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Abstract: In the era of Industry 4.0, where digital technologies revolutionize manufacturing, a wealth of data drive 
optimization efforts. Despite the opportunities, managing these vast datasets poses significant challenges. 
Printed Circuit Boards (PCBs) are pivotal in modern industry, yet their complex manufacturing process 
demands robust fault detection mechanisms to ensure quality and safety. Traditional classification models 
have limitations, exacerbated by imbalanced datasets and the sheer volume of data. Addressing these 
challenges, our research pioneers a multimodal classification approach, integrating PCB images and 
structured data to enhance fault prediction. Leveraging diverse data modalities, our methodology promises 
superior accuracy with reduced data requirements. Crucially, this work is conducted in collaboration with 
Bosch Car Multimedia, ensuring its relevance to industry needs. Our goals encompass crafting sophisticated 
models, curbing production costs, and establishing efficient data pipelines for real-time processing. This 
research marks a pivotal step towards efficient fault prediction in PCB manufacturing within the Industry 4.0 
framework. 

1 INTRODUCTION 

In the era of Industry 4.0, integrating digital 
technologies into manufacturing processes generates 
vast data volumes, optimizing production (Kullu & 
Cinar, 2022). This shift offers unprecedented 
opportunities but also poses challenges in managing 
and extracting insights from extensive datasets. The 
manufacturing industry leverages data-driven 
approaches to enhance efficiency, quality, and 
operational performance. 

Printed Circuit Boards are vital in the modern 
industrial landscape. The complex manufacturing 
process of PCBs requires swift fault detection to 
avoid significant economic and safety consequences, 
particularly in the automotive sector. Robust fault 
detection mechanisms are essential to safeguard 
financial interests and end-user safety. 

Traditional fault detection in PCB production 
relied on conventional classification models, which 
have shown limitations and lack widespread 
implementation due to their immaturity. This gap 
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highlights the need for efficient, reliable, and scalable 
fault prediction solutions. 

Imbalanced datasets in PCB production, where 
specific fault classes are underrepresented, are 
addressed with techniques like oversampling and 
undersampling. Despite these efforts, results have not 
met desired satisfaction levels. 

Another challenge is the enormous volume of data 
generated by manufacturing machines in Industry 4.0, 
posing logistical and computational processing 
difficulties. 

This research proposes a multimodal 
classification approach that leverages both PCB 
images and structured data to address existing gaps. 
This methodology combines rich visual information 
from PCB images with structured data, providing a 
comprehensive understanding of the manufacturing 
process. Conducted in collaboration with Bosch Car 
Multimedia as part of their "Quality for 
Manufacturing" projects, this study ensures relevance 
to contemporary challenges in electronic component 
manufacturing. 
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2 GOALS 

This paper aims to develop and implement a 
sophisticated multimodal classification model for 
integration into Bosch Car Multimedia's production 
lines. The model aims to reduce production costs by 
preventing the use of faulty Printed Circuit Boards 
(PCBs), thereby avoiding resource wastage. Using 
innovative multimodal image analysis, we seek to 
enhance fault detection precision and effectiveness, 
mitigating financial losses from defective component 
assembly. Our research includes a comprehensive 
comparative analysis between our multimodal 
models, which combine structured data and images, 
and traditional classification models using only 
tabular data. By examining these approaches, we aim 
to validate the multimodal model's effectiveness and 
improve fault prediction accuracy. 

Additionally, our approach aims to address the 
challenge of data imbalance, striving to achieve 
enhanced efficacy with reduced data volume. This 
involves employing specialized preprocessing 
techniques and statistical modeling to rectify data 
imbalances, all with the aim of enhancing the overall 
predictive capabilities of our models. This dual 
emphasis on mitigating data imbalances and 
achieving superior outcomes with reduced data 
volumes underscores our commitment to efficiency 
and efficacy in this research endeavor. 

Furthermore, a critical aspect of our research 
initiative involves establishing a robust and efficient 
data pipeline that seamlessly integrates both PCB 
images and structured data. Our objective is to 
develop a real-time data processing framework 
capable of supporting the multimodal classification 
model during deployment. This pipeline plays a 
pivotal role in ensuring the sustained adaptability and 
relevance of our model amidst the dynamic industrial 
environment. 

