
FPGA Implementation of AES-Based on Optimized Dynamic s-Box

Calvo Mayaudón Haroldo1, Nakojah Chris David1, Mahdi Madani2 a and El-Bay Bourennane2

1Faculty of Science and Technology, University of Burgundy, Dijon, France
2ImViA Laboratory (EA 7535), University of Burgundy, 21000 Dijon, France

Keywords: Dynamic S-Box, FPGA Implementation, AES Algorithm, Hardware Metrics, Timing Performance,
Cryptographic Analysis.

Abstract: In this paper, we present a hardware implementation of an enhanced version of the AES (Advanced Encryp-
tion Standard) algorithm, and evaluate its performance. In the proposed design, we replaced the original static
S-boxes with a robust dynamic S-box generator mechanism. The principle consists of using the secret key
to generate new dynamic S-boxes by applying a bitwise XOR operation with all 256 bytes of the AES stan-
dardized S-box. Then, the architecture is implemented on a Xilinx XC7Z020 PYNQ-Z2 FPGA platform to
accelerate the calculations, and its robustness is evaluated using many security tests. The experimental results
prove the satisfaction of our design for several cryptographic properties, such as nonlinearity, bijectivity, and
strict avalanche criterion that confirm its resistance against the main cryptanalysis attacks.

1 INTRODUCTION

Communication or information sharing is a key as-
pect of life that comes in various forms, such as text
format, images, and videos. Images are the most com-
monly used visual form of communication in today’s
digital age. Digital or wireless communication comes
with its own security challenges, with the transmit-
ted information being vulnerable to attacks; hence,
its confidentiality and integrity are of great concern.
Data encryption, or simply cryptography, is a method
of transforming data (plaintext, either texts or images)
into a language (ciphertext) that is not recognizable
or cannot be read by unauthorized parties without the
permission of the sender (key). There are different
cryptography methods. In Symmetric cryptography,
the same key is used for encryption and decryption,
where the sender and receiver must share the same
key.

Symmetric cryptography includes two types of ci-
phers: block ciphers and stream ciphers. Block ci-
phers convert plaintext into ciphertext in fixed block
sizes. AES (Rijmen and Daemen, 2001) and DES are
examples of symmetric cryptography that operate on
fixed block sizes of 128 and 64 bits, respectively. The
role of block cipher encryption and decryption is to
provide diffusion and confusion functions. The con-

a https://orcid.org/0000-0001-9727-8567

fusion is enforced by establishing a nonlinear func-
tion between the plaintext and the ciphertext; the dif-
fusion consists of spreading the influence of a small
change to the plaintext throughout the whole cipher-
text. Stream ciphers, on the other hand, convert plain-
text into ciphertext one bit or byte at a time. Asym-
metric cryptography uses a pair of keys for encryp-
tion. A public key for encryption and a private key for
decryption. Diffie Hellman, RSA, and RCC are ex-
amples. The Advanced Encryption Standard (AES),
developed by Rijndael and adopted by the National
Institute of Standards and Technology (NIST) since
2001, has been approved as the standard encryption
algorithm (Dubertret, 2023).

Recently, the hardware implementation of encryp-
tion algorithms has gained a wave of attention from
researchers and developers because of their high per-
formance and efficiency compared to software-based
solutions. The AES can be implemented efficiently
both in hardware and software. Software imple-
mentation takes the smallest resources, but it of-
fers only limited physical security. Because of the
growing requirements for high-speed, high-volume
secure communication combined with physical secu-
rity, the hardware implementation of cryptographic
algorithms becomes essential (Rahimunnisa et al.,
2014). FPGAs are desired because of their low en-
ergy consumption and parallel processing capabili-
ties, which offer an ideal platform for implementing

730
Haroldo, C., David, N., Madani, M. and Bourennane, E.
FPGA Implementation of AES-Based on Optimized Dynamic s-Box.
DOI: 10.5220/0012780300003767
Paper published under CC license (CC BY-NC-ND 4.0)
In Proceedings of the 21st International Conference on Security and Cryptography (SECRYPT 2024), pages 730-737
ISBN: 978-989-758-709-2; ISSN: 2184-7711
Proceedings Copyright © 2024 by SCITEPRESS – Science and Technology Publications, Lda.

cryptographic algorithms like AES. The Implementa-
tion on FPGA devices can achieve high throughput
rates, making them ideal for confusion and diffusion
in real-time tasks in digital communication. It is use-
ful in areas where greater emphasis is placed on the
speed of communication.

