
Spellchecker Analysis for Behavioural Biometric of Typing Errors
Scenario

Bartłomiej Marek and Wojciech Wodo
Faculty of Information and Communication Technology, Wroclaw University of Science and Technology,

Wybrzeze Wyspianskiego 27, Wroclaw, Poland

Keywords: Spellchecker, Behavioural Biometrics, Typing Errors, User Model, Typing, Keystroking, Authentication.

Abstract: Unlike the typical approach using keystroke dynamics for user authentication and identification, we focus on a
more inherent characteristic - the pattern of typing mistakes, which are not widely investigated in the literature.
The paper presents initial research that enables the selection of an appropriate Python-based spellchecker for
detection in behavioural biometrics systems based on static text characteristics: typing errors. Integrating
a robust spellchecker into a biometric system based on static features such as errors made during typing
can significantly enhance its effectiveness and user experience. The study evaluated seven tools and their
combinations, amounting to forty-nine variants. The research is split into two phases. The first one used fewer
sentences to filter satisfying the criteria tools, for which, in the second phase, the context was expanded to
be able to choose the most appropriate one by using more sentences. The ultimate goal of the research is to
create different user behavioural models for typing errors and test them in the verification and identification
scenarios. We will apply the most promising spellcheckers based on the current investigation results.

1 INTRODUCTION

As the paper (Mróz-Gorgoń et al., 2022) presents,
the market for biometric-based solutions is rapidly
growing, especially for security-oriented applica-
tions. Finding an easy-to-use and cost-effective solu-
tion based on the fundamental behavioural trait - typ-
ing is very tempting. Keystroking is a natural way of
interaction between humans and their systems; that is
the way it is almost transparent for the user, and there
is no need to apply any additional sensors to get the
data (Gupta et al., 2023).

The development of a reliable and robust biomet-
ric system based on typing errors would be an inter-
esting endeavour, given the gap in the application of
static features of human typing. To the best of our
knowledge, the only notable application of the con-
tinuous authentication system that uses typing error
features was introduced in the (Parappuram et al.,
2016), which presented a high accuracy but lacked
the dataset, technical specifics and no continuation of
research was found. Hence, we initiate work on a be-
havioural biometrics system based on typing errors by
selecting the most suitable spellchecker in the context
of the planned application.

The primary objective of this research is to sur-

vey various Python-based tools available for use in
spelling error correction, a key component of a be-
havioural biometrics system based on static text char-
acteristics: typing errors. The biometric system aims
to identify and verify users by error characteristics ex-
traction from data gathered in real-time (online mode)
or uploaded text files (offline mode). In contrast to
most of the keystroke approaches, a system based
on misspells uses static features that may bring other
benefits, including reducing dependence on devices
and continuous monitoring (in case of offline mode),
ensuring stability and consistency in user authentica-
tion and identification, proposing an alternative or re-
inforcing a dynamic approach.

To pinpoint characteristics derived from typing
errors, one must flawlessly detect and identify any
miswriting within the text. A crucial aspect of de-
tecting misspells is accuracy and precision in predic-
tions of what the author meant and how it should
be written while not generating false-positive errors.
A spellchecker enhances static biometric features by
identifying and correcting typing mistakes, reducing
noise and improving the performance of the biometric
system, thereby ensuring a more secure and efficient
authentication method.

This paper evaluates tools and their combinations,

748
Marek, B. and Wodo, W.
Spellchecker Analysis for Behavioural Biometric of Typing Errors Scenario.
DOI: 10.5220/0012789000003767
Paper published under CC license (CC BY-NC-ND 4.0)
In Proceedings of the 21st International Conference on Security and Cryptography (SECRYPT 2024), pages 748-757
ISBN: 978-989-758-709-2; ISSN: 2184-7711
Proceedings Copyright © 2024 by SCITEPRESS – Science and Technology Publications, Lda.

emphasising correctness based on defined string com-
parison metrics that can be divided into four groups.
Each metric is calculated by comparing the output of
the test variant and a given (arbitrarily correct) sen-
tence. A secondary but important aspect considered
is operational reliability, e.g. the operation time.

This paper evaluates tools and their combinations
with an emphasis on correctness based on defined
string comparison metrics that can be divided into
four groups. Each metric is calculated by comparing
the output of the test variant and a given (arbitrarily
correct) sentence. A secondary but important aspect
considered is operational reliability, e.g. the operation
time.

1.1 Related Work

The problem of error correction has already been ex-
tensively researched, focusing on a number of ap-
proaches. In (Näther, 2020) 14 spelling error cor-
rection tools from various applications and environ-
ments were benchmarked. The authors split the test
into error-free sentences and sentences with various
numbers of errors from multiple error classes (such as
adding non-existing words, changing a word to a sim-
ilar one or repeating some words. Tools were evalu-
ated using, e.g. sequence accuracy. As a result of the
research, the authors noticed that all tools are effec-
tive at correcting non-words, but sentences with other
error types, especially those that require context un-
derstanding, are challenging.

The authors of (Bexte et al., 2022) introduced
LESPELL, a benchmark corpus of spelling errors
for evaluating spellchecking methods for learner lan-
guage. It discusses the challenges of spellchecking
learner language and introduces DKPro Spelling as
a solution. The article uses different dictionaries
and corpora to compare the performance of differ-
ent spellchecking tools, such as Hunspell and Lan-
guageTool. Reranking candidates based on language
model probabilities improves correction performance
for most corpora, but the results vary depending on
the language and corpus (Bexte et al., 2022).

