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Abstract: Utility companies use smart wireless meters to automate the collection of meter readings. This requires them 

to design and deploy a wireless meter network where each meter is connected to a central Data Concentrator 

Unit (DCU), which is then connected to the control centre of the company. In this paper we investigate the 

problem of wireless network meter deployment by means of evolutionary algorithms. We model the 

deployment problem as an evolutionary optimization problem, explore two different encoding schemes for 

the objective function, and test 4 different algorithms against 5 typical setups of the network in different areas. 

Our results show that Simulated Annealing (SA) is the best performing algorithm for the tested instances of 

the problem and has better reliability against the other compared algorithms The devised models and the 

algorithm have been built into a tool that is being used in a real-world scenario. 

1 INTRODUCTION 

The supervision of resources such as water or 

electricity is a challenge facing modern cities and 

governments (Pimenta and Chaves, 2021). Such 

resources are usually provisioned through a utility 

company. In addition to providing resources, the 

utility company is also responsible for billing 

customers and predicting resource demand (Marais et 

el., 2016). Facilitating these actions requires 

companies to monitor and record customers’ usage. 

Traditionally, this has been performed by deploying 

mechanical meters that require visits from workers to 

manually take readings (Pimenta and Chaves, 2021). 

This process incurs additional costs, is time-

consuming and the possibility of human error is high. 

To tackle these issues, utility companies have 

begun shifting to wireless meters that allow 

automated collection of readings (Marais et el., 

2016). Such meters mitigate the problems with 
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manual data collection. However, they present their 

own set of challenges. It is not just about installing 

the meters. Deploying infrastructure that supports a 

Wireless Meter Network (WMN) and facilitates 

automatic data collection from sensors and transfer to 

a central database is also required. The core of such 

networks consists of Data Concentrator Units (DCUs) 

or Data Aggregation Points (DAPs) which are devices 

responsible for communicating with smart sensors to 

collect data and forward it to central data repository. 

Placing the DCUs in optimal locations is of the 

utmost importance because it greatly affects the 

Quality of Service (QoS) of Wireless Meter Networks 

(Kong, 2016). Therefore, it is necessary to place 

DCUs in optimal locations to maximize the coverage 

of the sensor network and be able to obtain readings 

from all smart sensors, while reducing the cost by 

minimizing the number of DCUs required. 

 In this paper, we focus on the optimal placement 

of DCUs in scenarios where the locations of wireless 

meters and feeders are known. A feeder location 
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represents an existing location where electricity is 

available, which is a preferred location to install a 

DCU. A DCU is responsible for collecting the data 

from one or more smart sensors. When a wireless 

meter is assigned to a DCU, the minimum required 

Received Signal Strength (RSS) must be fulfilled to 

ensure that the DCU can receive an accurate reading 

from the assigned wireless meter. If the RSS values 

are not provided between a given wireless meter and 

a feeder, a distance constraint can also be applied to 

ensure that the wireless meter is within the covering 

range. In addition, a DCU has a capacity constraint 

which determines the maximum number of wireless 

meters to be connected. Generally, there is a default 

capacity for each DCU which can be varied according 

to the requirements by the planners of the network. 

The main contributions of the paper are as 

follows: 
 

1. Model the placement of DCUs as an optimization 

problem and formulate an objective function 

while satisfying the given constraints. 

2. Implement different evolutionary algorithms for 

optimizing DCU placement problem. 

3. Present a comparison of the results obtained from 

the implemented techniques. 

 

The rest of the paper is structured as follows. 

Section 2 presents the related work in the area. 

Section 3 describes the problem formulation and 

Section 4 demonstrates the proposed approach. 

Section 5 presents the experimental results. 

Conclusions and directions for future work are 

discussed in Section 6. 

2 RELATED WORKS 

There have been various studies on the optimal 

placement of DCUs with different requirements. In 

(Gallardo et el., 2021) the authors tackle the DCU 

placement problem by proposing a 2-step technique. 

Firstly, the neighbourhoods in the problem are 

divided into multiple sub-networks. Afterwards, 

multiple clusters of DCUs with smart meters are 

formed to minimize the distance between them. This 

is achieved by using the K-Medoids algorithm. This 

work has been applied to urban, suburban, and rural 

areas to prove its validity. 