In this study, we improved the design of the AES
block cipher and performed its hardware implemen-
tation. Then, we assessed its material metric and ex-
plored its parallelism properties to accelerate runtime
execution. The main principle consists of replacing
the static S-box with a dynamic one. The proposed
principle consists of the use of the secret key to gen-
erate new dynamic S-boxes by applying bitwise XOR
operations with all 256 bytes of the AES-standardized
S-box. The dynamically generated S-boxes demon-
strate at least the same or greater cryptographic char-
acteristics as the standard AES S-box while increas-
ing the complexity needed to break the algorithm.
Also, no additional information should need to be ex-
changed between the sender and receiver of the en-
crypted data other than the secret key. The choice of
the Dynamic S-box encryption mechanism in this re-
search is due to the security improvement that it can
provide, and we apply the proposed technique to the
AES algorithm because it is a known and widely used
encryption algorithm with weaknesses. The dynamic
s-box introduces variability, which strengthens the se-
curity of the encryption by disrupting the patterns that
can be followed by cryptanalysts to break the encryp-
tion. Also, the dynamic s-box uses some other cryp-
tographic properties, such as bijectivity, nonlinearity,
strict avalanche criteria, and correlation immunity, to
ensure the confidentiality of the encrypted data on the
FPGA and resist attacks.

The proposed architecture is designed using the
Vitis High-Level Synthesis (HLS) with a C++ lan-
guage and implemented on a Field Programmable
Gate Array (FPGA) technology (Smith and Johnson,
2018), (Chen and Wang, 2019) through the Xilinx
XC7Z020 PYNQ-Z2 hardware platform. The robust-
ness of the proposed architecture is tested by evalu-
ating its keystream performance by analyzing three
different dynamic s-boxes.

The remainder of this paper is organized as fol-
lows. Section 2 presents the whole related work,
and Section 3 presents briefly the architecture and
the processing steps of the standard AES block ci-
pher. Section 4 describes the proposed architecture,
including the dynamic S-box designed to enhance
the security of the regular architecture. Section 5
presents the Vitis HLS and FPGA implementation re-
sults and the hardware metrics (logic resources, effi-
ciency, throughput, frequency, etc.). Section 6 inves-

tigates cryptanalytic analysis, allowing us to prove the
robustness of the proposed scheme. Finally, Section 7
summarizes the whole article and gives directions for
our future work.

2 PREVIOUS RELATED WORKS

In the field of cryptography, there have been several
studies on the implementation of the Advanced En-
cryption Standard (AES) using hardware-based solu-
tions. The challenging factor has been to increase
throughput with low latency, considering low-cost de-
vices. An adaptive and convenient way to achieve
that is by optimizing the s-box. Hence, various re-
searchers have introduced several methods to achieve
this common goal. A few of these works are discussed
in this section.