1.2 Contribution

A developed module enables tools and their combi-
nations testing, using sentences from a dataset mod-
ified with the most typical typing errors (Damerau,
1964). The review aims to identify the most suitable
spell checker based on the defined experimental en-
vironment and evaluation criteria assessing accuracy,
robustness and reliability. The main objective of this
work is to select a spell checker for use in a biomet-

ric system. Through experimentation and assessment,
valuable insights are provided into the strengths and
weaknesses of each tool and their combinations1.

2 RESEARCH METHODOLOGY

The effectiveness of the selected implementations was
assessed through empirical testing to select the most
effective program or combination of typing error cor-
rection tools from the assortment contained within the
Python libraries. The main initial assumption is to es-
tablish a controlled environment to test each of the
chosen variants.

2.1 Metrics

Two types of algorithms are applicable to compare
strings: similarity, the bigger the value, the more sim-
ilar strings are in reference to each other; and the dis-
tance (reverse similarity), opposite, the lower value,
the more similar are strings in reference to each other.
The classification of algorithm types, based on their
characteristics, includes the following categories:

• Edit distance algorithms, which are determined by
the number of editing operations applied to the
given strings (Wu, 2021).

• Token-based methods, akin to set similarity algo-
rithms, utilizing string tokens as their primary el-
ements (Blurock, 2021a);

• Sequence-based algorithms which focus on com-
mon substrings or subsequences, where a ’se-
quence’ is defined as a series of consecutive char-
acters(Blurock, 2021a);

• Phonetic-based approaches are designed to index
words according to their pronunciation.

Calculating string similarity and distance mea-
sures allows solving problems in e.g. correction or
string recognition applications(Haque et al., 2022).
However, they are very often costly to compute re-
sources with uncertain performance due to the variety
of potential errors.

2.1.1 Edit Based

The approach proposed by F.J. Damerau, one of the
most popular and universally applied methods that re-
lies on edit distance, posits that a significant majority
of spelling errors are the result of a single miswriting.

1All datasets and codes are available in the git reposi-
tory: https://github.com/BaarTeek123/python spellchecke
rs comparison

Spellchecker Analysis for Behavioural Biometric of Typing Errors Scenario

749

These errors can be corrected by applying one of the
four categories:

• deletion that represents removing a character,

• insertion that stands for adding a character,

• replacement that implies a character change,

• transposition that represents swapping neighbour-
ing characters,

thus expanding Levenshtein distance, including the
first three from the above-mentioned (Damerau,
1964)(Levenshtein et al., 1966). Both metrics can be
defined as the minimal amount of specified operations
that must be executed to transform a string into a sec-
ond one.

Another example of edit-based metrics is the Jaro-
Winkler distance, which represents a modification of
the Jaro distance developed by William E. Winkler.
His change of the Jaro algorithm relies on using p
prefix scale, which results in assigning higher rat-
ings to strings that match from the start. This metric
is normalized - a score of 0 means an exact match,
and 1 indicates no resemblance. However, mathemat-
ically this algorithm cannot be considered as a metric
due to not complying with triangle inequality (Jaro,
1989)(Cohen et al., 2003).

2.1.2 Token Methods

This category includes metrics based on sets of simi-
larity algorithms (containing tokens in this case). To
calculate such a metric, three main steps can be dis-
tinguished:

1. Definition of a set of tokens (strings),

2. Specification of the number of token occurrences
in a text, for example, by counting the frequency
of each token in the text,

3. Calculation of distance or similarity using rela-
tively simple algorithms based on the computa-
tions from the previous phase (Blurock, 2021a).

An example measure is cosine similarity, which is the
cosine of the angle between the vectors. The cosine
similarity can take a value between -1 and 1, where
1 means that X ,Y are the same, 0 indicates their or-
thogonality and -1 that they are opposite. However, it
cannot be considered as an appropriate distance met-
ric due to no fulfilment of the Schwarz inequality and
the coincidence axiom (Singhal et al., 2001).

Another example of token methods metrics is
the Sørensen-Dice coefficient that can be defined for
given sets of discrete data: X , Y as:

DSC(X ,Y) =
2|X ∩Y |
|X |+ |Y |

(Sorensen,1948) (1)

The next instance token-based metric is the over-
lap coefficient (otherwise: Szymkiewicz-Simpson co-
efficient) that can be defined as:

overlap(X ,Y) =
|X ∩Y |

min(|X |, |Y |)
, (2)

where min(|X |, |Y |) is the minimum of the number
of tokens in X and the number of tokens in Y (Vi-
jaymeena and Kavitha, 2016). Both the above are
related to Jaccard index - having one of them, the
other can be easily calculated (Dice, 1945)(Sorensen,
1948).

2.1.3 Sequence Based

The string can be compared using the longest com-
mon substring - with rising substring length, simi-
larity increases(Blurock, 2021b). Another sequence-
based metric is Ratcliff / Obershelp pattern recogni-
tion (otherwise: Gestalt Pattern Matching), which is
assumed to be closer to human analysis (Cohen et al.,
2003). It is defined as:

Gestalt similarity =
2 Km

|s1|+ |s2|
(Blurock,2021b) (3)

, where: Km is a number of matching characters that is
calculated using recursive method to find the longest
common substrings, |s1|, |s2| are lengths of strings s1,
s2 (Blurock, 2021b).

2.1.4 Phonetic Based

A separate category is methods using phonetics. Met-
rics from this group rely on evaluating the pronuncia-
tion of words. An exemplary algorithm is the Match
Rating Approach developed by Western Airlines. In
this approach, which performs well if the edit distance
is less than two, word coding rules and comparative
methods are used (Moore, 1977). For example, Smyth
and Smith will be considered as matching.

The basis of the approach taken to measure the
efficiency of misspelling correction is defined class
Distances that attributes mostly based on the metric
(Figure 1).