In (Kong, 2016), the authors focus on assigning 

wireless meters to DCUs in a wireless 

Neighbourhood Area Network (NAN) to support a 

certain required QoS level. The QoS is expressed in 

terms of packet delay, packet error probability and 

node outage probability. A model which is developed 

based on those parameters predicts the number of 

required DCUs and their locations. (Wang et al., 

2018) model the problem as a network partition 

problem where the goal is to minimize the distance 

between DCUs and wireless meters. A clustering-

based algorithm (CPDA) based on the Floyd Warshall 

algorithm is proposed to partition the network and 

identify ideal DCU locations. 

In Tanakornpintong and Pirak (2021), the authors 

propose a DCU placement optimization algorithm 

that identifies the best DCU locations based on the 

minimum hop count, average throughput, and delay. 

This algorithm has been tested in urban, suburban, 

and rural areas. Our approach is to explore various 

encoding schemes and then apply different 

evolutionary algorithms to solve the wireless meter 

assignment problem. 

3 THE PROPOSED APPROACH 

We investigate two possible encoding schemes to 

assign each wireless meter to a DCU. The first one is 

to model the solution as a string of integers, where the 

length of the string is equal to the number of given 

wireless meters. The individual value of the string is 

equal to the index of the feeder to which should be 

connected as shown below. Each meter is assigned to 

one of the existing feeders which represent the 

possible locations of DCUs. The feeder indices, that 

do not appear in the solution string, are the ones not 

being used. 
 

feeder Index 5 5 3 2 3 2 5 3 

meter Index 1 2 3 4 5 6 7 8 

 

Figure 1 shows a network with the first encoding 

scheme. In this example, there are 8 wireless meters 

and 5 feeder locations, where feeder locations with 

indices 2, 3 and 5 were chosen to be the DCU 

locations. 

 

 

Figure 1: Assignment of meters to DCUs using Encoding 

Scheme 1. 
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The advantage of this encoding lies in its 

simplicity because the association between the meter 

and DCU is explicitly presented in the given string. 

The RSS or distance violation can be easily checked 

by simply going through each value of the string with 

its corresponding feeder. In Figure 1, meter 1 is 

assigned to feeder 5. We can either obtain the RSS 

value if it is provided in advance or calculate the 

distance between these 2 nodes with their given 

coordinates. However, there are two main drawbacks 

of this encoding method. First, the size of the solution 

space (i.e. the number of possible combinations) can 

be very high. For the simple example given in Figure 

1 with 8 meters and 5 feeders, the number of 

combinations based on this encoding is equal to F^m 

where F is the total number of feeders and m is the 

total number of meters (i.e. 5^8= 390625 for above 

example). The second disadvantage is that the chance 

of obtaining a violated string after the genetic 

operations (e.g. crossover and mutation in the case of 

a Genetic Algorithm (Bäck et el, 1997) can also be 

high. It is because this approach does not have any 

control of the number of meters assigned to the 

selected feeder. For example, after the crossover and 

mutation operations, the generated string can be as 

represented below: 
 

feeder Index 5 5 3 5 3 5 5 5 

meter Index 1 2 3 4 5 6 7 8 
 

It indicates that 6 meters in total are assigned to 

feeder 5 (where DCU will be installed), and 2 meters 

to feeder 3. If each DCU can only accommodate 5 

meters, feeder 5 will easily violate the capacity 

constraint. 

The second encoding scheme (see below) which 

was adopted in this research is based on the binary 

representation with a pre-calculated look-up table. 

The selected feeders are 3 and 5 and the 

corresponding connected network is depicted in 

Figure 2. 
 

Selected feeder 0 0 1 0 1 

feeder Index 1 2 3 4 5 

 

The assignment of meters to the selected DCUs is 

purely based on the shortest distance (or the lowest 

RSS). Therefore, meters 1, 2, 4 and 7 are assigned to 

the selected feeder 5 whilst meters 3, 5, 6 and 8 are 

assigned to feeder 3 as shown in Figure 2. This binary 

encoding scheme has several advantages. First, the 

number of combinations is significantly lower (i.e. 

