
Towards an Ethereum Smart Contract Fuzz Testing Tool

Mariam Lahami1 a, Moez Krichen1,2 b,Mohamed Ali Mnassar1, Racem Mrabet1

and Mohamed Ben Rhouma1

1ReDCAD Lab, National School of Engineers of Sfax, Sfax University, Sfax, Tunisia
2Faculty of CSIT, Al-Baha University, Al-Baha, Saudi Arabia

Keywords: Fuzz Testing, Blockchain, Smart Contracts, Ethereum, Ganache, Brownie.

Abstract: The widespread and well-known blockchain platform that makes use of smart contracts is Ethereum. The key
feature of these computer programs is that once deployed, they cannot be updated anymore. Therefore, it is
highly necessary to efficiently test smart contracts before their deployment. This paper presents a Web-based
testing tool called LeoKai that makes it easy to automatically generate test inputs and also unit test templates
to detect bugs and vulnerabilities in Ethereum smart contracts. It helps developers to perform manual UI tests
by invoking smart contracts deployed on the Ganache blockchain. Furthermore, it supports black-box fuzz
testing and randomly generates test inputs. Blockchain developers may use the unit test template generator
to generate unit tests. It also includes a code coverage module that highlights their efficiency by assessing
function, branch, and line coverage. Finally, the prototype and its implementation details are illustrated.

1 INTRODUCTION

The last ten years have seen the emergence of
blockchain technology, which has gained significant
interest in various sectors (Krichen et al., 2022a), in-
cluding supply chain management (Mars et al., 2021;
Lahami and Chaabane, 2023), intelligent transporta-
tion (Jabbar et al., 2022), e-health (Fekih and Lahami,
2020; Abbas et al., 2021) and among others. In fact,
blockchain is a distributed ledger initially proposed
by Satochi Nakamoto (Nakamoto et al., 2008) as a
linked chain of blocks in which transactions are se-
curely stored. The essential features of this technol-
ogy are decentralization, transparency, immutability,
and security, which have boosted the interest in it.
For example, the security is achieved by using crypto-
graphic functions, while immutability is provided by
sharing identical copies of the ledger among several
peer-to-peer nodes.

The development of decentralized applications
(dApps) has attracted a lot of attention in recent
years, especially with the emergence of blockchain
platforms like Ethereum1 and Hyperledger Fabric2.

a https://orcid.org/0000-0002-8691-9848
b https://orcid.org/0000-0001-8873-9755
1https://ethereum.org/en/
2https://www.hyperledger.org/

Smart contracts (SC) are self-executing programs that
are stored on the blockchain and are executed auto-
matically when certain conditions are met without the
need for third parties. They enable the implementa-
tion of business logic within the distributed ledger.
Nevertheless, like any other computer program, they
can contain bugs and vulnerabilities that might re-
sult in serious consequences, such as significant finan-
cial losses and data breaches. Consequently, check-
ing smart contract correctness and improving trust in
them by reducing the risk of losing money have to be
taken into consideration.

As one of the most used methods to increase confi-
dence in blockchain-oriented software and especially
in smart contracts, fuzz testing is used in the litera-
ture (Akca et al., 2019; Jiang et al., 2018; Pan et al.,
2021; Grieco et al., 2020; Liu et al., 2018). Fuzz
testing is a black-box software testing technique that
involves feeding a program with random, invalid, or
unexpected inputs to detect bugs and vulnerabilities.
The use of fuzz testing for smart contracts can greatly
improve their security and reliability.

Several tools and test approaches have been intro-
duced in the testing community to generate and exe-
cute effective test cases for smart contracts (Lahami
et al., 2022; Maâlej and Lahami, 2023). In particular,
fuzz testing has attracted a lot of research interest and

Lahami, M., Krichen, M., Mnassar, M., Mrabet, R. and Ben Rhouma, M.
Towards an Ethereum Smart Contract Fuzz Testing Tool.
DOI: 10.5220/0012785400003753
Paper published under CC license (CC BY-NC-ND 4.0)
In Proceedings of the 19th International Conference on Software Technologies (ICSOFT 2024), pages 137-144
ISBN: 978-989-758-706-1; ISSN: 2184-2833
Proceedings Copyright © 2024 by SCITEPRESS – Science and Technology Publications, Lda.