Another attribute of class Distance is a list of op-
erations that keeps instances of EditOperation sub-
classes (Figure 1). Those error classes are defined
according to Damerau’s study (described in Sec-
tion 2.1.1), expanding the context of each misspelling
by providing additional information about miswrit-
ing. The base class EditOperation contains fields that
enable identification of the type of string manipula-
tion, related index, a preceding and a following let-
ter. Derived classes specify each string operation us-
ing the following additional fields. As presented in

SECRYPT 2024 - 21st International Conference on Security and Cryptography

750

Delete

deleted char: string

Transpose

right char: string
left char: string
idx right char: int

Insert

inserted char: string

Replace

old char: string
new char: string

EditOperation

operation type name: string
operation subtype: string
next char: string
previous char: string
char idx: int

Distance

- test string: string
- template string: string
+ edit distance metrics: list
+ token based metrics: list
+ sequence based metrics: list
+ phonetic based metrics: list
+ operation list: list

- set operations(): void

*

*

Figure 1: Distance class diagram.

Figure 1, the fields include the old and new char-
acters for the Replace operation, an additional field
for the inserted character for the Insert operation, the
right character, the left character, and the right char-
acter’s index for the Transpose operation, and lastly,
the deleted character field for the Delete operation.

3 EXPERIMENTS

3.1 Scope

Several tools available in various Python modules
were selected for testing purposes:

• TextBlob (from textblob module) that allows to
correct spelling (Loria, 2018),

• SpellChecker (from spellchecker module) which
is Peter Norivig’s spell checking algorithm imple-
mentation(Barrus, 2022)(Norvig, 2016),

• Speller (from autocorrect module) which is a
spellchecker(Jonas McCallum, 2021),

• GingerIt (from gingerit module) enabling simul-
taneous correction of grammar and spelling mis-
takes (Kleinschmdit, 2021),

• LanguageTool (from language tool python mod-
ule using local server), the program allows cor-
recting both grammar and spelling mistakes (Mor-
ris, 2022),

• TSpellCorrector - from jamspell module that of-
fers fast, multi-language and accurate spell check-
ing (Ozinov, 2020),

• GramFormer from the Gramformer - a library that
provides three distinct interfaces to using a set of
techniques to find, highlight and fix grammar mis-
takes (PrithivirajDamodaran, 2021).

Each of them is configured following the documenta-
tion. Apart from a simple approach of passing a sen-
tence to the correction as an argument for the above
tools, also the approach assumes providing the output
from one tool to another as an argument (Algorithm
1). Utilizing a combination of two spellcheckers
may enhance error detection and increase accuracy by
leveraging each tool’s unique strengths in identifying
and correcting errors. However, this approach intro-
duces complexity in implementation and integration,
possibly leading to computational overhead that could
impact the efficiency and performance of the bio-
metric system, particularly in real-time applications.
Additionally, combining spellcheckers might lead to
over-correction, where one tool introduces new er-
rors, potentially resulting in less accurate output.

The research examines tools by:
• passing the test sentence as an argument to assess

tendencies towards over-correction and the capa-
bility of detecting and correcting erroneous mis-
takes. This approach also evaluates the potential
increase in false-positive error generation, which
could amplify the challenge of filtering out noise
characteristics.

• passing phrases containing a predetermined num-
ber of misspellings based on error classes us-
ing QWERTY keyboard layout characters. This
method evaluates the tools’ performance in a more
realistic scenario of typing errors, simulating in-
stances where the incorrect key is pressed due to
its proximity to the intended key on the keyboard
layout.

• passing phrases misspelled with a specific number
of random letters. This approach aims to assess
how effectively spellcheckers handle random er-
rors that do not conform to any specific keyboard
layout pattern.

In each scenario, the types and locations of the mis-
spellings are randomly selected, adhering to prede-
fined classes of errors.

The first of the above groups aims to evaluate test-
ing tools in the aspect of generating false positive er-
rors - trying to correct a sentence without any mis-
spells. This type of error may be harmful to the bio-
metric system due to adding unwanted noise to data
that is used to create a user model, which may af-
fect its characteristics. The second one is based on
QWERTY keyboard layout characteristics - relatively
common is mistakenly typing an adjacent key. For

Spellchecker Analysis for Behavioural Biometric of Typing Errors Scenario

751

Algorithm 1: Correct sentence by a tool.

1Input: ts ▷ tested sentence
2Output: cs ▷ corrected sentence
3 if isStandaloneTool then
4 cs = correct sent← ts)
5 else
6 cs = correct sent toolA←

correct sent toolB← ts
7 end

this purpose, each printable key was mapped based on
the QWERTY layout as presented in Figure 2 (having
regard to left, right, upper and bottom keys). The op-
eration type, an adjacent key (from the map) is cho-
sen randomly. The last considered category includes
completely random errors - operation type, position,
and character are aleatory.

Figure 2: Key class instance example: character=d, left up-
per=e, right upper=r, left=s, right=f, left bottom=x, right
bottom=c

Algorithm 2: Algorithm for creating misspells pro-
cess.