2^5 = 32 for the above example). The assignment of 

meters is based on the shortest distance logic which 

can implicitly create a nice cluster without the 

possibility of any meter crossing another selected 

cluster of DCU. The second advantage is that all the 

standard n-point crossover and mutation based on the 

binary encoding can be applied directly. However, 

there is one drawback of this binary representation, 

where the time required to calculate which meter 

needs to be connected to which feeder can be high. It 

is because it must run an assignment logic that in turn 

requires a sorting logic to find the next nearest feeder 

to a meter. However, this problem can be solved by 

using a pre-calculated look up table as shown in Table 

I with the given network in Figure 2. 

 

Figure 2: Assignment of meters to DCUs using Encoding 

Scheme 2. 

Table 1: A lookup table for each feeder with its 

corresponding meters. 

Meter 

Index 

Neighbor feeder sorted according to 

the given RSS or distances 

1 1 5 2 3 4 

2 5 1 2 3 4 

3 1 3 2 5 4 

- - - - - - 

- - - - - - 

8 - - - - - 

 

The first column in the table stores all the meters 

indices. The second column holds the first nearest 

feeders to the corresponding meter as neighbouring 

feeders in each row are sorted accordingly. We can 

further speed up the RSS (or distance) comparison 

between the feeder and the meter by limiting the 

number of columns for the sorted feeders. For 

example, only 3 feeders were considered for the first 

meter as bolded in Table 1 based on the given 

RSS/distance constraint. Each time when we need to 

find the association between a feeder and a meter for 

the selected DCU in the binary string, the look-up 

table can be used to speed up the entire process, 

especially when there are thousands of meters and 

hundreds of feeders as in our case. 

4 PROBLEM FORMULATION 

Our problem can be formulated as below:
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Sets 

• M - A set of wireless meter locations. 

• F - A set of feeders which are the possible 

locations for DCUs.  

• R – A matrix where 𝑅𝑖𝑗  represents the RSSI 

between the  𝑖𝑡ℎ meter and the 𝑗𝑡ℎ feeder. 
 

Decision Variable 

• 𝒙𝑖  - Binary variable stating whether the  𝑖𝑡ℎ 

feeder is being selected in GA string. 
 

Deduced Variable Based on 𝒙𝑗 

• 𝒕𝑖𝑗  – Binary variable stating whether the  𝑖𝑡ℎ 

feeder is connected to the 𝑗𝑡ℎ  meter. The 𝒕𝑖𝑗  is 

calculated based on the given look-up table and 

the association between the selected feeder and 

the nearest meters/RSS as discussed previously.  
 

Parameters 

• 𝐿𝑖𝑗 - Path distance connecting the 𝑖𝑡ℎfeeder and 

 𝑗𝑡ℎ meter 

• 𝐶𝐿𝑖𝑛𝑘 - The unit cost to connect a feeder to a 

meter. 

• 𝐶𝐷𝐶𝑈 - The cost of a DCU being deployed. 

• 𝑙𝑚𝑒𝑡𝑒𝑟
𝑚𝑎𝑥 – Maximum allowable distance from the 

feeder to a meter. 

• 𝑙𝑟𝑠𝑠
𝑚𝑎𝑥– Maximum allowable RSS from the feeder 

to a meter. 

• 𝜆 - DCU capacity limit. 
 
Minimize 
 

𝑓(𝑥) =  ∑ ∑ 𝐶𝐿𝑖𝑛𝑘 𝑅𝑖𝑗𝒕𝑖𝑗

𝑗∈𝐹

+ ∑ 𝐶𝐷𝐶𝑈𝒙𝑗  

𝑗∈𝐹

 

𝑖∈𝑀

 (1) 

 

𝑠. 𝑡. ∑ 𝒕𝑖𝑗

 𝑗∈𝑀

≤ 𝜆𝒙𝑖 , ∀𝑖 ∈ 𝐹 
 

(2) 

𝐿𝑖𝑗𝒕𝑖𝑗 ≤ 𝑙𝑚𝑒𝑡𝑒𝑟
𝑚𝑎𝑥 , ∀𝑖 ∈ 𝐹, ∀𝑗 ∈ 𝑀 (3) 

𝑅𝑖𝑗𝒕𝑖𝑗 ≤ 𝑙𝑟𝑠𝑠
𝑚𝑎𝑥 , ∀𝑖 ∈ 𝐹, ∀𝑗 ∈ 𝑀 (4) 

The objective function (1) minimizes the cost of 
connecting wireless meter to the selected DCU. This 
cost is made of the link cost and DCU cost. If RSS is 
used instead, the link cost can be set to 1, which is the 
case for our purpose. Constraint (2) enforces the 
capacity limit of DCUs. Either Constraint (3) or 
Constraint 4 will be used depending on whether 
distance or RSS is given at the first place. 