3 RELATED WORK 

In the rapidly evolving landscape of Industry 4.0, 
ensuring PCB quality remains crucial. Literature 
highlights significant advancements in PCB fault 
detection. Key contributions from various studies 
emphasize traditional image processing and modern 
deep learning models, particularly convolutional 
neural networks (CNNs). A recurring theme is the 
need for extensive datasets, with future directions 
focusing on augmenting datasets and improving 
detection of smaller components. 

(Zakaria et al., 2020) explore defects during the 
solder paste printing process, introducing Solder 
Paste Inspection (SPI) and Automatic Optical 
Inspection (AOI) as essential tools. They delve into 
machine learning approaches to enhance detection 
efficiency, aiming to improve production yields and 
reduce rework costs. 

(Cho et al., 2023) present a predictive framework 
for semiconductor memory module tests, addressing 
imbalanced outcomes through multimodal fusion of 
tabular and image data. This framework optimizes 
testing strategies, demonstrating its real-world 
efficacy and reflecting the broader trend of leveraging 
advanced technologies to boost productivity in 
semiconductor manufacturing. 

In multimodal machine learning, diverse data 
sources are used to improve model performance and 
diagnostic accuracy. (Huang et al., 2020) advance 
pulmonary embolism (PE) diagnosis by integrating 
CT imaging with electronic health record (EHR) data, 
demonstrating the superiority of a late fusion model 
over imaging-only or EHR-only models. 

Similarly, (Tang et al., 2022) enhance pulmonary 
nodule classification by combining structured and 
unstructured data. Their models outperform those 
using only unstructured data, highlighting the 
importance of integrating patient demographics and 
clinical characteristics with medical images for more 
accurate diagnoses. 

(Yang et al., 2022) provide an overview of 
multimodal learning, discussing methods like early 
fusion, late fusion, and hybrid fusion. They address 
challenges in fusing multimodal features efficiently 
and explore model-based fusion methods such as 
multiple kernel learning (MKL) and neural networks 
(NN) to enhance feature representation. 

(Yan et al., 2021) focus on breast cancer 
classification using multimodal data. They propose 
integrating pathological images with Electronic 
Medical Records (EMR), emphasizing the benefits of 
denoising autoencoders over dimensionality 
reduction. Their feature-level fusion method achieves 
higher accuracy by combining images and structured 
data, surpassing models using only structured data or 
images. 

3.1 A Comprehensive Analysis of the 
Production Line 

To gain a comprehensive understanding of the 
production line dynamics, a detailed overview of its 
constituent processes is essential, with a specific 
focus on the initial three stages (Zakaria et al., 2020). 
This targeted approach facilitates early detection of 
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potential issues in Printed Circuit Boards (PCBs) 
production. 

The initial stages under scrutiny include Laser 
Marking PCB, Solder Paste Printing, and Solder Paste 
Inspection, each playing a crucial role in ensuring the 
quality and functionality of the final product. By 
concentrating efforts on these foundational steps, a 
proactive approach is adopted to swiftly identify and 
rectify any anomalies in the PCB manufacturing 
process. 

The journey of PCB assembly begins with the 
insertion of a "blank" PCB into the initial machine, 
devoid of any unique identifiers or data. 
Subsequently, the Laser Marking PCB Process takes 
precedence in the manufacturing sequence. 

The Laser Marking PCB process holds significant 
importance across all production plants, focusing on 
traceability for utilized parts and materials in Bosch 
products. Its objective is to standardize PCB and 
panel processing within the Surface Mount 
Technology area, assigning unique identifiers 
generated by the Manufacturing Execution System to 
both panels and their corresponding individual PCBs. 

Upon completion of the Laser Marking PCB 
process, the PCB proceeds to the Solder Paste 
Printing machine. This machine applies solder paste 
to the PCBs, with the quality of this application 
significantly impacting overall PCB performance. 
The Solder Paste Printing process involves stringent 
measures to ensure precise application of solder paste 
to the PCBs in line, directly influencing the usability 
of the final product. 

Following Solder Paste Printing, the Printed 
Circuit Board undergoes Solder Paste Inspection to 
verify and ensure the quality of the solder paste 
application. This process serves as a critical 
checkpoint to detect defects or irregularities in the 
solder paste before advancing to subsequent 
manufacturing phases. 

The primary objective of Solder Paste Inspection 
is to evaluate the accuracy and uniformity of solder 
paste deposition on the PCB surface, crucial for 
preventing defects such as solder bridges or 
insufficient solder. Advanced optical systems and 
specialized inspection equipment scan and analyze 
the solder paste, facilitating precise examination of 
volume, alignment, and distribution across the PCB. 