137

has been applied to smart contract testing. However,
existing tools often require significant expertise and
effort to use effectively and may not provide compre-
hensive testing coverage.

To address the need for reliable and effective smart
contract testing, we present LeoKai, a web-based test-
ing tool for Ethereum smart contracts. LeoKai aims
to make it easy for developers to automatically gen-
erate test inputs and unit test templates, detect bugs
and vulnerabilities, and perform Manual User Inter-
face (UI) tests by invoking smart contracts deployed
on the Ganache3blockchain. Additionally, LeoKai
supports black-box fuzz testing by generating random
test inputs and includes a code coverage module that
assesses function, branch, and line coverage to high-
light the efficiency of the testing process.

LeoKai is designed to be easy to use, even for de-
velopers with little experience in smart contract test-
ing. It provides a user-friendly interface that allows
developers to quickly generate and execute test cases,
as well as analyze the results of their testing.

Overall, this paper presents LeoKai as a valuable
tool for testing Ethereum smart contracts, providing
developers with the means to identify and address
potential bugs and vulnerabilities before deployment.
By leveraging fuzz testing and unit testing templates,
LeoKai can help improve the security and reliabil-
ity of smart contracts and increase confidence in their
functionality.

The remainder of this paper is organized as fol-
lows: Section 2 provides background materials for
understanding blockchain features and introduces the
fuzz testing technique. After that, we address related
work in the context of black-box fuzzing in Section
3. Section 4 describes the architecture and design of
LeoKai, including its components and how they inter-
act to provide testing capabilities. Section 5 covers
the implementation details and technologies used to
develop LeoKai. Finally, we conclude in Section 6
and present potential areas of future research.

2 BACKGROUND MATERIALS

This section highlights the background materials that
help to understand the rest of the paper: a brief discus-
sion on topics related to Blockchain (BC), Smart Con-
tracts (SCs), and fuzz testing concepts is presented.

2.1 Blockchain

A blockchain is a peer-to-peer system and a complex
data structure that manages the flow of data without

3https://trufflesuite.com/ganache/

the need for a central authority. It was introduced by
Nakamato et al. (Nakamoto et al., 2008) as the tech-
nology underlying Bitcoin. Blockchain is made up of
a linked list of blocks. A chain is a linking mechanism
that connects one block to another. This chaining is
accomplished via cryptographic hashes. Each block
carries a reference to the previous block’s hash, result-
ing in a chronological and immutable chain of blocks.
The block hash is obtained by executing a crypto-
graphic hash function (e.g., SHA256, KECCAK256,
etc.). Moreover, each block is composed of two parts:
the header and the body. The header of a given block
contains several fields, particularly a timestamp of
when the block was produced and the hash of the pre-
vious block. In the body of the block, transaction
details are stored, such as recipient, gas fees, asset,
ownership, etc. Transactions are digitally signed in-
structions from accounts that update the Blockchain
network’s state. The most basic transaction is trans-
ferring crypto-currencies from one account to another.

It is worthy to note that we support the Ethereum
blockchain in this work. The Ethereum network is the
concept of blockchain’s second evolution. It builds
on the basic blockchain structure by adding numer-
ous new programming languages. It has over 10,000
complete nodes and it is distributed internationally.
Ethereum is largely utilized for the exchange of Ether
and the creation of smart contracts.

2.2 Smart Contracts

Smart Contracts (SCs) are one of the most intriguing
features developed by numerous platforms, includ-
ing Ethereum and Hyperledger, with the goal of tying
business logic code to transactions. A SC is defined as
a piece of autonomous programming code that is de-
ployed on the blockchain and executed when specific
events occur.

Smart contracts are developed using various pro-
gramming languages. In our work, we are using So-
lidity4: a Turing-complete language, which is quite
close to JavaScript. It supports libraries, inheritance,
and user-defined types. Solidity smart contracts are
compiled to Ethereum Virtual Machine (EVM) byte-
code using the Solidity compiler solc.