5 EVOLUTIONARY 

ALGORITHMS 

The solution x = {x1, x2,.., xn} of an evolutionary 
algorithm is a binary string where each xi represents 
a feeder, i, and its value represents if the this feeder is 
selected to be the location for the DCU (Eq 1). The 
objective for the algorithm is to find a set of feeders 
to be a DCU such that the objective function, f(x), as 
defined in equation 1 is minimized. Four different 
evolutionary algorithms have been implemented and 
tested against this problem. They include two 
univariate Estimation of distribution algorithms 
(EDAs) (Larrañaga and Lozano, 2002) (Shakya and 
Santana, 2012) (Pelikan and Goldberg, 2003), 
Population Based Incremental Learning (PBIL) 
(Baluja, 1994) and Distribution Estimation Using 
Markov Network (DEUMd) (Shakya and McCall , 
2007, Shakya et el, 2018), a Genetic algorithm (GA) 
(Goldberg, 1989), and a simulated annealing 
algorithm (SA) (Kirkpatrick et. el, 1983). EDAs are a 
class of evolutionary algorithms that model the 
dependency between variables in a solution as a 
probability distribution, estimate the parameters of 
the probability distribution using the selected solution 
and sample from the distribution to generate the new 
population (Larrañaga and Lozano, 2002). This is 
different to the crossover and mutation approach to 
generating new population in a GA. The used EDAS 
here are univariate EDA (Larrañaga and Lozano, 
2002), where each variable, xi, in the solution x is 
considered independent and a marginal probability 
for each variable is calculated and sampled to     
generate child population. Workflow from Univariate 
EDAs are simpler in comparison to their bivariate or 
multivariate counterparts. However, they have been 
shown to work well on a wide range of optimization 
problems (Larrañaga and Lozano, 2002, Shakya et. el, 
2018, Bosman, 2003). The SA is one of the simplest 
and effective EAs that is based on the concept of 
Montecarlo Simulation (Kirkpatrick et. el, 1983).  SA 
has also been shown to work well on many real-world 
optimization problems.  
  

Workflow of each implemented algorithm is 
described below. 
 

GA 

1. Generate a population P consisting of M solutions 

2. Build a breeding pool by selecting N promising 

solutions from P using a selection strategy 

3. Perform crossover on the breeding pool to generate 

the population of new solutions 

4. Perform mutation on the new solutions 

5. Replace P with new solutions and go to step (2) until 

the maximum number of generations (r) is reached 
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PBIL 

1. Initialize a probability vector p = {p1, p2, ..., pn} with 

each pi = 0.5. Here, pi represents the probability of xi 

taking value 1 in the solution 

2. Generate a population P consisting of M solutions by 

sampling probabilities in p 

3. Select set D from P consisting of N best solutions 

4. Estimate probabilities of xi = 1 , for each xi, as 

𝑝(𝑥𝑖 = 1) =  
∑ 𝑥𝑖𝑥∈𝐷,𝑥𝑖=1 

𝑁
 

5. Update each pi in p using pi = pi + λ(p(xi = 1) − pi). 

Here, 0 ≤ λ ≤ 1 is a parameter of the algorithm known 

as the learning rate 

6. Go to step 2 until the maximum number of 

generations (r) is reached 

 

DEUMd 

1. Generate a population, P, consisting of M solutions 

2. Select a set D from P consisting of N best solutions, 

where N ≤ M. 

3. For each solution, x, in D, build a linear equation 

with the following form  

η(F(x)) = α0 + α1x1 + α2x2 + ... + αnxn 

Where, function η(F(x)) < 0 is set to −ln(F(x)), for which 

F(x), the fitness of the solution x, should be ≥ 1,  

α = {α0 + α1+ α2+ ... + αn} are equation parameters, 0 

values in binary variable xi are replaced with -1 for 

creating linear equations. 