Input: s ▷ sentence
op ▷ operation list
n ▷ number of errors
r ▷ randomly

Output: missp sent ▷ n-times misspelled
sentence

1 missp sent← s
2 while n > 0 do
3 op = rand(len(op))
4 if op = 0 then
5 missp sent← replace(missp sent, r)
6 else if op = 1 then
7 missp sent← delete(missp sent, r)
8 else if op = 2 then
9 missp sent← insert(missp sent, r)

10 else
11 missp sent← transpose(missp sent, r)
12 end
13 n-=1
14 end

To systematically evaluate the effectiveness of
correction tools and their combinations, the two-
phase testing procedure has been designed - for each
of them the process will be similar and includes com-
paring a template sentence with a tested one (that can
be also a template sentence or a phrase with gener-

ated misspells according to Algorithm 2). In Phase 1
of the experiments, the primary objective is to iden-
tify the top n spellcheckers or combinations of two
spellcheckers (49 in total) that will be assessed in
the next stage. This approach enables to conduct of
an efficient preliminary assessment of the individual
spellcheckers and their combinations while obtaining
meaningful insights into their performance across the
three error types in a sentence provided as an argu-
ment according to Algorithm 3. In the second phase
(Phase 2), after identifying the top n spellcheckers or
combinations from the first phase, the amount of data
used per variant will be increased. This growth in
data will facilitate a more in-depth and comprehen-
sive evaluation of the selected spellcheckers or com-
binations, allowing for assessing their effectiveness,
robustness, and generalizability under more complex
and realistic conditions.

By adopting this two-phase approach with vary-
ing amounts of data, a more efficient and thorough
assessment of the spellcheckers is ensured, ultimately
contributing to the identification of the most effective
and reliable solutions for correcting typing errors in
the context of a behavioural biometric system that re-
lies on typing errors.
Algorithm 3: Algorithm for testing process.

Input: sl ▷ list of template sentences
nel ▷ list of amount of errors
vl ▷ list of tool variants

Output: d f pl ▷ list of Distance(sl, sl) for
each v in vl

d kel ▷ list of Distance(sl, kbes) for
each v in vl

d rel ▷ list of Distance(sl, rbes) for
each v in vl

1 foreach t ∈ sl do
2 foreach n∈ nel do
3 kbes = t← n key based errors
4 rbes = t← n random errors
5 foreach v ∈ vl do
6 if n = 0 then
7 t corr = v← t
8 d fpl[v]← Distance(t, t corr)
9 kbes corr = v← kbes

10 rbes corr = v← rbes
11 d kel[v]← Distance(t, kbes corr)
12 d rel[v]← Distance(t, rbes corr)
13 end
14 end
15 end

SECRYPT 2024 - 21st International Conference on Security and Cryptography

752

3.2 Phase 1

In the initial part of the experiments, a smaller
dataset for each variant is used, considering the
large number of variants being evaluated (49 in to-
tal). The performance of individual spellcheck-
ers and their combinations was assessed across the
three distinct testing methods: over-correction anal-
ysis, QWERTY-based typing errors, and random let-
ter misspelling detection. In this nested tool archi-
tecture, Tool outside(Tool inside), represents a se-
quential processing pipeline, where the output from
Tool inside is fed into Tool outside, and the perfor-
mance is evaluated based on the latter’s output

The preliminary stage used a comprehensive com-
pilation of H.P. Lovecraft’s publicly available works,
sourced from the GitHub repository. As most of
Lovecraft’s creations are in the public domain, they
are not restricted by copyright law. The dataset pre-
serves the original text without significant modifica-
tions, which may necessitate further processing for
analytical purposes (Gawarecki, 2017) (Nate Smith,
2013). As mentioned in the previous section (Section
3.1) the evaluation process encompasses three cate-
gories: false positives, QWERTY layout error-based,
and random errors, where QWERTY and random di-
vided into three groups depending on the n - number
of errors in a sentence:

1. n ∈ [1,3) (around 350 sentences per variant);

2. n ∈ [3,6) (around 500 sentences per variant);

3. n≥ 6 (around 170 sentences per variant);

These subcategories will be referred to as QEi
for QWERTY and REi for random errors, where
i ∈ {1,2,3} and FP for non-error sentence (around
175 sentences per variant). The performance of the
error correction variant is evaluated by comparing
their outputs to the original template sentences
for each subcategory - for which accuracy (Am) is
calculated for each metric:

Am = Number o f correct corrections
Total number o f correction

, where m is a metric that is grouped into four cate-
gories (Mi): edit-based, phonetic-based, token-based,
and sequence-based. Each of the metrics is consid-
ered equally important in Phase 1. It is reflected in
the total score for each subcategory s j which is a sum
of accuracy in each metric:

Score = ∑
mc∈{Mi}

|mc|

∑
j=1

m j ∀i ∈ 1,2,3,4

, where M is a string comparison metrics, i group of
metrics. For each subcategory individually, the top n

values were assigned a Points (denoted by the symbol
p), and all other values received a score of 0.

Finally, a weighted sum was calculated using
category-specific weights w to determine the total
score for each error correction variant:

Total =
|S|

∑
j=0

w js j

,where S = {FP,REi,QEi}, for i ∈ {1,2,3}
This evaluation process in Phase 1 allows

for accurately assessing the performance of each
spellchecker and combination across multiple cate-
gories and subcategories. However, selecting ap-
propriate weights w for each category is essential in
the evaluation process, as it significantly impacts the
overall assessment of spellcheckers and their combi-
nations. Real-world relevance and error frequency
should be considered when determining weights for
a balanced and meaningful evaluation. Furthermore,
the choice of top n values for assigning points p may
affect the selection of candidates advancing to Phase
2.

3.3 Phase 2

During Phase 2 of the experiments, the 15 identified
spellcheckers and their combinations proceeded to an
advanced evaluation, adhering to the approach em-
ployed in Phase 1 and described in Section 3.2. The
dataset under consideration consists of approximately
1000 false positive sentences (for each variant), QW-
ERTY layout error-based, and random errors, which
both can be divided into three categories based on the
variable n, which represents the number of errors in a
sentence:
1. n ∈ [1,3) (around 2000 sentences per variant);
2. n ∈ [3,6) (around 3000 sentences per variant);
3. n≥ 6 (around 2000 sentences per variant);

that were created using the corpus of sentences pre-
viously utilized in the initial phase of research (Sec-
tion 3.2).

