Simulating SASCA on Keccak: Security Implications for Post-Quantum
Cryptographic Schemes

Julien Maillard"2®2, Thomas Hiscock! @°, Maxime Lecomte!®° and Christophe Clavier?®4

YUniv. Grenoble Alpes, CEA-LETI, Minatec Campus, f-38054 Grenoble, France
2Univ. Limoges, XLIM-MATHIS, Limoges, France

Keywords: Keccak, Side-Channel Attacks, SASCA, Kyber, Dilithium.

Abstract: Keccak is a standard hashing algorithm that is used in cryptographic protocols as Pseudo Random Functions
(PRF), as Pseudo Random Number Generator (PRNG), to check data integrity or to create a Hash-based
Message Authentication Code (HMAC). In many cryptographic constructions, secret data is processed with
hashing functions. In these cases, recovering the input given to the hashing algorithm allows retrieving secret
data. In this paper, we investigate the application of Soft Analytical Side-Channel Attacks (SASCA), based
on a Belief Propagation (BP) framework, to recover the input of SHA-3 instances. Thanks to a simulation
framework, we extend existing work on the Keccak-f permutation function by developing a comprehensive
study of the attacker’s recovery capacity depending on the hash function variant. Then, we study the security
implications of SASCA on cryptosystems performing multiple calls to hashing functions with inputs derived
from the same secret data. We show that such constructions can be exploited efficiently by an attacker and
show typical use-cases by targeting Kyber’s encryption routine and Dilithium’s signing routine. We also show
that increasing Kyber’s security parameters implies weaker security against SASCA. Finally, our study gives

insights about the minimal bit-level classification accuracy required for successful SASCA on Keccak.

1 INTRODUCTION

Hashing algorithms are deterministic one-way cryp-
tographic functions that take as input a message of
variable size and produce a fix-sized output called a
hash or digest. Main use-cases of hashing functions
include password storage, integrity verification and
Message Authentication Code (MAC) creation. Many
applications rely on hashing functions such as secu-
rity protocols (TLS, IPsec, SNMP, etc.), blockchain
technologies (Bitcoin, Ethereum, efc.) and even Post-
Quantum Cryptography (PQC) schemes , for example
Kyber (Avanzi et al., 2019), Dilithium (Lyubashevsky
et al., 2020) or SPHINCS™ (Bernstein et al., 2019).
SHA-3 has been standardized by the National In-
stitute of Standards and Technologies (NIST) in 2015.
It is based on Keccak, a sponge structure built over
a permutation function called Keccak-f. When a
hashing function manipulates a secret input, an at-

https://orcid.org/0009-0002-2267-7621
https://orcid.org/0009-0001-5183-2291
https://orcid.org/0000-0002-9985-7586
4@ nttps://orcid.org/0000-0002-0767-3684

o

iel

518

Maillard, J., Hiscock, T., Lecomte, M. and Clavier, C.

Simulating SASCA on Keccak: Security Implications for Post-Quantum Cryptographic Schemes.

DOI: 10.5220/0012787200003767
Paper published under CC license (CC BY-NC-ND 4.0)

tacker can try to recover the latter by observing side-
channel leakages during the hashing process, such
as power consumption or electromagnetic radiations.
Interestingly, Keccak is used to manipulate secrets
in several PQC schemes with different aims. In-
deed, it is used as a pseudo-random function (PRF) in
Key-Encapsulation Mechanisms (KEM) such as Ky-
ber and FrodoKEM, or as a Pseudo-Random Num-
ber Generator (PRNG) in the post-quantum Fiat-
Shamir-type signature Dilithium. Finally, instances
of post-quantum hash-based signature schemes like
SPHINCS™ or XMSS rely on Keccak. These uses
of Keccak mainly process either ephemeral or fixed
secrets, hence with few input variability. This pre-
vents the application of Differential Power Analy-
sis (DPA) approaches that were possible in MAC sce-
narios (Zohner et al., 2012; Bilgin et al., 2014). To
tackle this shortcoming, recent single-trace Soft Ana-
Iytical Side-Channel Attacks (SASCA) targeting the
Keccak-f cryptographic permutation function have
been exposed in the literature and shown to be practi-
cal (Kannwischer et al., 2020; You and Kuhn, 2021),
enabling the recovery of these fixed or ephemeral se-
crets. In (Kannwischer et al., 2020), a list of the algo-

In Proceedings of the 21st International Conference on Security and Cryptography (SECRYPT 2024), pages 518-527

ISBN: 978-989-758-709-2; ISSN: 2184-7711

Proceedings Copyright © 2024 by SCITEPRESS — Science and Technology Publications, Lda.

Simulating SASCA on Keccak: Security Implications for Post-Quantum Cryptographic Schemes

rithms that could be targeted by SASCA on Keccak-f
is provided, including several PQC targets. They also
exposed countermeasures against single-trace attacks.
They suggest, without proving it, that multiple calls
to Keccak, with an input composed of a fixed value
concatenated to a counter, can be exploited in lattice-
based KEM and digital signatures. In this paper, we
revisit these intuitions by mounting a shared-key re-
covery attack on Kyber, as well as a private key recov-
ery on Dilithium. Later on, You and Kuhn (You and
Kuhn, 2021) templated fragments of secret variables,
and they exposed high classification accuracies at a
bit-level scale on a Chipwhisperer-Lite board(O’flynn
and Chen, 2014). They built a bit-level factor graph
on several SHA-3 instances and mount successful at-
tacks on this board. Nevertheless, their study did not
give insights on the resistance to noise of a bit-level
model. In this paper, we perform a simulated SASCA
approach at bit-level that aims at evaluating the re-
sistance of single or multiple calls to SHA-3 against
SASCA considering bit-level templating.

