ଵ൫𝑧௣௕௘௦௧ − 𝑧௜ௗ௞௧ ൯          +𝑐ଶ𝜔ଶ൫𝑧௚௕௘௦௧ − 𝑧௜ௗ௞௧ାଵ൯  𝑖𝑓  𝑟௜௞௝௧ାଵ = 1 𝑣𝑧௜ௗ௞௧ାଵ = 𝑣𝑧௜ௗ௞௧   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                                   (P3) 
 

For a given particle, if the velocity on the 
dimension r௜௞௝௧  is zero, this particle will not move in 
that dimension at iteration 𝑡 + 1. Suppose 𝑣𝑟௜௞௝௧ = 0 
and r௜௞௝௧ = 0, hence 1/(1 + 𝑒଴) = 0.5 and round(0.5) 
= 1, which means that particle i will move in 
dimension 𝑟௜ ൫𝑟௣௜௧ାଵ = 1൯ at iteration t+1.  To avoid 
such an unwanted move, we can use 𝛼, as seen in 
Equation (P2). 

The search terminates when stop criteria are 
satisfied: when the maximum number of iterations 
has been reached, or the minimum error condition is 
satisfied. An advantage of PSO is that not many 
parameters require tuning. The number of particles 
(solutions to record) is in the range of 20 to 40; while 
difficult problems may require 100 – 200. In our 
instances, the dimension of the particles (dimension 
of solution set) is prohibitively large, requiring us to 
keep the number of particles to a minimum size.  The 
range of particles is determined by the upper and 
lower bounds of the decision variables. vmax 
determines the maximum change one particle can 
take during one iteration.  We require two vmax due to 
the presence of both binary and integer variables. 

The multi-swarm PSO (MSPSO) modification is 
a more recent popular approach (Pluhacek, 2016).  In 

the multi-swarm approach, the population is divided 
into multiple sub-populations (sub-swarms) with 
different levels of communication. The benefit of this 
approach is that the population can maintain 
divergence, search for multiple promising regions, 
and partially converge to multiple optima. In (García-
Nieto and Alba, 2012), the optimal swarm (sub-
swarm) size is discussed in great detail. It is proposed 
that six particles per swarm might be the optimal 
number for PSO-based algorithms. Pluhacek 
demonstrates that the multi-swarm performance was 
superior to the single swarm PSO in all cases 
(Pluhacek, 2016). We decide to utilize a multi-swarm 
PSO, with five sub-swarms, and varying particle sizes 
from 5 to 10 particles per swarm. The control 
parameters are set as follows: 
 Population Size: {5,6,7,8,9,10} 
 Iterations: 5 
 vinitial:  10% of the position 
 wmax:  0.9  
 wmin:  0.4 
 c1, c2 = 1.49445 (learning factors) 
 

The multi-swarm PSO is based on the local 
version of PSO with a new neighborhood topology.  
Many existing evolutionary algorithms require large 
populations, while PSO needs a comparatively 
smaller population size. A population with three to 
five particles can achieve satisfactory results for 
simple problems. According to many reported results, 
PSO with small neighborhoods performs better on 
complex problems. Hence, to slow down 
convergence speed and increase diversity to achieve 
better results on multimodal problems, in the 
MSPSO, small neighborhoods are used. The 
population is divided into small-sized swarms. Each 
sub-swarm uses its own members to search for better 
regions in the search space.   

The multi-swarm optimization algorithm works 
as follows:  

Input: MOP (1) 
    Swarm_size: number of the swarm particles 
    No_subswarms: number of subswarms 
Step 1: Calculate Subswarm size=     
     Swarm_size/No_subswarms 
Step 2: For subswarm = 1 to No_subswarms do 

For t=1 to Max_iterations do 
     Apply PSO algorithm  
      Update leaders archive 
      Update external archive 
End For 

      Return final result in the external archive 
      Append the result to the results file 
End For 
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Ad-Hoc Heuristics Approaches 
For comparison, we apply column generation and 
additional solutions techniques to contrast solution 
speed and quality. To expedite the column generation 
method, we consider breaking apart the domain to 
accommodate a large number of options.  This 
separation inspires two heuristics briefly described 
below. 