The dataset under consideration extends the cor-
pus of sentences previously utilized in the initial
phase of research. Other sentences from the set as in
Phase 1 (section 3.2) were used as the source dataset
to create sentences with false positives, QWERTY
layout error-based, and random errors, which QW-
ERTY and random were divided into three categories
based on the variable n, which represents the number
of errors in a sentence.

However, in this phase, the points (P) will be as-
signed only to the top 5. To facilitate a comprehen-
sive and in-depth analysis of variants’ performance, a

Spellchecker Analysis for Behavioural Biometric of Typing Errors Scenario

753

more extensive dataset was employed for each of the
spellcheckers or combinations. It allowed for a more
accurate assessment of the spellcheckers’ capabilities
in handling misspells, consequently enabling them to
make an informed and most appropriate decision in
the context of biometrics behavioural system of typ-
ing errors. Moreover, in the case of choosing between
the best spellcheckers, the analysis also contains time
aspects and may include careful analysis of each part
of performed experiments.

3.4 Results and Analysis

3.4.1 Results of Phase 1

To minimize the potential impact of choosing top n
values and weights on the final results, as described
in Section 3.1, the following strategy was used:

• Assign points corresponding to the place (15
points for the 1st and 1 point for the 15th) or more
scaled point system for the top values and the rest
rewarding the best to give a more detailed illus-
tration of the performance variations between the
tested variants.

• Assign equal weights to each subcategory Si or
prioritize subcategories based on their real-world
importance - for the intended use as a part of a bio-
metric system, the greatest importance is found in
the correctness of correcting a few errors (RE1,
EQ1)

• Penalties for below-median performance: intro-
duce penalties for metrics that score below the
median for a specific metric in a subcategory Si.
For example, a penalty of -0.5 could be applied
to encourage better overall performance across all
metrics.

Based on the aforementioned approach, a series of
tests were conducted to evaluate the performance of
various spellcheckers and their combinations. Fol-
lowing the assessment from Table 1, a classification
was generated (Table 2), which allowed for the iden-
tification of the top-performing tools.

A summary of conducted experiments with differ-
ent configurations is shown in the Table 3 :

• T1 - pi ∈ P1, wi ∈W with penalties,

• T2 - pi ∈ P2, wi ∈W with penalties,

• T3 - pi ∈ P1, wi ∈W without penalties,

• T4 - pi ∈ P2, wi ∈W without penalties,

, where P1 = {30,25,22,18,15,14...1}, P2 = {15..1},
W = {0.8,1,1,0.8,0.8,0.5,0.5}. This consistent per-
formance highlights the robustness and reliability of

Table 1: Score table for TOP 20 with the most default pa-
rameters (weights & points without any penalties).

Function\Subcategory FP QE1 RE1 QE2 RE2 QE3 RE3
SpellChecker(Gingerit) 4.91 3.58 3.58 1.73 1.85 0.47 0.62

Autocorrect(GramFormer) 5.49 3.41 3.12 1.76 1.53 0.48 0.76
SpellChecker(GramFormer) 4.95 3.23 3.23 1.56 1.60 0.41 0.62

Gingerit(GramFormer) 5.49 4.17 3.26 1.65 1.17 0.22 0.30
SpellChecker(LanguageTool) 5.19 3.10 3.34 1.30 1.43 0.41 0.51

GramFormer(Gingerit) 5.48 3.90 3.30 1.49 1.14 0.25 0.20
GramFormer(LanguageTool) 5.55 3.61 3.17 1.32 1.12 0.26 0.25
GramFormer(Autocorrect) 5.57 3.53 3.04 1.30 1.15 0.34 0.29

Gingerit(SpellChecker) 4.84 3.40 2.84 1.40 1.17 0.35 0.31
Gingerit(LanguageTool) 5.78 3.79 2.64 1.51 0.83 0.23 0.19
TextBlob(GramFormer) 4.40 2.57 2.45 1.28 1.27 0.39 0.54
Gingerit(Autocorrect) 6.28 3.71 2.38 1.28 0.73 0.31 0.16

GramFormer(SpellChecker) 4.77 3.08 3.09 1.25 1.23 0.34 0.45
LanguageTool(GramFormer) 5.48 3.10 2.98 1.46 1.13 0.23 0.46

Gingerit 6.45 3.71 2.28 1.13 0.64 0.20 0.14
Autocorrect(SpellChecker) 4.99 2.61 2.63 1.24 1.21 0.46 0.50

Jamspell(Gingerit) 6.44 3.69 2.27 1.13 0.64 0.20 0.14
Gingerit(Jamspell) 6.44 3.68 2.28 1.13 0.64 0.20 0.14

SpellChecker(Autocorrect) 4.97 2.58 2.79 1.08 1.19 0.36 0.46
Autocorrect(Gingerit) 6.28. 3.26 2.21 1.27 0.76 0.36 0.19

Table 2: Points table with Total for TOP 20 with the most
default parameters (weights & points without any penal-
ties).