1.1 Contributions

In this paper, we implement several soft analytical
side-channel attacks based on belief propagation the-
ory to recover the input of Keccak-f by leveraging the
side-channel leakage of inter-round states. We extend
the work presented in the literature through a com-
prehensive study of the resistance of standard SHA-3
instances regarding SASCA in a simulated context.
Namely, we investigate the accuracy of SASCA with
an increasing noise level rather than on a particular
device. We then investigate how SASCA can merge
information when multiple hash functions are called
with inputs derived from a same secret through the
analysis of SHAKE-256 based error vector derivation
in Kyber post-quantum cryptography standard. Our
quantitative approach allows to better comprehend
that the use such “multiple calls” structures present
an additional security concern. Finally, we discuss
the implications of a similar attack scenario on a
Dilithium signature to recover the private key.

2 BACKGROUND

2.1 SASCA and Belief Propagation

A side-channel attacker that targets a cryptographic
application is able to gain probabilistic information
regarding the value of several intermediate variables.
We assume that the attacker knows the cryptographic
application they are attacking. Thus, they know the

mathematical relationships that link all intermediate
variables in the algorithm. The idea behind SASCA
is to combine likelihoods gathered from side-channel
analysis in order to derive a Maximum A Posteriori
(MAP) estimation of the marginal distribution of a se-
cret. This can be performed by modeling the link be-
tween intermediate variables within a bipartite graphi-
cal model called a factor graph. This model allows di-
viding the high dimensional problem of marginal esti-
mation into a set of smaller dimensional problems. A
factor graph contains two types of nodes. Firstly, vari-
able nodes are used to store the probability distribu-
tions of the target algorithm’s intermediate variables.
Secondly, factor nodes represent the arithmetical links
between two or more variables. Upon this graph, the
MAP estimation is carried out by a message pass-
ing algorithm, called belief propagation, where like-
lihoods are transmitted between variable nodes and
factor nodes. The message uy_,, sent from variable
node x to factor node g is defined as follows:

Mg (X) = Hn—sx(X) (H
hen(x)\{g}
where n(x) corresponds to the set of neighboring
nodes of x (i.e., connected to x with an edge) in the
factor graph. Additionally, messages sent by a factor
g to a variable x is computed with the sum-product
formula depicted as follows:

/Jgﬁx(x) i Z <f(X) H
~{x} yen(g)\{x}
where X represents the set of variable nodes con-
nected to g and ~ {x} expresses the summary notation
as defined in (Kschischang et al., 2001). Note that f is
a boolean function representing the arithmetical link
between variables in n(g). Finally, the marginal dis-
tribution of a variable node is computed as follows:

P(x) =% [T #e0) 3)

gen(x)

Hy—f ()’)> (@)

with a normalization factor Z. Factor graphs rep-
resenting cryptographic functions are often cyclic.
Hence, an iterative message passing algorithm, called
loopy-BP, is applied until convergence.

2.2 Keccak Specifications

SHA-3 is a hashing algorithm based on the Keccak-
f permutation function (Dworkin, 2015). Keccak-f
takes as input a 5 x 5 matrix of elements of size 2-
bits, I € {3,4,5,6}, that are processed through five
sub-routines 0, p, T, % and 1, that are called sequen-
tially for 12 + 2/ rounds. Within the SHA-3 frame-
work, Keccak-f calls are organized with a sponge

519

SECRYPT 2024 - 21st International Conference on Security and Cryptography

construction. The sponge construction consists in
two phases: “absorption”, where the data is injected
within the primitive, and “squeezing” where the hash
is provided to the user. Keccak-f input of size b bits is
divided into two parts of respective sizes: the “rate”
r and the “capacity” ¢ = b —r. The security level
against collision and preimage attacks is 5. The input
of SHA-3, denoted P is padded and then divided into
chunks of size r, denoted {Py,...,P,—1}, that are ab-
sorbed one by one by Keccak-f. Then, the squeezing
part delivers chunks {Zy,...,Z,_} of size r that are
concatenated to build the final hash. In this paper, we
only focus on SHA-3 versions with / = 6, with 64-
bit words and 24 rounds (this version is called Kec-
cak[1600]). Depending on the desired application,
one can use Keccak through one of the standard in-
stances depicted in Table 1.

Table 1: Parameters of standard SHA-3 instances.

Algorithms r c
SHAKE-128 1344 | 256
SHA3-224 1152 | 448
SHA3-256, SHAKE-256 | 1088 | 512
SHA3-384 832 | 768
SHA3-512 576 | 1024

3 RELATED WORK

Soft analytical side-channel attacks have been in-
troduced by Veyrat et al. on an AES Furious im-
plementation (Veyrat-Charvillon et al., 2014). In-
terestingly, SASCA was shown to outperform Alge-
braic Side-Channel Attacks (ASCA), even in noise-
free contexts (Grosso and Standaert, 2015). Grosso et
al. showed that SASCA required much less training
traces than profiled DPA attacks. Later on, SASCA
was adapted to key recovery on Kyber by targeting
the number theoretic transform (Primas et al., 2017,
Pessl and Primas, 2019; Hamburg et al., 2021; Her-
melink et al., 2023). Kannwischer et al. mounted
the first single trace SASCA on Keccak (Kannwischer
et al., 2020). Their approach used clustered nodes
in order to shift the representation of variables from
chunk-level (i.e., 8-bit or 16-bit) to bit-level in order
to model the 0 transform of Keccak-f. They also pro-
vide insights about the repercussions of SASCA on
Keccak upon post-quantum schemes that are based on
the latter. Later, You and Kuhn developed a fully bit-
level approach of SASCA on Keccak (You and Kuhn,
2021). Thanks to bit-level likelihoods gathered from
a fragment template attack, they targeted a Keccak-
f[1600] implementation on a Cortex-M4 device.