2.3 Potential Issues with Smart
Contracts

Smart contrats may include several vulnerabilities
and flaws (Krichen et al., 2022b; Praitheeshan et al.,

4https://solidity.readthedocs.io/

ICSOFT 2024 - 19th International Conference on Software Technologies

138

2019). In the following, we introduce the most popu-
lar ones:

• Reentrancy: The DAO attack happened due to this
vulnerability in smart contracts. A reentrancy oc-
curs when a function invokes, through an exter-
nal call, another suspicious contract. The latter
then attempts to drain funds by calling the origi-
nal function repeatedly.

• Unhandling Exception: There are numerous cir-
cumstances in which abnormal situations may oc-
cur, and this leads to trigger exceptions. However,
these exceptions aren’t usually handled in a con-
sistent manner. This makes the contracts vulner-
able to malicious attacks and leads to ether loss
because Solidity programmers are not aware that
these exceptions are not handled correctly and the
transactions are reverted.

• Out-of-Gas Exception: Every transaction has a
maximum amount of gas that can be spent, and
thus it is considered as the amount of computation
allowed, called the gas limit. The transaction will
fail and an out of gas exception will be raised if the
amount of gas used exceeds this limit. Also, this
exception may occur when the function ”send” to
transfer ether to a contract is called.

2.4 Fuzz Testing

Fuzz testing, also known as fuzzing, is an established
software testing technique that makes use of mas-
sive amounts of random data as input to find bugs,
crashes, or security weaknesses in networks, operat-
ing systems, and traditional software (Tonella et al.,
2014). Barton Miller of the University of Wiscon-
sin invented this dynamic testing method in the late
1980s (Felderer et al., 2016). Since then, it has
been recognized that fuzz testing is a useful and ef-
ficient method for identifying software vulnerabili-
ties. While the initial approaches to fuzz testing relied
only on randomly generated test data (i.e., random
fuzzing), advances in model-based testing, symbolic
computation, and dynamic test case generation led
to improvements in fuzzing techniques like mutation-
based fuzzing, generation-based fuzzing, or gray-box
fuzzing. In the following, we introduce the most well-
known fuzzing techniques in the literature (Felderer
et al., 2016):

• Random Fuzzing: is the simplest fuzz testing
technique. It consists in sending a stream of ran-
dom input data, in a black-box scenario, to the
program under test. This kind of fuzzing is very
helpful for testing how a software responds to

huge or erroneous input data. Thus, this technique
is adopted in this work.

• Mutation-Based Fuzzing: This form of fuzzing
requires the fuzzer to have some knowledge of the
input format of the program being tested. Then, it
makes use of existing data samples to build new
versions (mutants), which it then uses for fuzzing.

• Generation-Based Fuzzing: A model (of the in-
put data or the vulnerabilities) was utilized in
this kind of fuzzing to generate test data from
this model or specification. Compared to previ-
ous fuzzing techniques, it often provides an im-
proved coverage of the program under test espe-
cially when the expected input format is complex.

3 RELATED WORK

In the last few years, several approaches and testing
tools have been proposed in order to check the cor-
rectness of smart contracts. We study here the most
related work to our proposal that makes use of the
black-box fuzzing technique (Akca et al., 2019; Jiang
et al., 2018; Grieco et al., 2020; Pan et al., 2021; Liu
et al., 2018) and also unit testing (Motepalli et al.,
2020; Medeiros et al., 2019).

3.1 Related Work on Fuzzing SCs

As already mentioned, Black-box fuzzing is a funda-
mental approach that produces random test data based
on a distribution for various inputs. This method cre-
ates input for all kinds of programs by generating a
bit stream representing the required data types.

Up to our best knowledge, ContractFuzzer is the
first black-box fuzzer proposed in the literature for
smart contract testing (Jiang et al., 2018). It takes as
inputs the ABI and bytecode files generated by the
Solidity compiler, with the aim of generating test in-
puts. Also, it defines test oracles for detecting seven
security vulnerabilities in Ethereum smart contracts.

In the same direction, SolAnalyser (Akca et al.,
2019) presents a vulnerability detection tool that fol-
lows three phases. First, this tool analyzes statically
the source code of Solidity smart contracts in order to
assess locations prone to vulnerabilities and then in-
strument it with assertions. After that, an inputGener-
ator module has been implemented to automatically
generate inputs for all transactions and functions in
the instrumented contract. Next, the presence of vul-
nerabilities is triggered when the property checks are
violated during execution of smart contracts on the
Ethereum Virtual Machine (EVM).