Function\Subcategory FP QE1 RE1 QE2 RE2 QE3 RE3 Total
SpellChecker(Gingerit) 0 7 15 14 15 14 14 59

Autocorrect(GramFormer) 0 5 9 15 13 15 15 51
SpellChecker(GramFormer) 0 2 11 12 14 11 13 46

Gingerit(GramFormer) 0 15 12 13 6 0 0 42
SpellChecker(LanguageTool) 0 0 14 6 12 10 11 39

GramFormer(Gingerit) 0 14 13 10 4 0 0 38
GramFormer(LanguageTool) 0 8 10 7 2 0 0 25
GramFormer(Autocorrect) 0 6 7 5 5 5 0 24

Gingerit(SpellChecker) 0 4 3 8 7 6 0 22
Gingerit(LanguageTool) 0 13 0 11 0 0 0 22
TextBlob(GramFormer) 0 0 0 3 11 9 12 22
Gingerit(Autocorrect) 8 12 0 4 0 0 0 22

GramFormer(SpellChecker) 0 0 8 0 10 4 7 22
LanguageTool(GramFormer) 0 0 6 9 3 0 9 20

Gingerit 11 11 0 0 0 0 0 20
Autocorrect(SpellChecker) 0 0 0 0 9 13 10 19

Jamspell(Gingerit) 10 10 0 0 0 0 0 18
Gingerit(Jamspell) 9 9 0 0 0 0 0 16

SpellChecker(Autocorrect) 0 0 1 0 8 7 8 15
Autocorrect(Gingerit) 7 3 0 2 0 8 0 14

these selected tools in addressing various error cor-
rection challenges within biometric systems. The
weights reward a lower number of errors due to the in-
tended use - the full spelling corrections in sentences
with more misspells are still more incidental events
which in the case of the usage as a part of a biometric
system is less important than providing meaningful
and reliable correction process even for less number
of misspells.

Notably, 15 tools were selected for further anal-
ysis, as they consistently ranked within the top 20
across all tested scenarios, irrespective of the spe-
cific weights, points, and penalties adopted (marked
as green in Table 3).

3.4.2 Results of Phase 2

The results of Phase 2 experiments provide important
light on how well the top 15 spellchecker versions
performed. The results from this phase provide a
more thorough assessment of the spellcheckers’
capabilities because the research was expanded and

SECRYPT 2024 - 21st International Conference on Security and Cryptography

754

Table 3: Summary of spellcheckers variants evaluation us-
ing different approaches (values of points, weights, and
penalties). The brackets include the rank position for that
particular configuration, based on which an average posi-
tion (column Avg P) was calculated.

Function T1 T2 T3 T4 Avg P
SpellChecker(Gingerit) 98 (1) 51,7 (1) 112 (1) 59,2 (1) 1

Autocorrect(GramFormer) 87,6 (2) 47,9 (2) 97,6 (2) 51,4 (2) 2
Gingerit(GramFormer) 62,4 (3) 36,6 (3) 75,2 (4) 42,2 (4) 3,5
GramFormer(Gingerit) 59 (4) 35,8 (4) 64,6 (6) 38,2 (5) 4,75

SpellChecker(GramFormer) 43 (8) 31,6 (7) 75,9 (3) 45,8 (3) 5,25
SpellChecker(LanguageTool) 57,4 (6) 31,8 (6) 62,5 (5) 38,9 (6) 5,75
GramFormer(Autocorrect) 57,5 (5) 31,9 (5) 48,1 (8) 23,5 (7) 6,25

Gingerit(LanguageTool) 42,6 (9) 24,4 (9) 34 (10) 21,8 (14) 10,5
GramFormer(LanguageTool) 29 (16) 19 (12) 42,8 (7) 25,2 (9) 11

Autocorrect(SpellChecker) 46,6 (7) 27,6 (8) 29 (16) 18,7 (18) 12,25
Gingerit(Autocorrect) 32 (13) 20,4 (11) 34,2 (12) 21,6 (13) 12,25

Gingerit(SpellChecker) 31,6 (14) 10 (23) 46,6 (9) 22 (8) 13,5
Gingerit 30 (15) 20,8 (10) 30 (15) 19,8 (17) 14,25

GramFormer(SpellChecker) 27,8 (17) 14 (21) 35,1 (13) 21,5 (12) 15,75
Autocorrect 36,6 (10) 18,5 (14) 24 (21) 12,2 (20) 16,25

Autocorrect(Gingerit) 34,1 (11) 15,5 (19) 32,8 (20) 14,2 (15) 16,25
Jamspell(Gingerit) 24,6 (21) 19 (12) 24,6 (17) 18 (19) 17,25
Gingerit(Jamspell) 27 (18) 16,2 (16) 24 (18) 16,2 (20) 18

SpellChecker(Autocorrect) 25,1 (19) 15,5 (19) 31,7 (19) 14,9 (16) 18,25
Autocorrect(TextBlob) 33,4 (12) 16,3 (15) 15,4 (25) 7,6 (25) 19,25
Jamspell(Autocorrect) 25,1 (19) 15,9 (17) 21,1 (23) 10,9 (23) 20,5

Jamspell 24 (22) 12 (22) 24 (22) 12 (20) 21,5

the amount of data collected increased. In Phase 2,
the experiments and assessment method from Phase
1 were repeated (it only varied in that the number of
points was limited to the top 5). As is shown in Ta-
ble 4 and in Figure 3, four variants are distinguished
by the best results: Autocorrect(GramFormer),
SpellChecker(Gingerit), GramFormer(Autocorrect)
and SpellChecker(GramFormer). However, upon
delving deeper into the results of Phase 2, it can be
observed that GramFormer(Autocorrect) is sensitive
to penalties. That suggests being more prone to
making more errors that exceed the median value,
which is confirmed by analysis of the results of
individual experiments.

Autocorrect(GramFormer), compared to other
variants from the best four, exhibits several notable
advantages also seen in other experiments. Firstly,
in comparison to the other top 4 variants, Autocor-
rect(Gramformer):

• generates the least over-correction (slightly worst
in this respect is GramFormer(Autocorrect)).
Both of these variants are better than the rest of
the top 4 ;

• stands out significantly in correcting a few mis-
spells (QE1, RE1);

• is marginally worse than
SpellChecker(GramFormer) in correction
sentences from QE2, but both of them are more
efficient than the others;

• is much worse than SpellChecker(Gingerit) in
correction sentences with the highest numbers of
misspells (QE3, RE3), but similar to the rest.