An FPGA-based AES accelerator’s comprehen-
sive design and analysis are presented in Wang et
al.’s work (Wang and Ni, 2004). The authors pro-
vide a cutting-edge method for employing a dynamic
S-box to perform the AES algorithm on an FPGA.
Unlike classic fixed-function AES accelerators, this
method enables the accelerator to adjust to various
key sizes and rounds. Memory-mapped I/O (MMIO)
interfaces are used to implement the dynamic S-box,
enabling the CPU to read and write data to the S-box.
To achieve minimal area, various optimization strate-
gies for AES of 32-bit data channels are shown in
(Bui et al., 2017). These techniques involve reducing
the amount of control logic and registers by decreas-
ing activity and implementing a clock gating scheme
for the data storage register. An FPGA with a high-
performance implementation of AES-128 is proposed
by Li et al. (Li et al., 2017). To get high throughput.
The authors combined pipelining and parallelism. In
(Zhang et al., 2016), the authors achieved their objec-
tive of AES implementation on FPGA by combining
techniques such as pipelining, parallelism, and look-
ahead logic to optimize the AES algorithm’s criti-
cal paths. In (Smith and Johnson, 2018), this paper
suggests a dynamic S-Box-based FPGA implementa-
tion of AES that is effective and suitable for Inter-
net of Things (IoT) devices. The implementation’s
major goal is to consume resources as little as pos-
sible while still achieving excellent speed and secu-
rity. In (Chen and Wang, 2019), the authors describe
a pipeline architecture-based, fast FPGA implemen-
tation of AES with Dynamic S-Box. By paralleliz-
ing encryption operations and integrating the dynamic
S-Box technique for increased security, the approach
improves throughput. The secure FPGA implementa-
tion of AES with Dynamic S-Box for embedded de-

FPGA Implementation of AES-Based on Optimized Dynamic s-Box

731

vices is the main emphasis of this work (Zhang and
Li, 2020). The implementation uses FPGA paral-
lelism for effective encryption while addressing secu-
rity concerns in contexts with limited resources. The
AES introduces a composite field arithmetic CFA-
based S-box operation to decrease the area (Priya
et al., 2017). To lower the crucial delay and boost
clock frequency and throughput, the sub-pipelining
concept is used in the process. Guzmán, Nieto, and
Bernal in (Guzman et al., 2016) used a pipelined ar-
chitecture on the Xilinx Virtex 5 FPGA platform to
offer a hardware implementation of the AES-128 al-
gorithm in non-feedback modes of operation, namely
ECB and CTR. In (Mamun et al., 2017), the authors
suggest altering the S-box by adding an extra byte,
which they refer to as the ‘AES-SBOX+.’ The pur-
pose of the improved S-box is to make the AES algo-
rithm more resistant to linear and differential crypt-
analysis. The authors also used power analysis to
assess the security of the AES-SBOX+ against side-
channel attacks and show that it is more resilient to
these types of assaults than the traditional AES S-box.
To produce the S-Box output, the input data is sub-
jected to an affine transformation and bit-permutation
as part of the transformation technique described in
(Nandan and Gowri Shankar Rao, 2022). The au-
thors show that this transformation method is resistant
to various cryptanalytic attacks, such as differential
and linear attacks. Compared to the traditional AES
S-Box design, the suggested S-Box design uses less
power and takes up less space when implemented on
an FPGA platform.

3 STANDARD AES BLOCK
CIPHER ARCHITECTURE

The Advanced Encryption Standard (AES) is a sym-
metric encryption algorithm. This means that both the
sender and receiver use the same key for both encryp-
tion and decryption of the data. It has a fixed block
size of 128 bits and variable key lengths of 128, 192,
or 256 bits. The key is used to initialize a series of
round keys, which are then used in a complex series of
operations to transform the input data (plaintext) into
encrypted data (ciphertext). The matrix used to store
the ciphertext block in all the intermediate and final
steps is referred to as a state matrix, 16×16 bytes.

In the AES architecture, the encryption and de-
cryption transformations are carried out in a series of
operations. The algorithm consists of 10, 12, or 14
rounds, depending on the size of the key used. These
rounds consist of a series of transformations, which
are substitution, permutation, and mixing of data. The

core operations of AES are SubBytes (byte substitu-
tion), MixColumn (mixing column), ShiftRow (row-
wise permutation), and AddRoundKey (see Figure 1).
Each round provides a different effect on the final
ciphertext. The substitution round (SubBytes) is a
nonlinear function, that provides confusion and re-
sistance to linear and differential cryptanalysis, The
Sbox should be carefully designed so that this oper-
ation may be reversible and provide an unequivocal
one-to-one relation between the elements of the Sbox
and its inverse (bijectivity). The permutation steps
ShiftRows and MixColumns are linear functions in-
cluded in the different rounds to spread the influence
of each plaintext byte over the whole state matrix (dif-
fusion). Finally, the key addition round (AddRound-
Keys) makes the ciphertext dependent on the secret
key.