Towards an Ethereum Smart Contract Fuzz Testing Tool

139

Similarly, authors in (Grieco et al., 2020) pro-
pose an open-source smart contract fuzzer automat-
ically generating tests to detect assertion violations
and some custom properties. The proposed library
called Echidna creates test inputs depending on user-
supplied predicates or test functions. The major issue
with this tool is that it may require a lot of effort and
great knowledge to write the predicates and test meth-
ods.

Furthermore, we discuss yet another interesting
study (Pan et al., 2021) in which authors introduce a
black-box fuzzer engine to generate inputs in order to
detect reentrancy vulnerability. Called ReDefender,
this tool would send transactions while gathering run-
time data through fuzzing input. After that, Re-
Defender can identify reentrancy vulnerabilities and
track the vulnerable functions by looking at the ex-
ecution log. This tool demonstrates its ability to ef-
ficiently detect reentrancy bugs in real-world smart
contracts.

Another interesting study was introduced in (Liu
et al., 2018). The proposed tool called ReGuard ex-
ploits fuzz testing for smart contracts by iteratively
producing various random and diverse transactions
to detect reentrancy vulnerabilities in solidity-based
smart contracts. ReGuard includes a fuzzing engine,
which will generate iteratively random bytes using
runtime coverage information as feedback.

3.2 Related Work on Unit Testing of
SCs

Authors in (Medeiros et al., 2019) introduce an origi-
nal approach for running smart contract unit tests that
aims to speed up test execution. To do so, the proposal
reuses the setup execution of each test as well as the
deployment execution of the smart contract in each
test to achieve this decrease. The developed frame-
work in Java is called the SolUnit framework and is
used to run Java tests for Ethereum Solidity smart
contracts.

Following the same goal which the speed-up of
test execution, FabricUnit, a novel framework for ap-
plying unit testing on Hyperledger Fabric, is pro-
posed (Motepalli et al., 2020). First, this frame-
work looks safe methods (For instance, Read oper-
ations are considered as safe methods) that not alter
the state of the blockchain and then reuses the same
test setup (@Before method which is in charge of
cleaning up the environment and reinitializing it be-
fore each test execution) for all of them during the
test execution phase. For unsafe methods, the test ex-
ecution is started by running @Before methods. Fab-
ricUnit is implemented in Java and supports only Hy-

perledger Fabric applications with Go chaincode and
Java client.

The work in (Olsthoorn et al., 2022) combines
fuzzing and the generation of unit tests for solid-
ity based-smart contracts. The proposed tool, called
SynTest-Solidity, makes use of initial randomly gen-
erated test cases and genetic algorithms to efficiently
and effectively test smart contracts. The produced test
cases are written following the Mocha framework and
executed by Truffle. The authors conducted an empir-
ical study to evaluate the efficiency of their tool by
validating twenty Solidity smart contracts.

Similar to this work, our approach includes a
fuzzy engine to generate inputs for all functions in
the smart contract under test. Its main advantage
is that it combines manual UI testing, fuzzing, and
unit test template generation. All these features help
blockchain developers effectively and efficiently test
smart contracts.

4 ARCHITECTURE AND DESIGN

Figure 1 shows the LeoKai architecture, which is di-
vided into several modules with the aim of perform-
ing either manual UI testing of smart contract func-
tions or fuzz testing while generating unit test tem-
plates to create an easy-to-use test tool for smart con-
tract developers. Furthermore, we illustrate through a
UML activity diagram the workflow that presents the
adopted testing process (see Figure 2).

0. AI-Auditor: LeoKai incorporates an AI-based
Solidity Smart Contract Auditor 5 to enhance the
security analysis of the tested contracts. Leverag-
ing machine learning techniques, the auditor em-
ploys a trained model to detect potential vulner-
abilities and security risks in the contract code.
By analyzing the contract’s structure, control flow,
and data flow, the AI-based auditor can identify
common vulnerabilities, such as reentrancy, inte-
ger overflow/underflow, and unauthorized access
issues. The auditor’s ability to detect patterns and
anomalies in the code significantly complements
the fuzz testing process, providing an additional
layer of security analysis and helping developers
identify potential vulnerabilities that may not be
captured through traditional testing approaches.