Heuristic 1: The full set of portfolio options are 
randomized, and broken into buckets of 250 
combinations each. The associated set is optimized 
across all 440 airports. This allows for rapid solution 
time as we can massively run all these column 
generation subproblems. Not all fidelity is lost since 
we maintain all 440 airports in each subproblem and 
keep quantity assignment variables intact. 

Heuristic 2:  Portfolios are again randomized and 
separated into buckets, and this time, along with the 
airports as well.  Each subproblem then represents a 
subset of both the airports and the possible portfolio 
combinations. 

In both randomized heuristics, optimization is 
performed at every iteration. The selected 
combinations (not the quantities of security 
measures) are placed into a pool of optimal 
combinations.  The pool of portfolios is then used in 
a final optimization to construct a complete solution.   

3 COMPUTATIONAL ANALYSES 

3.1 Data for Modeling 

Data were collected from aviation articles that 
presented strong models (McLay et al., 2006; Nie et 
al., 2009; Poole & Passantino, 2003; Sewell et al., 
2012, 2013; Virta et al., 2003). With the assistance of 
our TSA collaborators, the fixed and installation costs 
are determined through the expected useful life of the 
device and on the amount of time the device would 
spend in operation over one year. These values reflect 
the yearly cost (in US dollars) divided by the total 
number of hours spent in operation over the year, 
based on a peak 6 hours of operation per day, per 
device.  

Passengers are assigned to a two-class system 
based on perceived risk information generated 
through the Secure Flight a prescreening system. This 
classifies passengers as being either high-risk or low-
risk, where the majority of passengers constitute the 
latter group. In the computational analysis reported 
herein, 85% of passengers are deemed low-risk and 
assigned to Class 1, while the remaining 15%  of 

passengers are assigned to the high risk security Class 
2. 

The total number of passenger enplanements 
reflects the actual enplanement data from 2016-2019 
collected from faa.gov (Transportation, n.d.). The 
hourly airport budget is based on an estimated annual 
budget value to be distributed across all airports.  
Individual airport budgets are simply distributed 
based on the proportion of passengers with a set 
minimum value. The total number of passengers 
screened per hour at an airport is based on the average 
airport being operational 365 days a year and having 
16 regular working hours per day. The operating cost 
of each security screening device or method is based 
on the annual operating cost of that device/method 
divided by the average hourly passenger screening 
rate. The maximum and minimum hourly screening 
rates per device are pulled from actual manufacturer 
device specifications.  Lastly, the perceived risk 
values are generated from a normal distribution with 
mean 0.26 and standard deviation 0.12 for the low-
risk passengers assigned to Class 1, and with mean 
0.55 and standard deviation 0.12 for the high-risk 
passengers assigned to Class 2. 

Combinations of all possible subsets of device 
types are generated for evaluation. The combinations 
of the security measures are grouped by screening 
group and are estimated by assuming which security 
measures should always be constant and which are 
optional. For example, as seen in Table 3 below, for 
the checked baggage screening, it was assumed that 
all checked bags are screened by a CT scanner with 
additional screening performed by hand search. 
Therefore, all combinations must have both methods 
employed. Canine units and Explosive Trace 
Detection are both treated as secondary screening 
measures since they are not typically a primary line 
of defense at any airport, and there is no way to 
provide support to all airports. Based on this 
information, there are then four possible 
combinations of checked baggage security measures 
that can be employed. This same approach was 
conducted for all screening measure groups. 

Table 3: Example of Security Measure Combination 
Restriction. 

 
 

A potential combination of device types is chosen 
from these 1024  possible configurations for each 
passenger class for every airport, where each airport 
may have a different combination from any other 

Disruption Rate 1-DR Security Measure 1 2 3 4
SM1 50% 50% Hand Search 1 1 1 1
SM2 80% 20% Canine Unit (unit consists of two to four teams, 1 handler/2 Dogs per team) 0 0 1 1
SM3 70% 30% Explosive Trace Detection (open bag trace) 0 1 0 1
SM4 80% 20% Computed Tomography (CT) Scan (Electronic Detection System) 1 1 1 1
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airport. We obtain the number of device types used at 
each airport by dividing the hourly rate of passengers 
screened at that airport by the device hourly 
throughput rate. 