Figure 1: Encryption and decryption architecture of AES.

The cryptographic properties of S-boxes measure
how randomly the ciphertext bits are changed, some
key figures of merit are shown below (Webster and
Tavares, 1986), (Waqas et al., 2015):

• Strict Avalanche Criterion SAC: Whenever a sin-
gle bit at the input changes, all the output bits
should have a 50% probability of changing, it is
measured on a scale [0-1], This property is related
to diffusion.

• Bit Independence Criterion-BIC: Output bits j and
k should change independently when any single
input bit i is changed (complemented). Correla-
tion between j and k when i is reversed.

• Nonlinearity-NLM: Complex and non-
proportional relationship between the inputs
and the outputs. This property is related to
confusion [19].

SECRYPT 2024 - 21st International Conference on Security and Cryptography

732

In addition to these requirements, S-boxes should
be reversible to guarantee the bijectivity (complete-
ness) of the encryption-decryption process.

4 PROPOSED ARCHITECTURE

The two main objectives set by this work consist of
improving the AES algorithm by adding dynamic S-
boxes and increasing the runtime performance by im-
plementing the modified algorithm on an FPGA plat-
form.

It is expected that the dynamically generated S-
boxes demonstrate at least the same or greater cryp-
tographic characteristics as the standard AES S-box
while increasing the complexity needed to break the
algorithm. Also, no additional information needs to
be exchanged between the sender and receiver of the
encrypted data other than the secret key. The FPGA
implementation should exploit parallelism within the
AES algorithm. The approach introduced in (Ar-
rag et al., 2013) will be employed to generate key-
dependent dynamic S-boxes, It consists of the use of
one byte of the cipher key to generate new S-boxes
by applying the XOR operation with all 256 bytes of
the AES S-box. In this work, the 7th byte was used
(but any byte could be used), thus the S-box will be
referred to as S-BOXkey7. In Equation 1 below, the
ith element of the new Dynamic S-box, S-BOXkey7,
corresponds to the ith element of the S-BOXAES,
XORed with the 7th byte of the cipher key.

S−BOXkey7[i] = S−BOXAES[i]⊕Key7 (1)

To generate the inverse S-box, it is necessary to
use the inverse routine according to Equation 2.

S−BOXkey7 INV [i] = S−BOXAES INV [i⊕Key7]
(2)

The algorithm implemented performs standard
AES encryption/decryption, where the updateKey and
SubByte functions have been modified to dynamically
calculate the new S-box. In Figure 2, a flow diagram
of the implemented AES modified encryption algo-
rithm with dynamic S-box.

In the updateKey and SubByte routines, in Figure
5, the key’s 7th byte is XORed with the AES S-box
corresponding value to generate the new S-box value.
Any other byte may be selected, as mentioned in the
S-box implementation section. The rest of the encryp-
tion steps are the same. For decryption, the key’s 7th
byte is XORed with the inverse s-box position being

Figure 2: Process of the proposed dynamic s-box.

evaluated and fed to the AES inverse S-box. For bet-
ter understanding, the approach used is illustrated in
Figure 3.

Figure 3: Example of a dynamic S-box.

According to (Arrag et al., 2013), the resulting S-
boxes inherit the cryptographic characteristics of the
AES S-box. To corroborate, a non-linearity and av-
erage SAC tests (Qu et al., 2009) were performed
on 3 S-boxes and compared to the AES S-box value,
concluding that the non-linearity and SAC values are
equivalent (+/-1%) to those of the AES and satisfy the
results of good S-boxes designed for robust block ci-
phers, as prove the results in Table 1.

Table 1: Dynamic Sbox Non-linearity and SAC.