4. Solve the build system of N equations to estimate α 

5. Use α to estimate the distribution 𝑝(𝑥) =

 ∏ 𝑝(𝑥𝑖)𝑛
𝑖=1  

where 

𝑝(𝑥𝑖 = 1) =  
1

1 + 𝑒𝛽𝛼𝑖
 ,   

𝑝(𝑥𝑖 = −1) =  
1

1 + 𝑒−𝛽𝛼𝑖
 

Here, β (inverse temperature coefficient) is set to β=g× 

τ; g is the current iteration of the algorithm and τ is the 

parameter known as the cooling rate.  

6. Generate M new solution by sampling p(x) to 

replace P and go to step 2 until the maximum number 

of generations (r) is reached. 

 

SA 

1. Randomly generate a solution x = {x1, x2, ..., xn} 

2. For i = 1 to r do 

a. Randomly mutate a variable in x to get x’ 

b. Set Δf = f(x’) − f(x) 

c. Set x = x’ with probability 

𝑝(𝑥′) =  {
 1              𝑖𝑓 𝛥𝑓 ≤ 0

 𝑒−𝛥𝑓/𝑇   𝑖𝑓 𝛥𝑓 > 0
 

Where temperature coefficient T was set to T = 1/i×τ, i is 

the current iteration, and τ is the parameter of the algorithm 

called the cooling rate. 

3. Terminate with answer x. 

6 EXPERIMENTS AND RESULTS 

In this paper, we used five different sample areas 
from the data provided by our telecom partner for 
testing the performance of the algorithms. These 
areas represent a typical network size, in which our 
partner is required to deploy smart meters with 
different settings for feeders, meters and RSSI 
distances. We denote them as Area1, Area2, Area3, 
Area4 and Area5. The number of feeders were 408, 
373, 519, 445 and 159, respectively for areas 1 to 5. 
Similarly, the number of meters were 1826, 1275, 
1485, 1133, 688 for areas 1 to 5 respectively. Also, 
the maximum RSSI allowed (𝑙𝑟𝑠𝑠

𝑚𝑎𝑥 ) was set to -85 
dbm, which meant any connection of a meter to 
feeder with RSSI over -85 was counted as violation 
and added to the link cost in equation 1. The value of 
up to -85 was given the equal preference and therefore 
had a 0 cost. The value for the total link cost, hence, 
would be 0, if no link encoded in the solution is over 
the RSSI limit of -85 dbm. 
 In addition, each algorithm has different set of 
parameters that needs to be fine-tuned to obtain the 
best results. We perform empirical analytics to find 
the parameters for each algorithm where each 
algorithm was run for 10 times with multiple settings 
for each of the parameters, and those parameters that 
provide the best average results were used as the 
output of the algorithm.  
 Population size parameter (ps) for a population-
based algorithm such as GA, PBIL, and DEUMd, 
ranged from 300 to 1000. The maximum generation 
(mg) ranged from 500 to 1000. In addition, the elitism 
(es) of 0 or 2 was used, i.e., either none or the best 
two solutions from the previous generation were 
copied to the next generation.  
 For the GA, four selection operators (so) were 
tested, which included roulette wheel (rw), 
tournament (tm), and two types of truncation 
selection: one with selection size set to 0.5 of the 
population size (tr0.5) and another with 0.3 (tr0.3) 
(Bäck et el, 1997). The crossover operators (co) tested 
were “simple one point” (op) and “uniform” (un) 
crossovers with the probability of bit swapping set to 
0.5 (un0.5). The mutation operator (mo) was set to 
one-bit flip mutation (ob) [17]. In addition, the tested 
crossover probabilities (cp) were 0.6 and 0.8, and the 
mutation probabilities (mp) tested were 0.0001, 
0.001, and 0.01, respectively.   
 For the PBIL, a truncation selection (Bäck et el, 
1997) was used with 3 different settings for the size 
of the selected population for recombination 
operations (ss), which were 0.3, 0.5, 0.7 of the 
population size. When the selection size is set to a 
large value, the convergence of PBIL becomes slower 
since the diversity is maintained for a longer period. 
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In addition, 5 different settings for learning rate 
parameter (λ) were tested, 0.2, 0.1, 0.05, 0.01 and 
0.005. Learning rate also controls the convergence of 
the PBIL. The higher it is, the faster the population 
converges and may not explore the search space 
properly. Conversely, a lower learning rate means 
better exploration at the expense of slower 
convergence.   
 For the DEUMd, three different settings for 
truncation selection were tested with selection size 
(ss) set to 0.3, 0.5 and 0.7 of the population size. Also, 
five different cooling rate settings (τ) were tested, 1, 
0.5, 0.2, 0.1, and 0.05. Both selection size and the 
cooling rate in DEUMd have a similar effect to the 
selection size and learning rate in PBIL. They 
determine the balance between exploration and 
exploitation, leading to convergence of the algorithm.  
 For the SA, the maximum generation, r, was set 
proportionally to other EAs population size and 
maximum generation to ensure that the number of 
fitness evaluations performed by all algorithms is the 
same. In other words, the maximum generation for 
the SA set to each combination of ps × mg used in 
other population-based algorithms. The cooling rate 
parameter in SA, which has a similar effect as the lr 
and temperature coefficient in PBIL and DEUMd, 
was tested against six different settings, 0.001, 
0.0005, 0.0001, 0.00005, 0.00001 and 0.000005. 
 The results for the best set of parameters that 
achieved the highest average fitness for each five 
different areas are shown in Tables 2 to 5 for GA, 
PBIL, DEUMd and SA respectively. The best values 
for population size for GA (ps) was 1000 for all areas. 
Hence, they are not shown in the table 2 to save space.  