3.2 Results 

The nonlinear mixed integer programs were 
generated in Python 3.7.3 using the gurobipy module 
and solved with Gurobi 9.0. The Gurobi parameters 
were kept at their default values, apart from turning 
the pre-solve option off so that Gurobi would spend 
less time expanding the node structure.  

The data for all independent scenario instances 
remained consistent and incorporated all 440 airports. 1024ଶ different combinations were produced, based 
on the security measures available.  Table 4 shows an 
example output. 

Table 4: A Snapshot of one solution output for each airport.  

 
 

The model allows scenario-based risk assessment and 
evaluation analyses which will be discussed in detail 
in a future paper. Herein, we report briefly the 
computational results obtained from 11 solution 
methods. 
 Model 1: Multi-Swarm PSO – 5 particles  
 Model 2: Multi-Swarm PSO – 6 particles  
 Model 3: Multi-Swarm PSO – 7 particles  
 Model 4: Multi-Swarm PSO – 8 particles  
 Model 5: Multi-Swarm PSO – 9 particles  
 Model 6: Multi-Swarm PSO – 10 particles  
 Model 7: Combined Solution MSPSO 
 Model 8: Heuristic 1  
 Model 9: Heuristic 2 
 Model 10: Column Generation Pricing with 

Multi-Swarm PSO 
 Model 11: Column Generation Branch-and-Price 

Exact Algorithm 
 
Table 5 presents the computational results for theses 

11 different model formulations and solution 
strategies. For comparison, we use equally-weighted 

outputs after normalizing the objectives into a scalar 
to improve the ability to compare values.  The first six 
are multi-swarm PSO results with varying population 
size.  The first four columns display the equally-
weighted multi-objective results.  Population size 
does not appear to be significant for running the 
MSPSO algorithm. In fact, more particles do not 
guarantee better results.  Heuristic 1 and Heuristic 2 
are the ad-hoc greedy heuristics. The Combined 
MSPSO took all the portfolio results from each of the 
MSPSOs and solved the optimization problem based 
on all the options. The CG Price MSPSO model took 
the column generation construct but solvedd the 
pricing problem using the MSPSO instead of having 
to solve the individual subproblems for each airport. 
CG Final is the full column generation solution using 
the standard column generation algorithm and applied 
to the Dantzig decomposition to achieve the optimal 
solution. Since these are heuristic results, they may 
not lie on the Pareto efficient frontiers. CG Final 
result (a non-dominated solution) provides the best 
overall results, since the instance is solved to 
optimality. The MSPSO solutions tend to bias 
towards Obj1, while Combined MSPSO improves the 
solution with good scores for both Obj1 and Obj3. 
The two ad-hoc heuristics offer excellent scores for 
Obj3 with reasonable Obj1.  

Table 5: Summarized Model Results. 

 
 

 
Figure 2: Triangle Radar Plot, Performance Metric 
Comparison. 

The triangle radar plot in Figure 2 displays the 
normalized results. If the model line reaches 1, then 

Obj 1 Obj 2 Obj 3
Max Risk 
Posture

Min Prob 
False Clear

Max Threat 
Detection

Overall 87207.61 -436.8090570 236837341.60 236924112.40
1 277.05 -0.9889654 25013040.24 25013316.30
2 277.05 -0.9889654 14250702.99 14250979.05
3 277.05 -0.9889654 15596221.45 15596497.51
4 277.05 -0.9889654 9096180.76 9096456.83
5 277.05 -0.9889654 11182118.68 11182394.74
6 277.05 -0.9889654 9215989.36 9216265.43
7 277.05 -0.9889654 9869503.37 9869779.44
8 277.05 -0.9889654 5863353.98 5863630.05
9 277.05 -0.9889654 6824083.49 6824359.55
10 277.05 -0.9889654 8128292.47 8128568.54
11 277.05 -0.9889654 7196422.29 7196698.35
12 277.05 -0.9889654 7419652.11 7419928.18