S-box NLM avg sac
AES 112 0.5048
0x23 112 0.499
0x6F 112 0.4954
0xD7 112 0.4982

FPGA Implementation of AES-Based on Optimized Dynamic s-Box

733

Once implemented, the dynamic S-box scheme
would enhance the AES algorithm by adding a 28 =
256 complexity to its 2128 complexity (Nissar et al.,
2019), in the case where the cipher key is changed
frequently.

5 VITIS HLS DESIGN
WORKFLOW AND FPGA
IMPLEMENTATION RESULTS

5.1 Vitis HLS Design

The proposed architecture is designed using the Vi-
tis High-Level Synthesis (HLS) with C++ language.
The advantages of this approach are multiple: shorter
development time, easier implementation of recursive
functions, simple hierarchical design, and the possi-
bility that existing primitive libraries may be re-used
to accelerate development time. The design is im-
plemented on the Xilinx XC7Z020 PYNQ-Z2 FPGA
platform. The design process for Vitis HLS is as fol-
lows:

• C Simulation: The C simulation and the co-
simulation allow the designer to compile the code
and test the design behavior without programming
the target device.

• C Synthesis: On the C Synthesis, the target device
resources are allocated based on the design needs
(FF, LUT, and SLICEs).

• Co-simulation: The simulation step consists of
testing the functional behavior of the implemented
module by comparing the generated outputs with
the software or theoretical expected outputs.

• Export RTL (Register Transfer Level): The Ex-
port RTL stage packs the VHDL or Verilog design
into an IP package that may be used in Vivado
(VHDL graphical development tool).

• Implementation: The implementation step takes
care of the layout and routing of the design.

The implemented design is structured as a C/C++
function, which is denominated as the top-level func-
tion. This function may reference other functions
within its definition. The input and output argu-
ments to the top-level function establish the interac-
tions with the exported design.

5.2 FPGA Implementation Results

After various simulations and synthesis runs, the de-
sign for a CBC mode use of the AES with dynamic

S-box was validated at 833 ns. The resource utiliza-
tion for the design is shown in Table 2.

The maximum frequency was calculated using
Equation 3, where T is the target clock period, T=8
ns in the present design, and WNS is the worst neg-
ative slack calculated after the implementation place
and route in Vivado tools (Mahdi et al., 2023).

Max Freq =
1

T −WNS
[MHz] (3)

To calculate the throughput, Equation 4 is em-
ployed, where N is the number of bits per block.

T hroughput = N ×Max Freq [Mbps] (4)

The Efficiency of the design was evaluated using
Equation 5.

E f f iciency =
T hroughput

Slices
[Mbps/Slices] (5)

The comparison of hardware metrics of several
AES implementations is summarized in Table 3. De-
spite the comparative study with other FPGA targets
with different timing and logic resource characteris-
tics is difficult to carry out, we try to give an ob-
jective analysis. Therefore, considering the timing
metrics, we remark that the proposed implementa-
tion presents one of the better throughput achieve-
ments (70 Gb/s) but uses largely low logic resources
compared to (Qu et al., 2009), (Liu et al., 2013). In
addition, both the timing performances and logic re-
sources are better than those obtained by (Guzman
et al., 2016), (Fan and Hwang, 2007). Whereas the
(Elsayed et al., 2008) implementation achieved bet-
ter performances than our architecture. However, the
frequency of the used device in (Elsayed et al., 2008)
(425 Mhz from the datasheet) is greater than the fre-
quency of the used board in this work (125 Mhz). By
considering those remarks, we can consider that the
proposed architecture has good hardware metrics and
timing performance.

6 CRYPTOGRAPHIC ANALYSIS

In this section, an analysis of the cryptographic prop-
erties of the proposed algorithm is performed. A set
of 3 test images was encrypted using the AES-128 dy-
namic S-box algorithm in CBC block mode. The im-
ages employed are 256x256 pixel, 8-bit grayscale pic-
tures. The experiments were performed using a Vitis
HLS testbench written in C++, and the data was ex-
tracted and plotted using MATLAB and Excel on an
Intel (R) Core (TM) i5-8250U CPU operating at 1.60
GHz, running Microsoft Windows 11 (64-bit), with
16 GB of RAM.