520

4 ATTACKER MODEL

In this paper, we consider a profiled attack scenario
where an adversary can train a model, or template, on
a clone of the target board that runs the exact same
algorithm, but with controlled data. The adversary is
also able to perform leakage assessment (e.g., to iden-
tify the leakage model or to select a set of points of
interest for templating) on any intermediate variables
of the target algorithm. We consider the attacker to
be able to craft templates for inter-round intermedi-
ate variables only (including the hashing function in-
put). This choice provides interesting insights regard-
ing the security of hardware implementations of hash-
ing functions. Indeed, several hardware implementa-
tions of SHA-3 instances use registers to store inputs
and outputs of permutation rounds for Keccak-f (Ar-
shad et al., 2014; Sundal and Chaves, 2017; Michail
etal., 2015). Note that, in practice, a classifier that tar-
gets an inter-round variable may exploit intra-round
leakages, this is especially the case for complex mod-
els (e.g., deep neural networks). By default, we re-
strict the attack phase to the observation of a single
side-channel trace. This model can be relaxed when,
for example, hash computations are performed as part
of secure boot implementations. Since the hashing
can be replayed with data when rebooting the device,
better prediction accuracies could be obtained.

4.1 Prior Likelihoods Generation

As mentioned in section 2, Keccak[1600] handles 64-
bit variables. Although the templating of 32-bit vari-
ables has been shown possible (Cassiers et al., 2023),
manipulating probability distributions upon 23 possi-
ble values requires a high amount of storage, and this
becomes impractical for 64-bit variables. An alterna-
tive strategy called fragment template approach, con-
sists in dividing a n-bit variable into smaller chunks
(or fragments), and applying a template attack on each
chunk. Interestingly, You and Kuhn (You and Kuhn,
2021) showed that the fragment size has no significant
impact on bit-level marginal distribution prediction.
This means that, in their particular case, a bit-level
fragment template attack is as relevant as for other
fragment sizes. As Keccak-f uses bitwise manipula-
tions, a factor graph at bit-level scale is appropriate.
Consequently, we consider an arbitrary bit-level clas-
sifier to conduct our experiments. In order to evaluate
the correction capacity brought by SASCA depend-
ing on the performance of such bit-level classifier, we
introduce the notion of virtual leakage.

Simulating SASCA on Keccak: Security Implications for Post-Quantum Cryptographic Schemes

1.0 4

0.9 4
0.8
@

o

5 0.74

S
< 0.6 §
0.5 o o o —————————————————

0.4 T T T T T T T
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

Figure 1: Accuracy of a bit-level classifier for increasing o,
the standard deviation of the noise within the latent space
after dimensionality reduction. The black dashed line cor-
responds to a random guess.

Virtual Leakage. The leakage of an intermediate
variable is supposed multivariate (i.e., spread over
multiple time samples). Then, we consider an ar-
bitrary bit-level classifier that relies on the projec-
tion the side-channel measurements into a latent space
(which can be viewed as dimensionality reduction).
We propose an abstraction of such dimensionality re-
duction by directly parametrizing the data distribu-
tion, i.e., the virtual leakage, in this latent space.
While, in a real case scenario, the data distribution
in this latent space depends on multiple factors (e.g.,
leakage models, learning algorithm), we opt for a sim-
ulation with few parameters. Let X be the random
variable representing bit values, and L the random
variable representing the leakage. For each bit x, the
virtual leakage / is defined as follows:

l:x+B7 BNN(O’GZ) 4)

Noise and Accuracy. Template matching is used on
drawn samples to generate conditional probabilities
P(X =x|L). As we consider two classes, each one
standardized, the accuracy of template matching can
be computed as follows:

Acc=1—-P(L<05|X=1) 5)

with P(L <) being the cumulative density function.
Accuracy depending on noise parameter of the virtual
leakage © is depicted in Figure 1. As expected, when
o increases, the accuracy converges towards a random
guess. This procedure allows to alter the accuracy of a
bit-level classifier, emulating the impact of measure-
ment noise.

Key Ranking. We evaluate the accuracy of the
attacks in this paper thanks to key rank estima-
tion (Veyrat-Charvillon et al., 2013; Grosso, 2019;
Poussier et al., 2016). Such procedure provides an
estimation of the remaining complexity of a key enu-
meration strategy after an attack. Hence, the lower
the rank, the quicker an attacker would find the cor-
rect key with an appropriate key enumeration algo-
rithm. We consider all individual bits of the secret

(i.e., contained in the “rate” part of Keccak-f’s in-
put) as subkeys. The likelihoods obtained on these
bits after SASCA can be provided to the key rank
estimation algorithm. We rely on the algorithm pre-
sented in (Poussier et al., 2016), which is based on
histogram convolutions to combine likelihoods of the
subkeys. The main parameter to setup in this method
is the number of bins defining the histogram. The
fewer bins, the faster the execution algorithm but the
higher the estimation error. In this study, the size of
the secret is often superior to 512 bits, so we choose
a rather small number of bins (i.e., 50 bins) but we
average key rank estimations results over several at-
tack runs, so as to minimize the impact of estimation
error. Finally, the key rank metric is represented with
logarithmic scale within this work.

Baseline Attack. To provide a comparison basis,
we introduce the notion of “baseline attack” which
describes an attack that is only headed thanks to tem-
plating the input variables (without BP). For example,
the accuracy of a baseline attack on a hashing function
is obtained by only templating its input. The baseline
allows to evaluate the correction capacity brought by
SASCA. We define the correction capacity as the per-
centage of accuracy gained with SASCA. For exam-
ple, a successful SASCA with prior likelihoods orig-
inating from a bit-level classifier with an accuracy of
0.9 corresponds to a 10% correction capacity.

Limitations. In this work, we consider the latent
space of the dimensionality reduction phase of an ar-
bitrary bit-level classifier to follow a normal distribu-
tion. This assumption is based on the central limit
theorem. Indeed, we suppose that if the target in-
termediate variable leaks at several time instants and
with enough different leakage models in side channel-
measurements, a projection could result in normally
distributed data in a latent space. However, this is
highly dependent on the nature of the projection and
the parameters of the initial leakage. Still, this model
provides insights upon minimal accuracy levels re-
quired for a bit-level classifier for a successful attack.