1. Pre-Processing: LeoKai checks whether the in-
put file corresponds to a valid solidity file. Then,
the compilation and deployment of the smart con-
tract under test are performed. Note here that it is

5https://auditor.0x0.ai/

ICSOFT 2024 - 19th International Conference on Software Technologies

140

Graphical User Interface (GUI)

Pre-
processing

Ganache (In-memory Blockchain)

ABI Parser

Solidity smart
contract

 .json

Fuzz engine

Analysis
and Code
coverage

Test
Executor

Display SC functions and
parameters types

Compile and
deploy SCs





{functions, parameters
types}

Test inputs

Test outputs



Run manual or fuzz
tests

.sol

Unit test
template
generaor



pytestpytestpytests



AI- Auditor


Audit Display
vulnerabilities

Figure 1: Overview of the LeoKai architecture.

required to make use of a development and test-
ing framework for Ethereum smart contracts like
Brownie or Truffle and also to launch an Ethereum
blockchain simulator where the contracts can be
deployed and tested, like Ganache.

2. ABI Parser: this module takes as input the
Application Binary Interface (ABI) and bytecode
files that are generated once the smart contract
is compiled with the solc compiler. Indeed, the
ABI file includes details about the functions in
the contracts, such as their name, type (i.e., pri-
vate, public, payable), argument types, etc. The
bytecode file holds the predefined bytecode of the
smart contract. These two files are required later
to generate test inputs and execute them.

3. Fuzz Engine: LeoKai includes a black-box
fuzz engine, which is responsible for automati-
cally and efficiently generating test inputs. It takes
the output of the previous step, including func-
tion names, arguments, argument types, etc. The
proposed input generation algorithm may gener-
ate valid or invalid inputs for each function. We
propose different strategies to generate inputs for
fixed-size inputs and non-fixed-sized inputs. For
example, we support fixed-size input types such
as unsigned and signed integers with widths rang-
ing from 8 to 256 bits (e.g., uint8, uint16). For
the address type, we randomly generate one ad-
dress from the ten addresses offered by the lo-

cal blockchain platform. Algorithm 1 depicts our
random fuzzing algorithm that takes as input a
solidity-based smart contract and generates for
each function a set of random inputs. The test in-
put generation is based on the parameters of each
function and their types (i.e., int, string, boolean,
address or byte), as highlighted from Line 7 to
Line 17. We used a map data structure to store
the obtained inputs (see Line 18).

4. Unit Test Template Generator: this module fo-
cuses on generating unit test templates with the
aim of making testing easier for developers. Unit
tests are stored and can be updated and then exe-
cuted.

5. Test Executor: We use the inputs created in
step 3 to execute the contract, thus, each function
within the contract is invoked at least once and
generates a transaction. Moreover, it is possible
to perform manual UI testing through the LeoKai
GUI, and the developer may choose the function
under test and the inputs used to invoke it.

6. Analysis and Code Coverage: The analysis and
code coverage module is responsible for detect-
ing the existence of any bug or vulnerability on
the smart contract under test and also assessing
the percentage of code coverage achieved during
the test process. Indeed, LeoKai performs bug de-
tection via transaction trace analysis. Concerning
code coverage, it identifies functions and branches

Towards an Ethereum Smart Contract Fuzz Testing Tool

141

Algorithm 1: Random Fuzzing Algorithm.

Data: smartContract.sol
Result: test inputs for each function in the

smart contract are generated.
/* Declare a map data structure in

which the function is the key
and its test inputs are the
value */

1 testInputsForFunctions← null;
2 Filearte f actJson←

compile(smartContract);
3 List lstFunction←

parseAbi(arte f actJson.abi);
4 foreach f ∈ lstFunction do
5 testInputs.clear();
6 params← f . f etchParams();
7 foreach p ∈ params do
8 if typeOf(p)isEqual(int) then
9 testInputs.add(randomInt(p.size()));

10 else if typeOf(p)isEqual(bool) then
11 testInputs.add(randomBool());

12 else if typeOf(p)isEqual(string) then
13 testInputs.add(randomString());

14 else if typeOf(p)isEqual(byte) then
15 testInputs.add(randomBool(p.size()));

16 else
17 testInputs.add(randomAdress());

18 testInputsForFunctions[f]← testinputs;

that have been exercised during the test process.
This information helps us evaluate the test’s effec-
tiveness and highlight potential gaps in coverage.