SECRYPT 2024 - 21st International Conference on Security and Cryptography

734

Table 2: Resource utilization for the Zynq xc7z020.

Mode Slices Slice LUTs Slice Registers Fmax MHz Throughput Gbit/s Efficiency Mbps/Slices
CBC 3287 10102 7795 540.54 69.19 21.04

Table 3: Comparison of results with other AES architecture designs.

Reference Device F/MHz Mode LUTs Throughput
[26] xc5vlx85 576.07 CTR 22994 73.73Gb/s
[27] xc4vlx200 250 ECB 86806 32.00 Gb/s
[14] xc5vlx110t 272.59 CTR 11677 34.89 Gb/s
[28] xc2vp30 405.277 CBC 6361 108.59 Gb/s
[29] xc7vx690t 516.8 ECB 3436 66.10 Gb/s

This work xc7z020 540.54 CBC 10102 69.19 Gb/s

6.1 Hamming Distance and Key
Sensitivity Analysis

The Hamming Distance (HD) is used in cryptogra-
phy to measure the difference between two-bit strings
(keys) of the same size. Figure 4 shows the hamming
distance between plain and encrypted images. To un-
derstand how sensitive the algorithm is to the secret
key, two tests were performed, by measuring the dis-
tance between the same encrypted plaintext twice by
slightly changing one bit of the secret key. This pro-
cess gives two different encrypted texts, which are
compared to measure the effect of the key change on
the encrypted output (Mahdi et al., 2023). Ideally,
half of the bits, or 50%, should change by just chang-
ing one bit of the secret key. We repeated this process
for 100 different pairs of random keys to understand
how a slight change (one bit) in the secret key can
cause a change in the encrypted texts. Figure 5 shows
the hamming distance between two encrypted images,
where only one bit of the secret key was changed.
Equation 6 was used to calculate the hamming dis-
tance.

HD(C1,C2) =
1
|N|

N

∑
k=1

(C1[k]⊕C2[k])×100% (6)

The results obtained are robust and close to the
optimal value of 50% within a small variation of
+0.2/−0.22%.

6.2 Analysis of the Uniformity of the
Keystream Distribution

Analyzing the uniformity of the keystream distribu-
tion gives us a better understanding of how evenly dis-
tributed the keystream generated by the stream cipher
is across its possible values. The original three plain
images (Lena, Airplane, an Pepper) (see Figures 6 (a),

Figure 4: Hamming distance between plain and encrypted
images.

Figure 5: Hamming distance for key sensitivity analysis.

(i), and (q)) and their corresponding distributions are
shown in Figures 6 (e), (m), and (u), respectively. The
encrypted images from Lena using three different s-
boxes (0x23, 0x6f, and 0xd7) are shown in Figures
6 (c), (d), and (e) and their corresponding distribu-
tions are shown in Figures 6 (g), (h), and (i), respec-
tively. Similarly for images encrypted from Airplane,
and Pepper. Analyzing distribution of each of the en-
crypted images, it is easy to remark that represents a
uniform distribution.

FPGA Implementation of AES-Based on Optimized Dynamic s-Box

735

256x256x8 Sbox-0x23 Sbox-0x6f Sbox-0xd7

(b) Lena (c) (d) (e)

(f) (g) (h) (i)

(j) Airplane (k) (l) (m)

(n) (o) (p) (q)

(r) Pepper (s) (t) (u)

(v) (w) (x) (y)

Figure 6: Distribution of plain and encrypted images.

6.3 CHI-Square Analysis

A Chi-square analysis was tested using Equation 7
over 100 different random keys, to confirm the uni-
formity of encrypted images in our proposed design
and the results obtained in the histograms of Figure
10. The Chi-square test, or analysis, is a statistical ap-
proach used to compare observed frequencies of oc-
currence against expected frequencies of occurrence.

χexp
2 =

Nc−1

∑
i=1

(Oi −Ei)
2

Ei
(7)

χexp
2: chi squared,Oi: observed value,Ei: ex-

pected value, Nc = 256 levels, Ei = nb/Nc ,nb =
65536 for 256×256 images.