Airports Overall

Obj 1 Obj 2 Obj 3 Total Obj 1 Obj 2 Obj 3 Total
MSPSO 5 0.792 0.121 0.533 1.446 0.968 0.123 0.565 1.657
MSPSO 6 0.777 0.150 0.257 1.184 0.949 0.153 0.0 1.102
MSPSO 7 0.620 0.070 0.432 1.122 0.743 0.071 0.358 1.171
MSPSO 8 0.793 0.098 0.441 1.332 0.970 0.100 0.376 1.446
MSPSO 9 0.513 0.001 0.614 1.128 0.602 0.0 0.730 1.333
MSPSO 10 0.684 0.059 0.628 1.370 0.826 0.060 0.758 1.644
Combined MSPSO 0.676 0.475 0.734 1.885 0.816 0.485 0.976 2.278
Heuristic 1 0.603 0.480 0.746 1.828 0.720 0.490 1.0 2.210
Heuristic 2 0.598 0.467 0.696 1.761 0.713 0.477 0.898 2.089
CG Price MSPSO 0.535 0.519 0.675 1.729 0.631 0.531 0.855 2.016
CG Final 0.816 0.978 0.645 2.439 1.0 1.0 0.793 2.793

Normalized Model ResultsModel Results

Obj 1

Obj 2Obj 3

PSO 5

PSO 6

PSO 7

PSO 8

PSO 9

PSO 10

H1

H2

Combine PSO Final

CG Price PSO

CG Final
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the objective has reached the maximum value 
amongst the various models. If a line is barely 
registering (achieving very low value), then the 
objective value result is basically inconsequential in 
comparison.These scenarios allow us to observe how 
security measure allocations differ when varying the 
number of inputs into the overall model. This 
technique gives us insight into determining if it is 
beneficial to dedicate the time to find an optimal 
solution. The PSO methods take the least amount of 
time, and if the solutions are potentially just as strong, 
then it is possible that they can be utilized regularly. 
The decision-makers are also able to witness multiple 
options and consider what results remain consistent 
throughout the runs or what results change drastically 
depending on the model. 

3.3 Summary of Findings 

The classical portfolio optimization model uses the 
variance as the risk measure and relies on the 
covariance matrix. Without reliable estimates for the 
covariance/correlation, we utilize  network topology 
analysis techniques to make a pseudo correlation 
matrix. We construct and introduce a network of 
interdependent risk factors that can be represented by 
a weighted adjacency matrix. This matrix is then 
combined with the topological overlap matrix, a 
similarity measure construct that allows us to define 
and quantify the topological and interdependent 
relationships between the security measures and the 
risk factors. 

As a means to integrate the risk factors and 
security measures that are put in place by TSA, we 
introduce the term “Risk Posture” and a method to 
calculate it.  Risk Posture is calculated based on the 
optimal security measure portfolios selected and their 
interdependent relationship with the TSA risk 
taxonomy. With Risk Posture, we maximize the 
resilience of the system so that no matter the risk, 
TSA/the country should be able to face it. There are 
no standard Risk Posture calculations, and the term 
has been associated with Cyber-security readiness 
(since 2018). Our goal is to maximize the overall 
improvement in risk posture by minimizing risk.  

Nearly all security measures have been addressed 
in small groupings in previous research over the past 
20 years, but none all together in a single enterprise 
risk optimization model. Stewart and Mueller 
(Stewart & Mueller, 2017) are the only  publication/s 
that include all security measures, though no 
mathematical analyses and tradeoffs have been 
performed. No prior optimization model has 
attempted to incorporate multiple screening areas into 

a single model. Our work is the first to incorporate 
Stewart and Mueller’s (Stewart & Mueller, 2017) 
reliability construct to include Checked baggage, 
Carry-on baggage, and Passenger screening. ERM 
portfolio optimization models are typically tied to the 
Insurance and Finance industries and follow a very 
traditional modeling approach (Al-Qudah, 2023; 
Oliva, 2016; Olson & Wu, 2010; Soliman & Adam, 
2017). There is currently no ERM portfolio 
optimization model in aviation security measures. 
Our model is comprehensive in which previous 
Sewell’s SADM and Nie’s operational models are 
sub-models within our global ERM-based model.  

The output of the model allocates available  
security measures/screening devices across airports 
nationwide to  
 Maximize the risk posture of the TSA (threat 

detection capability concerning the 
interdependent network of TSA risk elements)  

 Minimize the probability of false clears  
 Maximize the total security level (probability 

of threat detection)  

4 CONCLUSIONS 

This paper offers a pioneering approach to optimizing 
enterprise risk management (ERM) in aviation 
security through a comprehensive multi−objective 
portfolio investment model. By integrating various 
aviation transportation risks and modeling their 
interdependencies, the ERM-based model provides a 
robust framework for allocating security measures 
efficiently across the U.S. aviation sector. The 
model’s strength lies in its ability to correlate 
resource allocation with risk mitigation, maximizing 
risk posture while minimizing false clears and 
enhancing threat detection rates.   