This high level of accuracy across subcategories con-
tributes to its overall robustness and adaptability.

Figure 3: Accuracy of sentence correction.

Moreover, this spellchecker variant does not gener-
ate as many errors that are over the median value.
This indicates that it can effectively handle spelling
errors, assuring consistent performance and provid-
ing trustworthy results in a variety of spelling con-

Spellchecker Analysis for Behavioural Biometric of Typing Errors Scenario

755

texts. Also, as it can be seen in Table 5, the
average time of the correction process performed
by Autocorrect(GramFormer) is a little worse than
SpellChecker(GramFormer), but both of them are, on
average, faster than others variants.

Table 4: Summary of spellcheckers chosen best variants
evaluation using same configurations and approaches as in
Phase 1 differs only in sets of Points (P1 and P2) that were
fit to top 5 - P1 = {30,25,22,18,15}, P2 = {5..1}

Function T1 T2 T3 T4 Avg P
Autocorrect(GramFormer) 149,1 (1) 19,5 (1) 126,2 (1) 19,5 (1) 1

SpellChecker(Gingerit) 70,6 (3) 12,1 (3) 83,1 (3) 12,1 (3) 2,75
GramFormer(Autocorrect) 75,9 (2) 6,6 (4) 54,4 (4) 6,6 (4) 3,25

SpellChecker(GramFormer) 48,4 (5) 17,5 (2) 115,5 (2) 17,5 (2) 3,75
Gingerit(LanguageTool) 45 (6) 5,1 (6) 43,9 (6) 5,1 (6) 5,75

Autocorrect(SpellChecker) 59,5 (4) 2,8 (10) 30 (7) 2,8 (10) 6,25
Gingerit(GramFormer) 37 (8) 5,8 (5) 52 (5) 5,8 (5) 6,5

Gingerit 39 (7) 4 (7) 24 (9) 4 (7) 7,5
Gingerit(Jamspell) 20 (11) 3,2 (8) 20 (10) 3,2 (8) 9,5

Autocorrect(Gingerit) 21 (9) 0,8 (11) 12 (11) 0,8 (11) 10,25
SpellChecker(LanguageTool) 0 (13) 3,1 (9) 25,4 (8) 3,1 (9) 10,75
SpellChecker(Autocorrect) 21 (9) 0,5 (12) 7,5 (12) 0,5 (12) 10,75

Gingerit(Autocorrect) 7,5 (12) 0 (13) 0 (13) 0 (13) 12,5
GramFormer(Gingerit) 0 (13) 0 (13) 0 (13) 0 (13) 13

GramFormer(LanguageTool) 0 (13) 0 (13) 0 (13) 0 (13) 13

The time aspect is not the primary focus of the re-
search, but in the aspect of usage as an integral part
of a biometric system of typing errors, the time effi-
ciency of these spellcheckers is still important, due to
a direct impact on a user experience and overall sys-
tem performance (especially in Online mode).

Table 5: Mean times in Phase 2.
Function Mean Time [s]

Autocorrect(SpellChecker) 0,0597
SpellChecker(Autocorrect) 0,0816
SpellChecker(LanguageTool) 0,096
SpellChecker(GramFormer) 0,471
Autocorrect(GramFormer) 0,4862
Autocorrect(Gingerit) 0,5364
SpellChecker(Gingerit) 0,5443
GramFormer(Autocorrect) 0,581
Gingerit(Jamspell) 0,5945
GramFormer(LanguageTool) 0,603
Gingerit 0,6217
Gingerit(LanguageTool) 0,6233
Gingerit(Autocorrect) 0,6315
Gingerit(GramFormer) 1,1093
GramFormer(Gingerit) 1,116

4 CONCLUSIONS AND FUTURE
WORKS

In the comprehensive analysis of various spellchecker
variants within the context of a biometric behavioural
system based on typing errors, the approach aimed
to identify an effective spellchecker solution or their
combination that also ensures robustness and solid-
ity. Phase 1 enabled filtering out some variants,
leaving the most promising ones for further analy-
sis. The adopted approach and criteria revealed the
most promising variants in combinations of different
spellcheckers rather than standalone tools. It has been
confirmed in Phase 2 in which each of the variants

was tested on a larger sample of data. On this ba-
sis, four spellcheckers were identified. Despite the
advantages of each of them, upon a deeper compar-
ison, one combination of spellcheckers, Autocorrect
(Gramformer), emerged as the most solid and robust
option among them.

In each phase, to minimize potential biases in the
results, the experiments were conducted using dif-
ferent weights, and scoring methods and divided the
evaluation into subcategories. It allowed assessing
thoroughly the performance of the spellchecker com-
binations, ensuring the conclusions drawn were reli-
able and robust spellchecking solutions for biometric
behavioural analysis of typing errors.

However, the arbitrary selection of points,
weights, and penalties may lead to biases and the
risk that complex factors affecting the spellcheckers’
performance might be overlooked or oversimplified.
This could cause some spellcheckers to be unfairly
penalized or rewarded. The approach might not fully
take into account the dynamic and multifaceted nature
of the biometric behaviour of the typing error system.
Real-world scenarios could be more complex, and the
chosen method might not adequately model all rele-
vant factors.

In addition to evaluating spellcheckers, future re-
search might examine the usefulness of analytical
tools in correcting grammatical errors. Assessing
their effectiveness in correcting grammar mistakes
and enhancing the overall quality of text input will
provide a more comprehensive understanding of the
tools’ capabilities and is reflected in tool robustness
and the ability to correct such errors can impact bio-
metric systems based on typing errors, e.g. a user
may not use correct conjugation in Present Simple
sentences by not adding verb’s ending.