Table 2: Best performing parameters for GA. 

Area mg es cp mp so co mo 

Area1 100 2 0.8 0.001 tm un0.5 ob 

Area2 500 0 0.8 0.001 tm un0.5 ob 

Area3 1000 0 0.8 0.001 tm un0.5 ob 

Area4 500 2 0.8 0.001 tr0.5 un0.5 ob 

Area5 1000 0 0.8 0.01 tr0.3 op ob 

Table 3: Best performing parameters for PBIL. 

Area ps mg es ss lr 

Area1 1000 1000 0 300 0.1 

Area2 1000 1000 0 300 0.1 

Area3 1000 1000 0 300 0.1 

Area4 1000 1000 0 300 0.1 

Area5 500 1000 2 150 0.2 

Table 4: Best performing parameters for DEUMd. 

Area ps mg es ss tau 

Area1 300 1000 2 90 0.2 

Area2 300 1000 2 90 0.5 

Area3 300 1000 2 90 0.2 

Area4 300 1000 2 90 0.2 

Area5 300 1000 2 90 0.1 

Table 5: Best performing parameters for SA. 

Area mg tc 

Area1 1000000 0.000005 

Area2 1000000 0.000005 

Area3 500000 0.00001 

Area4 1000000 0.00001 

Area5 500000 0.00001 

 

Results in terms of mean fitness (AvgFit) together 

with the standard deviation (SdFit) over the 10 runs 

for each algorithm and for each of the 5 tested areas 

is shown in Table 6. The minimum fitness (MnFit) 

and maximum fitness (MxFit) found over the 10 runs 

are also shown. The best performing values for each 

area are highlighted in bold. We can notice that the 

best performing algorithm in terms of the mean 

fitness across all 5 area is SA, which is closely 

followed by PBIL, the performance of GA and 

DEUM is worse than that of the other two algorithms. 