The comprehensive ERM-based resource 
allocation model expands upon previous research and 
combines all previous models into a single multi-
objective portfolio investment optimization model 
framework. We utilize the concept of topological 
overlap network to establish interdependencies 
among the various aviation transportation risks. We 
also introduce Risk Posture, capturing the cascading 
and inter-dependency of the multi-tier risk taxonomy 
and overlaying security measures, to quantify the 
TSA’s resilience and capabilities against any 
potential risks. The biggest knowledge gap in 
previous research is that any type of optimization 
model concerning enterprise risk management was 
performed only at an operational level. This work 
represents the first model that encompasses a full 
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multi-tier enterprise risk management approach 
across strategic, tactical, and operational levels. It is 
also the first model to establish and concentrate on 
risk posture. The security measure and device 
allocation problem, combined with a passenger risk 
assessment policy, can be used to structure a risk-
based screening strategy to use limited screening 
resources effectively. The model is generalizable and 
can accommodate additional / different measures, 
new technology, or new airport setups. 

This paper presents a practical solution 
methodology for solving the security screening 
device allocation model across multiple airports. 
Given budget constraints, including the installation, 
operation, and fixed costs associated with screening 
devices and procedures at  airport checkpoints, the 
ERM-based model facilitates the allocation of new 
devices and procedures across airports nationwide to 
maximize the total security level  over all the airports 
under consideration. To accomplish this, we compute 
a risk factor for security classes using either the new 
or existing detection devices, based on the hourly 
throughput rate of each of the device types and the 
perceived risk of the passengers. The passenger risk 
is obtained using a prescreening system and allows 
security operations to partition passengers into high 
or low-risk categories for undergoing higher or lower 
intensity screening.  

We present a Dantzig-Wolfe decomposition 
approach to tackle the resulting nonlinear intractable 
instances, where optimal solutions are shown to be 
obtained in several seconds through multiple 
computational examples. The fast solution engines 
and interpretable results ensure scalability and 
adaptability of the proposed framework to other 
contexts beyond aviation security.  

The findings have significant implications for 
policy and practice, particularly in enhancing aviation 
security in a post−9/11 landscape. By demonstrating 
a quantifiable improvement in risk management 
through strategic resource allocation, this work adds 
new and critical knowledge to the field of risk 
assessment and optimization in aviation security. 
Future research will be conducted to expand on this 
foundation to explore adaptive strategies in response 
to evolving security threats and the integration of 
real−time data analytics for dynamic risk assessment. 

In Leonard and Lee (2020), we applied this  
quantitative ERM-based framework  for  optimizing  
security  measure  investments to  achieve  the  most  
cost-effective  deterrence  and  detection  capabilities  
for  the  U.S.  Customs  and  Border  Patrol (CBP).  
We  modeled  the CBP  ERM  in  3  tiers:  satellites  
monitoring  the  geographic  area  of  the  border;   

High  Altitude Long Endurance drones with high-fuel 
capacity for extended surveillance; and  the  ground  
layer   of  a  variety  of  security  surveillance  systems  
and  manned  outposts.  Under  physical  /  cyber  /  
resource  /  logistics  constraints,  the ERM-based 
model  optimizes  the  allocation  of  limited  
quantities  of  deterrence  and  detection  security  
measures  across  the  entire  southern  continental  
U.S.  border  so  as  to  (1) maximize  the  total  utility  
of  the  measures  utilized,  (2) maximize the 
probability of deterrence  and/or detection, and (3) 
minimize cost.  

The  CBP work introduces  the concept of  utility  
for   each security measure as a means to rate its 
impact, and incorporates the  probability  of  success,  
along  with  multiple  objectives.  To  the  best  of  our  
knowledge,  our  work  presents  the  first  
mathematical  model  that  optimizes  security  
strategies  for  the  CBP  and  is  the  first  to  introduce  
a  utility  factor  to  emphasize  deterrence  and  
detection  impact.  It also  offers insights into the 
broader applicability of our ERM-based 
computational framework. 
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