5 IMPLEMENTATION DETAILS

In this section, we present our Web-based test tool,
LeoKai, which is essentially written in Python. As
with any Web application, it is composed of two lay-
ers: the backend and the frontend. The backend
layer forms the core of our test system and is re-
sponsible for executing the fuzz testing algorithm and
interacting with the smart contracts. It utilizes the
Brownie6 framework, a Python-based development
and testing framework for Ethereum smart contracts.
By leveraging Brownie’s functionalities, we can com-
pile, deploy, and interact with smart contracts seam-

6https://eth-brownie.readthedocs.io/en/stable/

lessly. To compile the smart contracts, we utilize
Brownie’s built-in compiler, which supports multiple
Solidity versions and automatically resolves depen-
dencies. This ensures that our test system can han-
dle various contract configurations and dependencies
without manual intervention. The most relevant as-
pect offered by Brownie is that it allows blockchain
developers to write and execute unit tests through the
use of Pytest. Our tool extends this test framework by
fuzzing capabilities and by generating unit test snip-
pet codes.

Additionally, the backend layer interacts with the
local blockchain Ganache, which provides a local test
environment for deploying and executing the smart
contracts. This allows us to perform testing activi-
ties without impacting the live Ethereum network or
incurring real-world costs. It is connected to Ganache
through Web3.py library. We utilize this library to cre-
ate instances of the smart contracts, acting as proxies
for function invocation and variable access. For fuzz
testing, we systematically explore contract functions,
generating random or semi-random inputs based on
their signatures and argument types. These inputs are
used to invoke functions through contract instances,
covering various execution paths and corner cases.
LeoKai captures executed transactions, input values,
and changes in the contract’s state for testing reports
and analysis.

Note that the LeoKai backend was designed to
work initially with Brownie and Ganache CLI, as they
are popular among Smart Contract developers. Even
so, it is possible to extend it to run with Truffle and
Hardhat with some manual configurations.

Regarding the frontend layer, we utilize Flask7,
a lightweight Web framework, in order to provide a
user-friendly interface for interacting with our appli-
cation. This layer allows users to access and control
features. Users can input the smart contract they want
to test, configure the fuzzing parameters, and initiate
the testing process. As highlighted in Figure 3, the
initial screenshot of LeoKai shows some features of-
fered by this tool.

Once the fuzz testing process is completed, com-
prehensive testing reports are generated to summa-
rize the results and findings. These reports serve as
valuable resources for developers, auditors, and stake-
holders to assess the security and reliability of smart
contracts. Moreover, a thorough test coverage analy-
sis is conducted to provide insights into the areas of
the contract that have been tested. It measures the
percentage of code coverage achieved during the fuzz
testing process, identifying functions and branches
that have been exercised. This information helps us

7https://flask.palletsprojects.com/en/2.3.x/

ICSOFT 2024 - 19th International Conference on Software Technologies

142

Request for
SC upload

Check for
validity of SC extension=.sol

yes

no

Compile SC Find out
constructor Deploy SC

Parse ABI and
display all
functions

failure

success

Perform
manual UI

testing

Display transaction
receipt

Generate fuzz
inputs

generate unit
test templatesExecute tests

Calculate
Coverage

Figure 2: UML Activity diagram of LeoKai workflow.

Figure 3: LeoKai initial screen.

evaluate the thoroughness of the testing and highlights
potential gaps in coverage.

We have conducted a preliminary evaluation of
LeoKai on several smart contracts from Etherscan and
from the official documentation of Solidity. It shows
that it is an effective tool for testing Ethereum smart
contracts in terms of code coverage and bug detection.