In addition to these processes, efficient 
management and storage of data generated during 
Laser Marking PCB, Solder Paste Printing, and 
Solder Paste Inspection are imperative. Tabular data 
from these stages is organized into different tables 
and stored in the Hadoop cluster through a pre-

established pipeline, ensuring systematic and 
accessible data for future analyses. 

A schematic representation provides a visual 
depiction of a segment of the production line, serving 
as a foundational reference for further discussion on 
the intricacies of Laser Marking PCB, Solder Paste 
Printing, and Solder Paste Inspection processes. 

 
Figure 1: Production Line First Three Processes. 

4 DATA UNDERSTADING 

This phase is pivotal in laying the groundwork for 
building a multimodal classification model for fault 
prediction in PCBs. This section involves a thorough 
exploration and analysis of the dataset, including both 
structured data and images of PCBs 

4.1 Laser Marking PCB 

The LMP process is essential to the workflow but 
does not alter the components of the printed circuit 
board (PCB). It involves scanning the QR code on the 
PCB and logging the information into the system. 
Most data generated by the LMP process relates to 
system metadata rather than the PCB's intrinsic 
attributes. PCB-specific characteristics are usually 
captured in the SPP or SPI datasets, which detail the 
manufacturing and inspection processes. 

A key data point is the 'panelmatId' column, 
indicating the PCB supplier. Extracting the 
'supplierId' from the panelMatId field requires 
preprocessing. The panelMatId includes the supplier 
number and extraneous details, following a format 
like '123456SB32321', where digits before 'SB' 
denote the supplier number. For supplier analysis, the 
panelMatId data structure was deconstructed, and a 
new column was created to isolate the supplier 
number. 

Due to security, supplier values will not be 
disclosed, but a broader analysis of the attribute will 
be conducted to understand its characteristics and 
implications. 

Table 1: LMP Data Distribution. 

Attribute Count Null Distinct
supplierId 10838198 0 1018 

(<1%)
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4.2 Solder Past Printing 

The SPP process contrasts with the LMP process by 
significantly transforming the printed circuit board 
(PCB). While the LMP process involves no 
alterations to PCB components, SPP introduces 
changes through various parameters and structured 
data collected from machines. Operators play a key 
role in SPP by selecting these parameters, influencing 
the manufacturing outcome. Unlike LMP, which 
captures mainly system-related metadata, SPP 
records crucial characteristics intrinsic to the PCB. 

During the denormalization process, new 
variables 'year', 'month', and 'day' were derived from 
'eventCreatedAt' to enhance data access speed by 
partitioning data storage. The resulting DataFrame 
contains 2,048,448 records and 70 fields/columns. 
Due to the large size of the dataset, only the most 
relevant features indicated by operators and domain 
knowledge are discussed in this section. 

Table 2: SPP Data Distribution. 

Attribute Count Null Distinct
sppProg1Name 2048488 0 13 (<1%)
sppMaxFiducial
Mark 
Deviation 

2048488 0 80(<1%) 

sppPrintingPres
sureF 
orwards and 
sppPrintingPres
sureB 
ackwards 

2048488 0 14(<1%) 

sppPrintingSpe
edFor 
wards and 
sppPrintingSpe
edBac 
kwards 

2048448 0 6 
(<1%) 

sppPrintingDist
ance 

2048448 0 9 
(<1%)

sppSeparationS
peed 

2048448 0 6 
(<1%)

sppSnapOff 2048448 0 8 (<1%)
spptemperature 163398 1885050 62 (<1%) 
spphumidity 163398 1885050 184 (<1%) 
sppCleaningInte
rval 

2048448 0 7 
(<1%)

sppNumOfPan
elsSinc 
eLastCleaning 

2048448 0 16 
(<1%) 

sppToolId 2048448 0 149 
(<1%)

To explore the interrelationships between variables, a 
correlation matrix analysis using the Pearson 
correlation coefficient was conducted. This 
coefficient, ranging from -1 to 1, measures the linear 
relationship between two continuous variables. 
Values close to 1 indicate a strong positive 
correlation, values near -1 indicate a strong negative 
correlation, and values around 0 suggest no linear 
correlation. The correlation matrix provided insights 
into variable dependencies, enhancing understanding 
of their interactions and potential predictive 
capabilities. 