Given that the theoretical value for α = 0.05 and
Nc = 256 is χth

2(255,0.05) = 293.24, and the experi-
mental Chi-Square results from Table 4 are χexp

2 =
257.04, 257.29, and 253.25, respectively. We can

conclude that the uniformity of the cipher-text is con-
firmed because the experimental values are smaller
than the theoretical ones.

Table 4: Comparison of results with other AES architecture
designs.

Image HD χ2
exp

Lenna 0.499923 257.04312
Airplane 0.500170 257.2930
Pepper 0.499911 253.2499

6.4 Key Space Analysis

The key space is a method to determine the number of
combinations to perform on an algorithm to determine
its ability to stand against cryptographic attacks such
as brute force. Our proposed dynamic s-box contains
2128 different key combinations as in standard 128-
bit AES, but this complexity is compounded by 28

with the presented scheme of dynamic S-boxes, for
a final complexity of 2136, which makes the relation-
ship between the plain images, secret keys, and the
encrypted images, very complex and robust. Making
it resistant to brute force attacks even when a pair of
plain-encrypted data is known (Mahdi et al., 2023).

7 CONCLUSIONS

In this paper, a method for adding dynamic S-boxes
to AES was evaluated and implemented on an FPGA
target device. The cryptographic characteristics of
the dynamic S-boxes were compared to those of the
AES S-box and found to be equivalent. The FPGA
design implementation for the modified AES algo-
rithm was evaluated, and the resource utilization and
performance were reported and compared with those
of previous works. An overall cryptographic analysis
was performed on the modified algorithm, evaluating
key aspects such as uniformity of the keystream, key
sensitivity analysis, and key space analysis, obtaining
results that confirmed the robustness of the proposed
algorithm.

In the future, we will explore ways to optimize the
HLS design and extend the tests performed to the 192-
bit and 256-bit variants. It is possible to modularize
the exported design to use it as a testbed for differ-
ent S-box research based on AES. Another additional
step that would speed testing and evaluation, would
be the design of a PYNQ overlay to perform faster
tests by using the Python programming language. Ad-
ditional functionality, such as padding, may be in-
cluded, but it was not considered in this work. All the

SECRYPT 2024 - 21st International Conference on Security and Cryptography

736

sample data fed to the algorithm has been formatted
to multiples of 16 bytes (128 bits).

ACKNOWLEDGEMENTS

We would like to thank Xilin university donation pro-
gram for the send Pynq-Z2 board, and the IEM De-
partment of Computer Science, Electronics, and Me-
chanics of the UFR Sciences and Techniques, of the
University of Burgundy which opened the doors of
its classes and laboratories to AESE (Advanced Elec-
tronics Systems Engineering) Master 2 students to
successfully complete this project.

REFERENCES

Arrag, S., Hamdoun, A., Tragha, A., and Khamlich, S.
(2013). Implementation of stronger aes by using
dynamic s-box dependent of master key. Journal
of Theoretical and Applied Information Technology,
53:196–204.

Bui, D.-H., Puschini, D., Bacles-Min, S., Beigné, E.,
and Tran, X.-T. (2017). Aes datapath optimization
strategies for low-power low-energy multisecurity-
level internet-of-things applications. IEEE Transac-
tions on Very Large Scale Integration (VLSI) Systems,
25(12):3281–3290.

Chen, W. and Wang, L. (2019). High-speed fpga imple-
mentation of aes with dynamic s-box using pipeline
architecture. Journal of Cryptographic Engineering,
9(4):289–302.

Dubertret, G. (2023). Initiation à la cryptographie avec
Python. De Boeck supérieur.

Elsayed, G., Elramly, S., Hasan, B., and Shehata, K. (2008).
An efficient implementation of cbc mode rijndeal aes
on an fpga. pages 1–8. IEEE Xplore.

Fan, C.-P. and Hwang, J.-K. (2007). Implementations of
high throughput sequential and fully pipelined aes
processors on fpga. pages 353 – 356. IEEE Xplore.