6 CONCLUSION AND FUTURE
WORK

In this work, we introduced LeoKai, a web-based test-
ing tool that enables developers to quickly and ef-
fectively test Solidity smart contracts. By employing
manual UI tests or fuzz tests and providing support for
the generation of unit test templates written on PyU-
nit, LeoKai offers developers a comprehensive set of
tools to identify and address potential bugs and vul-
nerabilities before deployment.

Our evaluation of LeoKai shows that it is an ef-
fective tool for testing Ethereum smart contracts in
terms of code coverage and bug detection. However,
there are several avenues for future work that we plan

to pursue. Firstly, we aim to expand LeoKai’s ca-
pabilities to support Vyper smart contracts and other
popular contract development frameworks like Truf-
fle, Embark, and Hardhat. Additionally, we envision
generating unit test templates in Solidity to increase
the flexibility of the tool. As a further step, we plan
to create a plugin for the most popular code editors to
make it even easier for developers to use LeoKai in
their development workflow.

Furthermore, another potential future direction for
enhancing the security of smart contracts is to incor-
porate artificial intelligence (AI) techniques into the
testing process (Krichen, 2023). By leveraging the
power of AI, it may be possible to significantly im-
prove the efficiency and effectiveness of smart con-
tract testing. AI can be used to automatically generate
test cases, identify patterns in code that may indicate
vulnerabilities, and even suggest fixes for detected is-
sues. Integrating AI into smart contract testing could
ultimately lead to more secure and reliable decentral-
ized applications.

In conclusion, we believe that LeoKai is a valu-
able tool for testing Ethereum smart contracts, offer-
ing developers a comprehensive set of tools to identify
and address potential bugs and vulnerabilities before
deployment. We hope that our work will contribute to
the broader effort to improve the security and reliabil-
ity of decentralized applications and smart contracts
on the Ethereum blockchain. As a future direction,
we plan to explore the potential of AI in smart con-
tract testing, which could significantly improve the
efficiency and effectiveness of the testing process.

REFERENCES

Abbas, A., Alroobaea, R., Krichen, M., Rubaiee, S., Vimal,
S., and Almansour, F. M. (2021). Blockchain-assisted
secured data management framework for health infor-
mation analysis based on internet of medical things.
Personal and Ubiquitous Computing, pages 1–14.

Towards an Ethereum Smart Contract Fuzz Testing Tool

143

Akca, S., Rajan, A., and Peng, C. (2019). Solanalyser: A
framework for analysing and testing smart contracts.
In Proceeding of the 26th Asia-Pacific Software Engi-
neering Conference (APSEC), pages 482–489.

Fekih, R. B. and Lahami, M. (2020). Application of
blockchain technology in healthcare: A comprehen-
sive study. In Proceeding of 18th International Con-
ference of The Impact of Digital Technologies on Pub-
lic Health in Developed and Developing Countries,
ICOST 2020, Hammamet, Tunisia, June 24-26, pages
268–276.

Felderer, M., Büchler, M., Johns, M., Brucker, A. D., Breu,
R., and Pretschner, A. (2016). Chapter one - security
testing: A survey. volume 101 of Advances in Com-
puters, pages 1–51. Elsevier.

Grieco, G., Song, W., Cygan, A., Feist, J., and Groce, A.
(2020). Echidna: Effective, usable, and fast fuzzing
for smart contracts. In Proceedings of the 29th ACM
SIGSOFT International Symposium on Software Test-
ing and Analysis, ISSTA 2020, page 557–560, New
York, NY, USA. Association for Computing Machin-
ery.

Jabbar, R., Dhib, E., Said, A. B., Krichen, M., Fetais, N.,
Zaidan, E., and Barkaoui, K. (2022). Blockchain tech-
nology for intelligent transportation systems: A sys-
tematic literature review. IEEE Access, 10:20995–
21031.

Jiang, B., Liu, Y., and Chan, W. K. (2018). Contractfuzzer:
Fuzzing smart contracts for vulnerability detection.
In Proceedings of the 33rd ACM/IEEE International
Conference on Automated Software Engineering, page
259–269.

Krichen, M. (2023). Strengthening the security of smart
contracts through the power of artificial intelligence.
Computers, 12(5).