 
Figure 2: SPP Features Correlation. 

The correlation matrix analysis revealed significant 
correlations between attributes such as 
sppPrintingPressureForwards and 
sppPrintingPressureBackwards, and 
sppPrintingSpeedForwards and 
sppPrintingSpeedBackwards, likely due to consistent 
operator settings. Most variables, however, showed 
minimal correlation, indicating independent 
behavior. Notably, sppCleaningInterval had a 
moderate correlation with sppPrintingDistance, but 
their distinct functions suggest no direct causal 
relationship. 

4.3 Solder Past Inspection 

The SPI generates significantly more data than SPP 
by capturing information at both the board and pad 
levels. This comprehensive dataset provides valuable 
insights into soldering quality, necessitating careful 
preprocessing for meaningful analysis. The SPI 
dataset contains 2,988,850,335 entries due to the 
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expansion of arrays for boards and pads, which 
dramatically increases data volume and requires 
substantial computational resources. 

The dataset's vast size constrains analysis, 
requiring significant processing power and time, and 
posing challenges in storage, speed, and 
computational complexity. Strategic sampling 
approaches are necessary to make analysis feasible 
while leveraging the SPI data's rich insights. 

Images critical for quality assessment are 
meticulously stored locally, with data utilization 
focused on images identified by SPI as defective 
PCBs. These images undergo manual operator review 
to validate SPI findings, adding a verification layer to 
the analysis pipeline. 

The SPI system captures a broader array of data 
than SPP, with key attributes derived from previous 
analyses and domain knowledge. These attributes are 
essential for understanding and optimizing the 
soldering process, as summarized in the following 
table, reflecting their significance for informed 
decision-making and process improvement. 

Table 3: SPI Data Distribution. 

Attribute  Count Null Distinct
spiMessageTrigge
r  

2988850335 0 2 (<1%) 

spiProg1Name 2988850335 0 12(<1%)
spiProposedPanel
Result 

2988850335 0 3 
(<1%)

spiFinalPanelResu
lt  

2988850335 0 4 
(<1%)

spiProposedBoard
Result  

2988850335 0 2 
(<1%)

spiFinalBoardRes
ult 

2988850335 0 3 
(<1%)

spiBadMarkedBoa
rd  

2988850335 0 2 
(<1%)

spiFailureDescript
ion 

2988850335 0 11 
(<1%)

spiProposedPadRe
sult 

2988850335 0 4 
(<1%)

spiFinalPadResult  2988850335 0 5 
(<1%)

spiPadType 2988850335 0 3 (<1%) 
 
The label, derived from the final stage of 

production, represents the ultimate outcome for each 
PCB. It encompasses various scenarios encountered 
during manufacturing. Some PCBs flagged as 
defective by the SPI are deemed acceptable by 
operators, allowing them to continue through 
production, potentially resulting in both acceptable 

and defective outcomes. Conversely, some PCBs 
identified as acceptable by the SPI may have varying 
final statuses upon reaching the end of the line. 
Notably, no PCBs are classified as defective by both 
the SPI and operators; such PCBs are scrapped and do 
not receive component insertion. This label 
distribution is highly imbalanced, as shown in the 
following table, reflecting the diverse outcomes 
observed throughout the production line. 

Table 4: Label Distribution. 

Label Count 
Good 25838604 
Not Good 797141 

5 MODELING 

The modeling phase marks a pivotal stage in the 
research, where diverse modeling techniques are 
meticulously chosen and implemented, with a focus 
on calibrating their parameters to attain optimal 
values. This phase is characterized by the exploration 
of various scenarios encompassing different 
approaches, input models, preprocessing techniques, 
and other pertinent variables.  

Notably, four scenarios were meticulously crafted 
using structured data, each tailored to specific 
research objectives and hypotheses. Additionally, 
two scenarios were developed to incorporate 
multimodality, leveraging both images and structured 
data, thus enriching the analysis and capturing 
nuanced insights from multiple perspectives. 

5.1 First Scenario 

The journey begins with thorough data preprocessing, 
crucial for preparing the data for classification. 
Feature selection is pivotal, with relevant attributes 
chosen from data obtained from previous processes 
such as SPP, SPI, and LMP. These features cover 
various PCB aspects, including dimensions, 
materials, components, and results from electrical and 
functional tests. 