S KECCAK-F FACTOR GRAPH

In this paper, we build a bit-level factor graph based
on the work of You and Kuhn (You and Kuhn, 2021).
Namely, each one of the 1600 bits of the state is rep-
resented thanks to a variable node, this for each round
of Keccak-f. The subgraph representing the 6 rou-
tine incorporates intermediate variable nodes repre-
senting the parity bits. Note that T and p routines

521

SECRYPT 2024 - 21st International Conference on Security and Cryptography

are implemented with a simple wiring. The factor
graph contains three different factor types which re-
spectively represent the bitwise “exclusive-or”, “and”
and “not” operations (this latter one can easily be
implemented with a lookup table). The exclusive-or
operation is performed thanks to a Walsh-Hadamard
transform (Kannwischer et al., 2020). The per-class
likelihoods outputted from an arbitrary classifier on
an intermediate variable can be incorporated within a
factor-graph thanks to an observational factor. This
factors’ only function is to transmit these likelihoods
to the variable node it is connected to. In our sim-
ulated context, we restrict observational factors to
inter-rounds intermediate variables only (i.e., exclud-
ing 0, and Y intermediate variables). This differs
from the approach taken in (You and Kuhn, 2021),
where 6 intermediate variables corresponding to par-
ity were connected to observational nodes, allowing
explicit intra-round leakage exploitation. As men-
tioned in section 4, this allows to gain intuition upon
the resistance of hardware implementations against
SASCA. Nevertheless, one can insert observational
nodes inside the rounds, and we expect that this
would increase attack performances. Finally, when
not stated otherwise, we consider by default the whole
rate bits to constitute the secret (see Table 1).

6 SINGLE CALL ATTACKS

The aim of this section is to evaluate a general attack
scenario where a side-channel adversary has the pos-
sibility to apply previously crafted templates upon a
measurement of a single call to Keccak. Along this
section, we aim at addressing the following questions:
(i) What is the minimal bit-level template accuracy
achievable for a successful attack? (ii) What is the
minimum number of Keccak-f rounds to profile to ob-
tain satisfactory recovery? (iii) What accuracies can
be expected for different instances of Keccak?

Fully Unknown Input. The case of a fully un-
known Keccak-f input state of 1600 bits represents a
late invocation of Keccak-f in the sponge construc-
tion, without prior knowledge of the output of the
previous invocation. In (You and Kuhn, 2021), au-
thors report a success rate close to 0 on the recovery
of a state with more than 1500 unknown bits. Conse-
quently, they need to know at least a part of the capac-
ity, which implies a successful attack on prior invoca-
tions. We believe that such dependency between the
attacks can be detrimental to an attacker, so we also
investigate SASCA on fully random Keccak-f inputs.

522

rank (log2 scale)
rank (log2 scale)

1 5 9
Number of rounds

1 5 9
Number of rounds

Figure 2: Average key rank estimation on the input after
50 runs of simulated BP attacks on Keccak-f[1600] with
full unknown inputs (right) and » = 1088 unknown bits, the
SHA3-256 FIPS standard (left).

6.1 Number of Target Rounds

Firstly, the purpose of our analysis is to assess the
minimal number of rounds that must be profiled by
an attacker in order to get satisfactory recovery of
the input considering noise. Indeed, this reduces the
number of variables to be templated by the attacker,
with hopefully similar recovery potential. We per-
form two simulations with varying noise parameter ¢
and number of templated rounds. The first experiment
evaluates the average key rank estimation for the in-
put of a SHA3-256 / SHAKE-256 instance (with rate
r = 1088). The second experiment measures the aver-
age key rank of a fully unknown Keccak-f input state
of 1600 bits. In Figure 2 we observe that attacking
SHA3-256 allows the good key to be ranked first up
to 6 = 0.6, which is better than for a full random in-
put. Still, with ¢ < 0.5, the rank of the good guess
stays under 2%, which is approximately the number
of blocks hashed by the bitcoin network in one second
in January 2024 (Coinwarz,). We also notice that, re-
gardless the targeted version, no significant improve-
ment is brought by profiling more than 5 Keccak-f
rounds (2 rounds for SHA3-256). We believe that
this is related to the non-injective nature of the bit-
wise logical-and operation performed in), which lim-
its the backwards propagation of information within
the graph. Further Keccak-f related analyses in this
paper will be conducted considering templates on 5
rounds. Note that this is slightly higher than (Kan-
nwischer et al., 2020) and (You and Kuhn, 2021), that
used respectively 2 and 3 (or 4, depending on the ver-
sion of SHA-3) rounds.

6.2 Evaluation of SHA-3 Attacks

We now investigate the resistance of standard SHA-
3 instances (see Table 1) against SASCA. For an in-
creasing noise level, we run the attack 50 times on
random inputs and computed key ranks are averaged.
In order to assess the benefits of SASCA against a
baseline attack, the result of a baseline classifier, as
defined in section 4, is used as a reference. Results of

Simulating SASCA on Keccak: Security Implications for Post-Quantum Cryptographic Schemes

1250 9 —%— Keccak[r=1600,c=0]
Keccak[r=1344,c=256]
—¥— Keccak[r=1152,c=448]
750 { —#— Keccak[r=1088,c=512]
—*— Keccak[r=832,c=768]
—— Keccak[r=576,c=1024]

1000

500

Rank (log2 scale)

2504

0:0 0:2 0:4 0:6 018
Figure 3: Comparison of the key ranks of a baseline classi-
fier (without BP, light dashed lines) and SASCA attacks on

Keccak-f for several rate r and capacity ¢ parameters.

300

N

o

S
L

Rank (log2 scale)

N
(=3
o
|

-

N

G

Iterations

0}seeececcscsscnccs

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
o

0

Figure 4: Number of iterations of the loopy-BP algorithm
for the SHA3-512 attack. The maximum number of itera-
tions is set to 300.

such simulations are illustrated in Figure 3.

Results provided in Figure 3 show that the propor-
tion of known data plays an important role regarding
the resistance of the attack to noise. Indeed, for Kec-
cak instances, the average rank after the attack is ex-
pected to converge up to the size of the problem (i.e.,
2"). Also, the greater the capacity size, the greater
amount of noise can be supported by SASCA leading
to arank of 0. This follows observations made in (You
and Kuhn, 2021) and (Kannwischer et al., 2020).