Guzman, I., Nieto, R., and Norena, A. (2016). Fpga imple-
mentation of the aes-128 algorithm in non-feedback
modes of operation. Dyna (Medellin, Colombia),
83:37–43.

Li, Y., Zhang, Y., and Tian, Y. (2017). A high-performance
fpga implementation of aes-128. In In 2017 IEEE
10th Annual Computing and Communication Work-
shop and Conference (CCWC), pages 0228–0232.

Liu, Q., Xu, Z., and Yuan, Y. (2013). A 66.1 gbps single-
pipeline aes on fpga. pages 378–381. IEEE Xplore.

Mahdi, M., Safwan, E. A., Camel, T., Mark Joseph, V.,
El-Bay, B., and Olivier, D. (2023). Fpga-based im-
plementation of enhanced zuc stream cipher based on
dynamic s-box. In Proc. of the 9th International Con-
ference on Engineering and Emerging Technologies
(ICEET). IEEE Xplore.

Mamun, A., Rahman, S., Shaon, T., and Hossain, M. A.
(2017). Security analysis of aes and enhancing its se-
curity by modifying s-box with an additional byte. In-
ternational journal of Computer Networks & Commu-
nications, 9:69–88.

Nandan, V. and Gowri Shankar Rao, R. (2022). Low-power
and area-efficient design of aes s-box using enhanced
transformation method for security application. Inter-
national Journal of Communication Systems, 35(2).

Nissar, G., Garg, D., and Khan, B. (2019). Implementation
of security enhancement in aes by inducting dynamic-
ity in aes s-box. International Journal of Innovative
Technology and Exploring Engineering, 8.

Priya, S. S., Karthigaikumar, P., Siva Mangai, N. M., and
Kirti Gaurav Das, P. (2017). An efficient hardware
architecture for high throughput aes encryptor using
mux based sub pipelined s-box. In Wireless personal
communications, volume 94, pages 2259–2273.

Qu, S., Shou, G., Hu, Y., Guo, Z., and Qian, Z. (2009). High
throughput, pipelined implementation of aes on fpga.
2009 International Symposium on Information Engi-
neering and Electronic Commerce, pages 542–545.

Rahimunnisa, K., Karthigaikumar, P., Soumiya, R., Jayaku-
mar, J., and Kumar, S. S. (2014). Fpga implementa-
tion of aes algorithm for high throughput using folded
parallel architecture. In Security and communication
networks, volume 7, pages 2225–2236.

Rijmen, V. and Daemen, J. (2001). Advanced encryption
standard. In Proceedings of federal information pro-
cessing standards publications, national institute of
standards and technology.

Smith, J. and Johnson, R. (2018). Efficient fpga implemen-
tation of aes with dynamic s-box for iot devices. IEEE
Transactions on Very Large Scale Integration (VLSI)
Systems, 26(6):1123–1135.

Wang, S.-S. and Ni, W.-S. (2004). An efficient fpga imple-
mentation of advanced encryption standard algorithm.
In 2004 IEEE International Symposium on Circuits
and Systems (ISCAS), volume 2, pages 11–597.

Waqas, U., Afzal, S., Mir, M., and Yousaf, M. (2015). Gen-
eration of aes-like s-boxes by replacing affine matrix.
pages 159–164.

Webster, A. F. and Tavares, S. E. (1986). On the design
of s-boxes. In Williams, H. C., editor, Advances in
Cryptology — CRYPTO ’85 Proceedings, pages 523–
534, Berlin, Heidelberg. Springer Berlin Heidelberg.

Zhang, Q. and Li, H. (2020). Secure fpga implementa-
tion of aes with dynamic s-box for embedded systems.
ACM Transactions on Embedded Computing Systems,
19(3):Article 15.

Zhang, Y., Wang, Z., and Yang, J. (2016). A high-speed
and low-area aes implementation on fpga. In In 2016
10th International Conference on Computer Science
and Network Technology (ICCSNT), pages 1–4.

FPGA Implementation of AES-Based on Optimized Dynamic s-Box

737