Normalization techniques ensure selected features 
are on a comparable scale, facilitating the learning 
process for classification algorithms. Additionally, 
categorical features are encoded into numerical 
values for efficient processing. 

The classifier is then trained using various 
machine learning algorithms, chosen based on data 
type, problem complexity, and interpretability needs. 
K-fold cross-validation evaluates algorithm 
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performance and prevents overfitting, ensuring 
robustness and generalization to unseen data. To 
address data imbalance in PCB classification, 
oversampling techniques increase the representation 
of faulty PCBs in the training dataset, enhancing the 
algorithm's accuracy in classifying such instances. 

 
Figure 3: First Scenario Example Pipeline. 

5.2 Second Scenario 

In the second scenario, the process closely resembles 
the first one, with a focus on accurate data 
preprocessing and effective feature selection derived 
from previous processes such as SPP, SPI, and LMP, 
as outlined in the paper. These features are curated 
based on domain expertise and insights from earlier 
research stages. Normalization techniques ensure the 
comparability of selected features across the dataset, 
enabling classification algorithms to effectively learn 
from the data. 

However, instead of employing oversampling 
techniques to address data imbalance, undersampling 
techniques are utilized in this scenario. 
Undersampling involves reducing the size of the 
majority class samples to match the minority class 
samples, achieving a more balanced dataset. This 
approach aims to mitigate the impact of data 
imbalance on classification performance and enhance 
the model's ability to accurately classify both good 
and faulty PCBs, especially in scenarios where the 
occurrence of faulty PCBs is rare.  

5.3 Third Scenario 

In the fourth scenario, a refined approach was taken, 
involving data filtration based on program and 
supplier specifications. By segmenting the dataset 
according to unique program-supplier pairs, several 
advantages were realized.  

Firstly, this segmentation resulted in a significant 
reduction in data volume, streamlining computational 
requirements and allowing for more efficient resource 
allocation. Additionally, the focused dataset 
facilitated the exploration of a wider range of 
modeling techniques, including the incorporation of 
XGBoost models, known for their effectiveness with 
structured data. Moreover, the targeted segmentation 
helped mitigate imbalance within the dataset, 
ensuring more equitable class representation and 
improving classification accuracy. By prioritizing 
critical program-supplier combinations, resources 
could be directed towards areas with the greatest 
impact on operational performance and PCB quality. 

5.4 Fourth Scenario (Multimodal) 

In the sixth scenario, we employed a multimodal 
approach, incorporating both structured data and 
images to enhance our classification process. To 
streamline processing, we worked with a one-month 
data sample, minimizing computational demands 
while capturing the dataset's essence. 

We used an early fusion technique, integrating 
information from both structured data and images at 
the input level. This allowed us to combine features 
extracted from structured data with those derived 
from images before feeding them into the 
classification model. 

To execute early fusion, we began by 
preprocessing both types of data to extract relevant 
features and ensure compatibility. We extracted 
features from structured data, selecting or engineering 
them to represent key PCB characteristics. 
Concurrently, we used convolutional neural networks 
(CNNs) to extract features from images, capturing 
visual patterns and information. 

Next, we concatenated the features from 
structured data and images into a single feature vector. 
This combined feature vector, representing the fused 
input data, incorporates information from both 
modalities. We then trained a classification model 
using this fused feature vector, employing common 
machine learning algorithms or neural network 
architectures. 

5.5 Fifth Scenario (Multimodal) 

In the sixth scenario, we adopted a multimodal 
strategy by combining structured data and images to 
enhance our classification process. To manage 
computational resources, we worked with a one-
month sample of data, ensuring manageable 
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processing demands while capturing the dataset's 
essence. 

Unlike the early fusion method used previously, 
in this scenario, we employed a late fusion approach. 
Late fusion involves separately processing structured 
data and image data through distinct pathways in the 
model before merging the outputs at a later stage. 

To implement late fusion, we first preprocessed 
both types of data independently, extracting relevant 
features and ensuring compatibility with our 
classification model. Structured data underwent 
feature selection or engineering to highlight pertinent 
PCB characteristics, while image data underwent 
feature extraction using techniques such as 
convolutional neural networks (CNNs) to capture 
visual patterns. 

Subsequently, we fed the processed structured 
data and image data through separate pathways in the 
classification model. Each pathway independently 
learned representations from its respective data 
modality, leveraging machine learning algorithms or 
neural network architectures optimized for each data 
type. 