Benefits of SASCA. In Figure 3, we observe that
the good guess rank after baseline attacks increases
rapidly after a bit-level noise value of ¢ = 0.15,
whereas the least efficient SASCA (i.e., with full
unknown input state, depicted by Keccak[r = 1600,
¢ = 0]) exposes an average rank of 0 up to an ini-
tial bit-level classifier accuracy of 0.9 (corresponding
to 6 = 0.4 in Figure 1). With the increasing noise
level, we observe the average ranks after both base-
line and SASCA approaches converge towards an ran-
dom guess. Consequently, we can conclude that, in
the cases considered in this study, SASCA is always
beneficial to an attacker within a noise domain de-
pending on the capacity of SHA-3. Average key rank
after SASCA converges more slowly towards random
guessing when the noise increase, being beneficial to
the adversary when key enumeration is possible.

Noise and BP Convergence. In Figure 4, we illus-
trate the ranks and the number of loopy-BP iterations
obtained for several runs of a SHA3-512 attack for an
increasing noise level. A threshold on the maximal
statistical change of marginals from one iteration to

the next is setup as a stopping criterion for loopy-BP.
For low noise levels (i.e., inferior to o = 0.70), the
number of iterations for all runs stays low (i.e., infe-
rior to 70) while the rank of the good guess is 0. This
means that the loopy-BP algorithm quickly converges
to the good hypothesis. From ¢ = 0.75 to 6 = 0.9,
the intermediate zone, the majority of runs that do not
lead to low rank reach the maximum number of iter-
ations (300 in this experiment), indicating that loopy-
BP did not converge. Finally, after 6 = 0.90, the
number of iterations for all the runs drops below 70,
while the rank of the good hypothesis remains high.
In this case, the loopy-BP algorithm converges, but on
a wrong hypothesis. If, in a black box context, an at-
tacker observes that loopy-BP algorithm reaches the
maximum number of iterations, this means that the
initial template accuracy probably corresponds to the
intermediate zone depicted in Figure 4. The attacker,
then, could adjust the classification model, or retry the
attack with new measurements.

6.3 Discussion

We presented a methodology to assess the mini-
mal number of hashing function rounds necessary to
mount successful SASCA on SHA-3. We analyzed
the benefits of SASCA compared to a baseline attack,
and confirmed the statement provided in (You and
Kuhn, 2021) and (Kannwischer et al., 2020): the more
input is known, the higher is the resistance of SASCA
to noise. This implies that Keccak instances with
smaller rate r, while having higher security against
cryptanalysis, are more sensitive to SASCA.

Additionally, the intermediate key transition zone
in Figure 4, where most of the loopy-BP instances
saturate at the maximum number of iterations, can
be explained by the potential appearance of oscilla-
tions or error floors. This could reveal trapping or ab-
sorbing sets within the factor graph (Dolecek et al.,
2009). Moreover, no significant improvement was
brought by increasing the maximal number of iter-
ations (i.e., loopy-BP still frequently hits the maxi-
mum in this intermediate domain), neither by apply-
ing message damping (this was used in (Kannwischer
et al., 2020) and shown inefficient in a bit-level factor
graph in (You and Kuhn, 2021)).

Future work could aim at characterizing absorb-
ing sets in such noise domains, in order to opt
for an appropriate way to counter them. Specifi-
cally, adding weights to the message passing process
with finer granularity than classical message damp-
ing could be beneficial. Hence, we believe that neu-
ral enhanced belief-propagation models (Satorras and
Welling, 2021) should be considered in further works.

523

SECRYPT 2024 - 21st International Conference on Security and Cryptography

7 MULTIPLE CALLS ATTACK

In (Kannwischer et al., 2020), authors briefly mention
that several calls to Keccak-f with an input composed
of a fixed part (a random coin here) and a varying part
(a counter value in this case) could be exploited by
merging the factor graphs in order to aggregate infor-
mation, following an approach depicted in (Veyrat-
Charvillon et al., 2014). In this section, we study
the vulnerability of such structures regarding SASCA.
For this sake, we take as use-cases a shared key recov-
ery on Kyber, and a private key recovery on Dilithum.
Note that both these attacks suppose that the attacker
is able to detect and label different calls to the hashing
function. In practice, this brings additional technical
difficulties that should be taken into account.

7.1 Kyber’s Shared Key Recovery

Kyber is a post-quantum Key Encapsulation Mecha-
nism (KEM) that has been standardized by the NIST
in 2022 (Avanzi et al., 2019). Kyber is a lattice-based
scheme that aims at encapsulating a shared key for
secure key exchange. It relies on an encryption pro-
cedure that consists in projecting the message (i.e.,
the shared key) in a lattice and adding an error, which
is derived from a secret coin. To reach IND-CCA2
security, the receiver needs to perform a Fujisaki-
Okamoto transform (Fujisaki and Okamoto, 1999),
that includes a re-encrypt operation. This means that a
side-channel attack targeting the encryption function
to recover the shared key can either target the sender
or the receiver device.

Encryption Function. Pseudocode of the encryp-
tion algorithm used in Kyber is depicted in Algorithm
1.This algorithm takes as input a secret message. As
one can see, a 32-byte secret random coin r is derived
thanks to a PRF in order to generate a secret vector
t and error vectors e; and e;. We stress that, with
the knowledge of the ciphertext ¢ (which can be in-
tercepted by the adversary), the public key pk and the
secret random coin r, an attacker is able to recover the
message m.

Attacking the PRF. The derivation in Kyber
uses SHAKE-256 as a PRF. As seen in Table 1,
SHAKE-256 is based on Keccak[r=1088, c=512].
Namely, in Algorithm 1., r is manipulated with
PRF(r,N), for N € {0,...,2k}, with PRF(r,N) =
SHAKE-256(r||N). As r is a 256-bit variable and N
is known at each step, it is possible to mount an attack
targeting the N;,;, = 2k + 1 calls to SHAKE-256.