Another avenue for future work involves imple-
menting and testing the most robust spellchecker
identified in this study within a behavioural biomet-
rics system based on typing errors. By incorporating
the spellchecker into the system, its real-world perfor-
mance and its impact on the accuracy and reliability
of the biometric authentication process can be eval-
uated. To further validate the selected spellchecker’s
effectiveness and integration into the behavioural bio-
metrics system, it is essential to conduct experiments
on a representative group of users. This will help de-
termine the system’s performance across diverse user
profiles, including variations in typing styles and lan-
guage proficiency.

By addressing these future work directions, re-
searchers can continue to refine and optimize the
performance of the behavioural biometrics system
that relies on typing errors, ultimately contributing to

SECRYPT 2024 - 21st International Conference on Security and Cryptography

756

the development of more secure, accurate, and user-
friendly biometrics solutions.

REFERENCES

Barrus, T. (2022). Spellchecker. https://pyspellchecker.rea
dthedocs.io/en/latest/.

Bexte, M., Laarmann-Quante, R., Horbach, A., and Zesch,
T. (2022). LeSpell - a multi-lingual benchmark cor-
pus of spelling errors to develop spellchecking meth-
ods for learner language. In Proceedings of the Thir-
teenth Language Resources and Evaluation Confer-
ence, pages 697–706. European Language Resources
Association.

Blurock, E. (2021a). String Similarity Metrics – Token
Metohods. https://www.baeldung.com/cs/string-
similarity-token-methods.

Blurock, E. (2021b). String Similarity Metrics –Sequence
Based. https://www.baeldung.com/cs/string-similari
ty-sequence-based.

Cohen, W., Ravikumar, P., and Fienberg, S. (2003). A
comparison of string metrics for matching names and
records. In Kdd workshop on data cleaning and object
consolidation, volume 3, pages 73–78.

Damerau, F. J. (1964). A technique for computer detection
and correction of spelling errors.

Dice, L. R. (1945). Measures of the amount of ecologic
association between species. Ecology, 26(3):297–302.

Gawarecki, M. (2017). hp-lovecraft. https://data.world/mat
tgawarecki/hp-lovecraft.

Gupta, S., Maple, C., Crispo, B., Raja, K., Yautsiukhin,
A., and Martinelli, F. (2023). A survey of human-
computer interaction (hci) & natural habits-based be-
havioural biometric modalities for user recognition
schemes. Pattern Recognition, 139:109453.

Haque, S., Eberhart, Z., Bansal, A., and McMillan, C.
(2022). Semantic similarity metrics for evaluating
source code summarization. In Proceedings of the
30th IEEE/ACM International Conference on Pro-
gram Comprehension, pages 36–47.

Jaro, M. A. (1989). Advances in record-linkage methodol-
ogy as applied to matching the 1985 census of tampa,
florida. Journal of the American Statistical Associa-
tion, 84(406):414–420.

Jonas McCallum, F. S. (2021). autocorrect. https://pypi.org
/project/autocorrect/.

Kleinschmdit, T. (2021). Gingerit. https://pypi.org/project
/gingerit/.

Levenshtein, V. I. et al. (1966). Binary codes capable of cor-
recting deletions, insertions, and reversals. In Soviet
physics doklady, volume 10.

Loria, S. (2018). Textblob. https://pypi.org/project/textblo
b/0.15.1/.

Moore, G. B. (1977). Accessing individual records from
personal data files using non-unique identifiers, vol-
ume 13. US Department of Commerce, National Bu-
reau of Standards.

Morris, J. (2022). language-tool-python. https://pypi.org/p
roject/language-tool-python/.

Mróz-Gorgoń, B., Wodo, W., Andrych, A., Caban-
Piaskowska, K., and Kozyra, C. (2022). Biometrics
innovation and payment sector perception. Sustain-
ability, 14(15).

Nate Smith, R. F. (2013). lovecraftcorpus. https://github.c
om/vilmibm/lovecraftcorpus.

Näther, M. (2020). An in-depth comparison of 14 spelling
correction tools on a common benchmark. In Proceed-
ings of the Twelfth Language Resources and Evalua-
tion Conference, pages 1849–1857, Marseille, France.
European Language Resources Association.

Norvig, P. (2007-2016). How to write a spelling corrector.
https://norvig.com/spell-correct.html.

Ozinov, F. (2020). jamspell. https://pypi.org/project/jamsp
ell/.

Parappuram, A., Nidhina, T. R., and Gopal, G. N. (2016).
Continuous user identity verification using typing er-
ror classifications. In 2016 International Conference
on Computing, Communication and Automation (IC-
CCA), pages 1194–1198.

PrithivirajDamodaran (2021). Gramformer. https://github.c
om/PrithivirajDamodaran/Gramformer.

Singhal, A. et al. (2001). Modern information retrieval: A
brief overview. IEEE Data Eng. Bull., 24(4).

Sorensen, T. A. (1948). A method of establishing groups of
equal amplitude in plant sociology based on similarity
of species content and its application to analyses of the
vegetation on danish commons. Biol. Skar., 5:1–34.

Vijaymeena, M. and Kavitha, K. (2016). A survey on simi-
larity measures in text mining. Machine Learning and
Applications: An International Journal, 3(2).

Wu, G. (2021). String Similarity Metrics – Edit Distance.
https://www.baeldung.com/cs/string-similarity-edit-
distance.

Spellchecker Analysis for Behavioural Biometric of Typing Errors Scenario

757