Finally, the outputs from both pathways were 
merged or concatenated at a later stage, creating a 
combined representation of the data that captured the 
complementary information from both modalities. 
This fused representation was then used as input to 
the final classification layer of the model. 

6 RESULTS 

Table 5: Model Predictions Results. 

Scenario Model Precision Accuracy Recall
1 Gradient- 

Boosted 
Trees 

(SMOTE) 

0.8889 0.8326 0.0070 

2 Gradient-
Boosted 

Trees 
(Random 

Undersampl
ing) 

0.8614 0.8769 0.0067 

3 XGBoost 0.87786 0.9476 0.0350 
4 Early Fusion 0.9394 0.9389 0.1530
5 Late Fusion 0.9114 0.8732 0.1023

 
The results presented in the table stem from rigorous 
exploration of various methodologies aimed at 
developing robust classification models for 
distinguishing between good and faulty Printed 
Circuit Boards (PCBs). Each scenario represents a 

unique experiment characterized by distinct 
combinations of sampling techniques, machine 
learning algorithms, and data fusion strategies. 

It's crucial to emphasize that all experiments 
underwent meticulous optimization involving an 
exhaustive search for hyperparameters. This 
optimization ensured that the models were finely 
tuned to the dataset's characteristics and the 
classification problem's specific requirements. 
Evaluations were conducted in a controlled 
environment provided by Bosch, leveraging GPU 
clusters, particularly in scenarios involving image 
processing. This environment ensured consistency 
and reliability in assessing model performance. 

The primary objective throughout these 
experiments was to optimize precision, prioritizing 
the minimization of false positives. Achieving high 
precision was crucial as it ensured the classification 
system exhibited a high level of certainty and 
generated minimal entropy. This approach stemmed 
from the understanding that misclassifying a good 
PCB as faulty could be costlier than accurately 
identifying multiple faulty PCBs. Therefore, the 
focus was on developing models that could 
confidently distinguish between good and faulty 
PCBs while minimizing the risk of false positives. 

The best-performing scenario is Scenario 4, 
"Early Fusion," with an impressive precision of 
0.9394 and an accuracy of 0.9389. While the recall 
value is relatively lower at 0.1530, indicating that the 
model may miss some faulty PCBs, the high precision 
suggests a strong ability to correctly identify faulty 
PCBs while minimizing false positives. This 
precision-focused approach is vital in manufacturing, 
as misclassifying a good PCB as faulty can be more 
costly than correctly identifying faulty ones. The 
success of Scenario 4 underscores the effectiveness of 
the "Early Fusion" technique and its potential for 
optimizing precision in classification tasks. 

7 CONCLUSIONS 

Our exploration of fault prediction scenarios in PCB 
manufacturing has yielded insightful findings, 
particularly in our best-performing scenario and our 
approach to reducing model complexity through 
structured data filtration. 

In our best scenario, Early Fusion, we achieved 
impressive results with a precision of 93.94%, 
accuracy of 93.89%, and recall of 15.30%. This 
outcome underscores the effectiveness of combining 
multimodal data (images and structured data) to 
enhance fault prediction accuracy. Leveraging both 
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visual and structured information allowed us to 
capture nuanced patterns and correlations, leading to 
more robust predictions. This holistic approach 
represents a significant step forward in fault detection 
in PCB manufacturing, aligning with the principles of 
Industry 4.0 and bolstering quality control efforts. 

Conversely, our exploration of filtering structured 
data to reduce model complexity (Scenario 4) sheds 
light on the importance of targeted data preprocessing. 
By filtering data based on program and supplier 
characteristics, we were able to streamline the 
modeling process and focus on critical subsets of data. 
This approach not only mitigated the challenges 
posed by imbalanced datasets but also facilitated the 
utilization of advanced modeling techniques such as 
XGBoost. The resulting decrease in model 
complexity led to improved computational efficiency 
and enhanced interpretability, essential factors in 
real-world deployment scenarios. 

In summary, our research underscores the 
significance of adaptive modeling strategies and 
targeted data preprocessing techniques in fault 
prediction in PCB manufacturing. By embracing 
interdisciplinary collaboration and leveraging 
advanced data science methodologies, we are poised 
to drive meaningful advancements in quality control 
and operational efficiency within the electronics 
manufacturing industry, ushering in a new era of 
innovation and reliability. 
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