524

Input: Public key pk € B!>%n/8+32
Input: Message m € B>

Input: Random coin r € B>

Result: Ciphertext ¢ € Bhkn/8+dvn/s
N0

t < decodea (pk)

A generate_public.matrix(pk)
for i from 0 to k— 1 do

rli] CBDT“ (PRF(r,N))
N<«+N+1

end

for i from 0 to k—1 do

ei[i] < CBDy, (PRF(r,N))
N+—N+1

end

¢2 < CBDy, (PRF(r,N))

t=NTT(r)

u=NTT (AT o) +¢

v=NTT!({" oF) + e, + decompress,(decode; (m), 1)
1 = encodeg, (compress, (u,d,))

2 = encodey, (compress,(v,dy))

return ¢ = (c1||c2)

Algorithm 1: Kyber encryption function (Avanzi et al.,
2019).

Note that the higher N, the higher is Kyber’s secu-
rity level. By looking backwards at Algorithm 1, we
see that ¢, can be recovered from ¢, which is a sim-
ple concatenation of ¢y and c¢;. Then, an attacker can
compute V' as follows:

V= decompress,(decodey, (¢2),dy) 6)

We know from Kyber’s specification that the loss
of information induced by this computation is:

Serr = v —Vmod*q| < beJ @)

with [x] being the rounding operation. The value of
O corresponding to each security level of Kyber is
depicted in Table 2.
By setting mg.. = decompress,(decodey(m),1),
from Algorithm 1we have:
v=NTT (T of) + e+ mye. (8)
By making the hypothesis that an attacker is able
to recover r, they can then obtain NTT ! (t7 of) +e,.
Then, the attacker can compute the following:
Mype =V — (NTT 1 ({ of) +e2))
This operation guarantees that |mg.. —
m&ecmodicﬂ =8,,+. Then we have:
2
compressq(m;,ec, 1)= [~md€CJ mod™2 (10)
q

For all Kyber security levels, the relation J,,, < %
is guaranteed. This allows the attacker to compute the
shared key m with:

m = encodej(compressy(my,.,1)) (11)

Simulating SASCA on Keccak: Security Implications for Post-Quantum Cryptographic Schemes

Table 2: Kyber parameters values.

Version q k Nior d, Serr
Kyber512 3329 2 5 4 104
Kyber768 3329 | 3 7 4 104
Kyber1024 | 3329 | 4 9 5 52

—— SHAKE-256 (Nioe =1)
| — sHAKE256 Wi =5)
—— SHAKE-256 (Nigr=7)
—— SHAKE-256 (Noo: =9)
—— SHAKE-256 avg 5
100 4 == SHAKE-256 avg 7
—— SHAKE-256 avg 9

N
o
=3

Rank (log2 scale)

o

0.0 0.‘5 1.‘0 1‘.5 2.‘0 2‘5 3‘.0 3.‘5
Figure 5: Average rank 50 runs with increasing noise on Ky-
ber’s encryption attack considering multiple SHAKE-256

calls. Dotted lines represent the trace averaging version of
the attack with Ny = 1.

Simulation Results. We create a joint factor graph
that represents intermediate variables of all N
SHAKE-256 calls, built around the bit-level variables
that represent the 256-bit secret coin r. Kannwischer
et al. expected that attacks in this setting would per-
form similarly than where the input is not changing
and where trace averaging is possible (Kannwischer
et al., 2020). Let X be a random variable of mean
Uy and standard deviation 6,. When drawing random
samples from X of size n, the central limit theorem
for sample means states that, considering the random
variable X consisting in sample means, we have:

— Oy
X ~N (x, \/ﬁ) (12)

Our simulated model allows to easily estimate the
average rank of an attack considering fixed input, with
trace averaging taken into account. In this case, we
simply need to apply a factor /N, to the noise sup-
ported by the attack with N;,; = 1 to simulate the
“trace averaging” scenario.

Attack results are illustrated in Figure 5. First, one
can observe that the noise level supported by the at-
tack of a single SHAKE-256 call is superior to what
is depicted in Figure 3. Indeed, even if SHAKE-256
is based on Keccak[r=1088, c=512], the secret coin r
is concatenated to a known value N and then padded
with the Keccak standard padding scheme. This leads
to 1344 known bits and 256 unknown bits within the
latter input. The size of the manipulated secret be-
ing smaller than all previously analyzed Keccak in-
stances, the observed accuracy for the SHAKE-256
(N;or = 1) instance is higher than for instances in Ta-
ble 1. This follows the conclusions brought in sec-
tion 6. Most importantly, considering several calls to
SHAKE-256 sharing the same secret allows to drasti-
cally increase the level of noise supported by the at-
tack, following the evolution of N,,,. Furthermore, we

bring a nuance to the statement of (Kannwischer et al.,
2020). Indeed, SASCA results on merged graphs is
less resistant to noise than SASCA on the averaged
fixed input scenario. We believe this can be explained
by topological aspects of the merged factor graph that
could lead to the appearance of absorbing and trap-
ping sets. We can, however, consider the “trace aver-
aging version” as a loose upper bound that can be used
to quickly evaluate security. Finally, further work
could aim at tightening the gap between approxima-
tion by investigating methods to enhance the loopy-
BP procedure, as stated in subsection 6.2.

7.2 Dilithium Private Key Recovery

Dilithium (Lyubashevsky et al., 2020) is a lattice
based post-quantum Fiat-Shamir digital signature
scheme that has been standardized by the NIST. Dur-
ing the randomized signing routine, a secret random
token p’ € {0, 1}°'2 is drawn, and processed, concate-
nated to a counter variable k through the ExpandMask
function, which is implemented thanks to SHAKE-
256. The recovery of p’, along with the knowledge of
public parameters and one (or few) messages and cor-
responding signatures, is enough to retrieve the full
secret key (Berzati et al., 2023). Due to the rejection
sampling process, the signing process makes, in av-
erage, 4.25 calls to the ExpandMask function. Then,
thanks to simple power analysis, an adversary could
spot the different calls to ExpandMask, and associate
the appropriate value of k for each one of them. Then,
an attacker could create a merged graph, similarly to
the approach taken in subsection 7.1. Also, the more
the rejection sampling fails to output a valid signature,
the more calls to ExpandMask are performed, which
would lead to a wider graph, and a higher resistance of
SASCA to noise (see Figure 5). Consequently, con-
clusions about the vulnerability induced by multiple
calls of SHAKE-256 with a derivation of the same se-
cret also hold for Dilithium’s signing routine.