Krichen, M., Ammi, M., Mihoub, A., and Almutiq, M.
(2022a). Blockchain for modern applications: A sur-
vey. Sensors, 22(14).

Krichen, M., Lahami, M., and Al-Haija, Q. A. (2022b). For-
mal methods for the verification of smart contracts: A
review. In Proceedings of the 15th International Con-
ference on Security of Information and Networks, SIN
2022, Sousse, Tunisia, November 11-13, 2022, pages
1–8. IEEE.

Lahami, M. and Chaabane, F. (2023). Improving the
supply chain management via blockchain: an olive
oil case study. In Kallel, S., Benzadri, Z., and
Kacem, A. H., editors, Proceedings of the Tunisian-
Algerian Joint Conference on Applied Computing
(TACC 2023), Sousse, Tunisia, November 8-10, 2023,
volume 3642 of CEUR Workshop Proceedings, pages
182–193. CEUR-WS.org.

Lahami, M., Maâlej, A. J., Krichen, M., and Hammami,
M. A. (2022). A comprehensive review of testing
blockchain oriented software. In Proceedings of the
17th International Conference on Evaluation of Novel
Approaches to Software Engineering, ENASE 2022,
Online Streaming, April 25-26, 2022, pages 355–362.
SCITEPRESS.

Liu, C., Liu, H., Cao, Z., Chen, Z., Chen, B., and Roscoe,
B. (2018). Reguard: Finding reentrancy bugs in smart

contracts. In 2018 IEEE/ACM 40th International Con-
ference on Software Engineering: Companion (ICSE-
Companion), pages 65–68.

Maâlej, A. J. and Lahami, M. (2023). White-box mutation
testing of smart contracts: A quick review. In He-
dia, B. B., Maleh, Y., and Krichen, M., editors, Pro-
ceedings of 16th International Conference of Verifica-
tion and Evaluation of Computer and Communication
Systems, VECoS 2023, Marrakech, Morocco, October
18-20, 2023, volume 14368 of Lecture Notes in Com-
puter Science, pages 135–148. Springer.

Mars, R., Youssouf, J., Cheikhrouhou, S., and Turki, M.
(2021). Towards a blockchain-based approach to fight
drugs counterfeit. In Proceedings of the Tunisian-
Algerian Joint Conference on Applied Computing
(TACC 2021), Tabarka, Tunisia, pages 197–208.

Medeiros, H., Vilain, P., Mylopoulos, J., and Jacobsen, H.-
A. (2019). Solunit: A framework for reducing exe-
cution time of smart contract unit tests. In Proceed-
ings of the 29th Annual International Conference on
Computer Science and Software Engineering, CAS-
CON ’19, page 264–273, USA. IBM Corp.

Motepalli, S., Vilain, P., and Jacobsen, H.-A. (2020). Fab-
ricunit: A framework for faster execution of unit tests
on hyperledger fabric. In Proceeding of the IEEE In-
ternational Conference on Blockchain and Cryptocur-
rency (ICBC), pages 1–3.

Nakamoto, S. et al. (2008). Bitcoin: A peer-to-peer elec-
tronic cash system.

Olsthoorn, M., Stallenberg, D., Van Deursen, A., and
Panichella, A. (2022). Syntest-solidity: Automated
test case generation and fuzzing for smart contracts.
In Proccedings of the IEEE/ACM 44th International
Conference on Software Engineering: Companion
Proceedings (ICSE-Companion), pages 202–206.

Pan, Z., Hu, T., Qian, C., and Li, B. (2021). Redefender: A
tool for detecting reentrancy vulnerabilities in smart
contracts effectively. In 2021 IEEE 21st International
Conference on Software Quality, Reliability and Secu-
rity (QRS), pages 915–925.

Praitheeshan, P., Pan, L., Yu, J., Liu, J. K., and Doss,
R. (2019). Security analysis methods on ethereum
smart contract vulnerabilities: A survey. CoRR,
abs/1908.08605.

Tonella, P., Ricca, F., and Marchetto, A. (2014). Chapter 1 -
recent advances in web testing. In Memon, A., editor,
Advances in Computers, volume 93 of Advances in
Computers, pages 1–51. Elsevier.

ICSOFT 2024 - 19th International Conference on Software Technologies

144