8 SUMMARY

We display the minimal bit-level template accuracy
required for successful SASCA attack on average in
Table 3. Firstly, we observe that, except for the case
of Kyber related graphs, the same bit-level classifi-
cation accuracy is needed to reach either a 2% or 2°
rank. This is due to a quick drop in SASCA correc-
tion capacity. Still, for SHA3-512, the correction ca-
pacity of SASCA reaches approximately 23.5%. This
goes higher when aggregating graphs in the case of
Kyber, where the correction capacity is of 37.5%. Fi-

525

SECRYPT 2024 - 21st International Conference on Security and Cryptography

Table 3: Minimal Required bit-level fragment template ac-
curacies for successful SASCA attack.

Algorithms rank 2° | rank 2%
Keccak-f[r = 1600,c = 0] 0.875 0.875
SHAKE-128 0.8 0.8
SHA3-224 0.8 0.8
SHA3-256, SHAKE-256 0.775 0.775
SHA3-384 0.765 0.765
SHA3-512 0.765 0.75
Kyber graph (N;o; = 1) 0.69 0.675
Kyber graph (N;or = 5) 0.625 0.6
Kyber graph (N;py = 7) 0.625 0.58
Kyber graph (N = 9) 0.630 057

nally, with an enumeration effort roughly equivalent
to a second of bitcoin network workload in January
2024 (i.e., 2°%) (Coinwarz,), the correction brought
by SASCA and enumeration can reach more than
40% in the best case scenario (i.e., Kyber graph with
Nior = 9).

9 COUNTERMEASURES

All attacks presented in this paper rely on the abil-
ity of an attacker to craft a template attack on sev-
eral intermediate variables within the targeted hash-
ing functions. Hence, masking measures would mit-
igate these attacks (GroB et al., 2017; Arribas et al.,
2018). We showed that SASCA does not benefit
from templating variables after the fifth permutation
round. Hence, masking only the first Keccak-f rounds
would allow reducing the amount of necessary ran-
domness while providing satisfactory security guar-
antees, this with reduced computational overhead. All
attacks presented in this paper are valid until a certain
bit-level prediction accuracy. Hence, classical mea-
sures that tend to limit the power consumption vari-
ations or that insert dummy cycles during the sensi-
tive code execution can be beneficial. Furthermore,
as formulated in (Kannwischer et al., 2020), a shuf-
fling countermeasure consisting in reordering opera-
tions within Keccak-f routines would complicate the
template construction phase of the attack, and thus
lower the SASCA accuracy. Indeed there are very few
data dependencies within Keccak-f routines, allowing
to easily sample random permutations.

Whereas aforementioned measures come with a
cost in terms of required randomness and execution
time, countermeasures can be taken at protocol level.
Indeed, in section 7, we show that multiple deriva-
tions of a same secret going through a hash func-
tion raise a vulnerability. Moreover, in the special
case of Kyber, we see that increasing the security
level directly enhances the potential for an attacker
to mount attacks that support a higher level of noise.

526

Consequently, possible countermeasure paths for fu-
ture schemes could be headed towards implementing
derivations from a secret that are harder to exploit
from an attacker’s perspective, typically by prevent-
ing an adversary to easily aggregate several factor
graphs. This could be done without any additional
necessary randomness by, for example, leveraging the
“squeeze” phase of Keccak. However, theoretical se-
curity of such methods remains to be evaluated.

10 CONCLUSION

In this paper, we investigated the security of SHA-3
hashing functions against soft analytical side-channel
attacks that aim at retrieving a secret input under a
bit-level leakage model. Thanks to a simulated ap-
proach, we assess the threat represented by SASCA
on most common SHA-3 version, thus extending pre-
vious works on that topic. Next, we mount an at-
tack that exploits multiple calls to a hashing function
that processes data derived from the same secret. We
evaluate this approach on Kyber’s encryption func-
tion and Dilithium signing routine, that are based on
SHAKE-256. This type of construction leads to ad-
ditional vulnerabilities when considering an attacker
with SASCA potential. Particularly, it shows that at-
tacks based on multiple hash function calls really push
forward the acceptable noise level from an attacker’s
perspective. In cases where profiled side-channel at-
tacks are possible, the attacks described in this paper
represent a threat. This must be taken into account
when designing new schemes that use hashing func-
tion to manipulate secret data, particularly when mul-
tiple deviations from the same secret are needed.

In this paper, we deliberately eluded the practical
difficulties of performing a template attack on hash-
ing functions, this to focus on an exhaustive study of
the noise resistance of SASCA. Hence, future works
could investigate such practical aspects, and the im-
pact of considering within SASCA likelihoods com-
ing from models that profile variables with different
leakage models. This could lead to the application of
advanced profiling, for example based on deep neu-
ral networks, allowing to investigate the interface be-
tween machine learning and probabilistic graphical
models within a SASCA framework.

ACKNOWLEDGEMENT

This work has benefited from a government grant
managed by the National Research Agency under
France 2030 with reference ANR-22-PECY-0009.

Simulating SASCA on Keccak: Security Implications for Post-Quantum Cryptographic Schemes

REFERENCES

Arribas, V., Bilgin, B., Petrides, G., Nikova, S., and Rijmen,
V. (2018). Rhythmic Keccak: SCA security and low
latency in HW. IACR Transactions on Cryptographic
Hardware and Embedded Systems.

Arshad, A., Aziz, A., et al. (2014). Compact implementa-
tion of SHA3-512 on FPGA. In Conference on Infor-
mation Assurance and Cyber Security (CIACS).

Avanzi, R., Bos, J., Ducas, L., Kiltz, E., Lepoint, T., Lyuba-
shevsky, V., Schanck, J. M., Schwabe, P., Seiler, G.,
and Stehlé, D. (2019). Crystals-kyber algorithm spec-
ifications and supporting documentation. NIST PQC
Round.

Bernstein, D. J., Hiilsing, A., Kolbl, S., Niederhagen, R.,
Rijneveld, J., and Schwabe, P. (2019). The sphincs+
signature framework. In Proceedings of the 2019
ACM SIGSAC.

Berzati, A., Viera, A. C., Chartouny, M., Madec, S.,
Vergnaud, D., and Vigilant, D. (2023). Exploiting
intermediate value leakage in dilithium: a template-
based approach. IACR Transactions on Cryptographic
Hardware and Embedded Systems.

Bilgin, B., Daemen, J., Nikov, V., Nikova, S., Rijmen, V.,
and Van Assche, G. (2014). Efficient and first-order
dpa resistant implementations of keccak. In Smart
Card Research and Advanced Applications, CARDIS
2013.

Cassiers, G., Devillez, H., Standaert, F. 0.-X., and Udvarhe-
lyi, B. (2023). Efficient Regression-Based Linear Dis-
criminant Analysis for Side-Channel Security Evalu-
ations: Towards Analytical Attacks against 32-bit Im-
plementations. IACR Transactions on Cryptographic
Hardware and Embedded Systems.

Coinwarz. Bitcoin hash rate. https://www.coinwarz.com.

Dolecek, L., Zhang, Z., Anantharam, V., Wainwright, M. J.,
and Nikolic, B. (2009). Analysis of absorbing sets and
fully absorbing sets of array-based ldpc codes. IEEE
Transactions on Information Theory.

Dworkin, M. J. (2015). SHA-3 standard: Permutation-
based hash and extendable-output functions.

Fujisaki, E. and Okamoto, T. (1999). Secure integration
of asymmetric and symmetric encryption schemes. In
Annual international cryptology conference.

GroB3, H., Schaffenrath, D., and Mangard, S. (2017).
Higher-order side-channel protected implementations
of keccak. In 2017 Euromicro Conference on Digital
System Design (DSD).

Grosso, V. (2019). Scalable key rank estimation (and key
enumeration) algorithm for large keys. In Smart Card
Research and Advanced Applications, CARDIS 2018.

Grosso, V. and Standaert, F.-X. (2015). ASCA, SASCA and
DPA with enumeration: which one beats the other and
when? In Advances in Cryptology, ASIACRYPT 2015.

Hamburg, M., Hermelink, J., Primas, R., Samardjiska, S.,
Schamberger, T., Streit, S., Strieder, E., and van Vre-
dendaal, C. (2021). Chosen ciphertext k-trace attacks
on masked cca2 secure kyber. JACR Transactions on
Cryptographic Hardware and Embedded Systems.

Hermelink, J., Streit, S., Strieder, E., and Thieme, K.
(2023). Adapting belief propagation to counter shuf-
fling of NTTs. IACR Transactions on Cryptographic
Hardware and Embedded Systems.

Kannwischer, M. J., Pessl, P., and Primas, R. (2020).
Single-trace attacks on keccak. Cryptology ePrint
Archive.

Kschischang, F. R., Frey, B. J., and Loeliger, H.-A. (2001).
Factor graphs and the sum-product algorithm. /EEE
Transactions on information theory.

Lyubashevsky, V., Ducas, L., Kiltz, E., Lepoint, T,
Schwabe, P., Seiler, G., Stehlé, D., and Bai, S. (2020).
Crystals-dilithium. Algorithm Specifications and Sup-
porting Documentation.

Michail, H. E., Ioannou, L., and Voyiatzis, A. G. (2015).
Pipelined SHA-3 implementations on FPGA: Archi-
tecture and performance analysis. In Proceedings of
the Second Workshop on Cryptography and Security
in Computing Systems.

O’flynn, C. and Chen, Z. (2014). Chipwhisperer: An
open-source platform for hardware embedded secu-
rity research. In Constructive Side-Channel Analy-
sis and Secure Design: 5Sth International Workshop,
COSADE 2014.

Pessl, P. and Primas, R. (2019). More practical single-trace
attacks on the number theoretic transform. In Progress
in Cryptology—-LATINCRYPT 2019.

Poussier, R., Standaert, F.-X., and Grosso, V. (2016). Sim-
ple key enumeration (and rank estimation) using his-
tograms: An integrated approach. In Cryptographic
Hardware and Embedded Systems, CHES.

Primas, R., Pessl, P., and Mangard, S. (2017). Single-
trace side-channel attacks on masked lattice-based en-
cryption. In Cryptographic Hardware and Embedded
Systems—CHES 2017: 19th International Conference,
Taipei, Taiwan, September 25-28, 2017, Proceedings.

Satorras, V. G. and Welling, M. (2021). Neural enhanced
belief propagation on factor graphs. In International
Conference on Artificial Intelligence and Statistics.

Sundal, M. and Chaves, R. (2017). Efficient FPGA imple-
mentation of the SHA-3 hash function. In IEEE Com-
puter Society Annual Symposium on VLSI (ISVLSI).

Veyrat-Charvillon, N., Gérard, B., Renauld, M., and Stan-
daert, F.-X. (2013). An optimal key enumeration al-
gorithm and its application to side-channel attacks. In
Selected Areas in Cryptography, SAC 2012.

Veyrat-Charvillon, N., Gérard, B., and Standaert, F.-X.
(2014). Soft analytical side-channel attacks. In Ad-
vances in Cryptology—-ASIACRYPT 2014: 20th Inter-
national Conference on the Theory and Application of
Cryptology and Information Security.

You, S.-C. and Kuhn, M. G. (2021). Single-trace fragment
template attack on a 32-bit implementation of keccak.
In International Conference on Smart Card Research
and Advanced Applications.

Zohner, M., Kasper, M., Stottinger, M., and Huss, S. A.
(2012). Side channel analysis of the sha-3 finalists.
In 2012 Design, Automation & Test in Europe Confer-
ence & Exhibition (DATE).

527