We can also notice that the standard deviation over 

the 10 runs is lowest for SA in comparison to the other 

tested algorithms, suggesting that the result for SA is 

consistent and more predictable. For instance, for 

Area1, the mean fitness of SA is 866 which is then 

followed by 867 for PBIL, 869 for GA and 894 for 

DEUMd. Similarly, the standard deviation for SA is 

0.99, which is closely followed by 1.62 for PBIL, 

1.57 by GA and 3.56 for DEUMd. Also, SA is better 

in terms of Min and Max fitness with values of 865 

and 868 respectively. The result pattern is similar 

across the other 4 areas. 
We also present result in terms of individual 

objective values in Table 7 and Table 8, where Table 
7 shows results in terms of best minimized RSSI for 
each algorithm for each of the 5 tested areas, and 
Table 8 shows the results in terms of the number of 
clusters, i.e. the number of DCUs used for each 
algorithm for each of the 5 tested areas. The lower the 
RSSI values, the better the algorithm is and the lower 
the DCU number used the better the solution is. 
Similar to the results for the overall fitness, we show 
the mean RSSI (AvgRS) together with the standard 
deviation (SdRS) and also the minimum RSSI 
(MnRS) and the minimum RSSI (MxRS), over the 10 
runs of the algorithm for RSSI values. Similarly, we 
show the mean number of DCU used (AvgDCU) 
together with the standard deviation (SdDCU) and 
also the minimum number of DCU used (MnDCU) 
and the maximum number of DCU used (MxDCU), 
over the 10 runs of the algorithm.  Interestingly, all 
algorithms were able to find the same RSSI sum 
values across all areas (apart from area 5 and area 4 
for some algorithms), over all the 10 runs, as seen on 
Table 7. However, the number of DCU used is 
different for different algorithms as seen on Table 8, 
suggesting that this objective is the contributor for the 
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overall fitness difference. Hence, we can notice that 
the average number of DCU used by SA is best for 
each of the 5 areas. Similarly lower standard 
deviation of SA in comparison to other algorithms 
suggests that it is the most predictable algorithm. The 
design with lower number of DCU used is 
particularly good as it results in less equipment, and 
less energy consumption for the network, hence 
reducing overall cost of the network. 

Table 6: Fitness for each algorithm for each of the 5 tested 

areas, where Maximum, Minimum and average together 

with standard deviation of the fitness is shown for the 10 

runs of each algorithm for each of the areas. Here, lower the 

fitness the better the solution is.  

Area Algo MnFit  MxFit  AvgFit  SdFit 

Area1 GA 866.2 871.2 869.7 1.57 

Area1 PBIL 864.2 869.2 867.4 1.62 

Area1 DEUM 892.2 904.2 894.9 3.56 

Area1 SA 865.2 868.2 866.1 0.99 

Area2 GA 118.0 125.0 121.2 2.49 

Area2 PBIL 117.0 121.0 118.6 1.17 

Area2 DEUM 142.0 169.0 150.6 8.09 

Area2 SA 114.0 117.0 115.0 0.82 

Area3 GA 9710.0 9715.0 9713.1 1.85 

Area3 PBIL 9710.0 9711.0 9709.4 1.43 

Area3 DEUM 9731.0 9745.0 9738.6 4.03 

Area3 SA 9707.0 9709.0 9708.0 0.67 

Area4 GA 11437.0 11441.0 11439.4 1.35 

Area4 PBIL 11437.0 11439.0 11437.5 0.71 

Area4 DEUM 11462.0 11469.0 11464.7 2.62 

Area4 SA 11437.0 11438.0 11437.8 0.42 

Area5 GA 14752.0 14753.0 14752.4 0.52 

Area5 PBIL 14753.0 14754.0 14753.5 0.53 

Area5 DEUM 14953.0 15231.0 15100.3 94.77 

Area5 SA 14752.0 14752.0 14752.0 0.00 

Table 7: Best minimised RSSI for each algorithm for each 

of the 5 tested areas, where Maximum, Minimum and 

average together with standard deviation of the RSSI is 

shown for the 10 runs of each algorithm for each of the 

areas. Here, lower the RSSI the better the solution is. 

Area Algo MnRS  MxRS  AvgRS  SdRS 

Area1 GA 797.7 797.2 797.2 0.00 

Area1 PBIL 797.7 797.2 797.2 0.00 

Area1 DEUM 797.7 797.2 797.2 0.00 

Area1 SA 797.7 797.2 797.2 0.00 

Area2 GA 0.0 0.0 0.0 0.00 

Area2 PBIL 0.0 0.0 0.0 0.00 

Area2 DEUM 0.0 0.0 0.0 0.00 

Area2 SA 0.0 0.0 0.0 0.00 

Area3 GA 9492.0 9492.0 9492.0 0.00 

Area3 PBIL 9492.0 9492.0 9492.0 0.00 

Area3 DEUM 9492.0 9492.0 9492.0 0.00 

Area3 SA 9492.0 9492.0 9492.0 0.00 

Area4 GA 11289.0 11289.0 11289.0 0.00 

Area4 PBIL 11289.0 11289.0 11289.0 0.00 

Area4 DEUM 11289.0 11290.5 11289.2 0.48 

Area4 SA 11289.0 11289.0 11289.0 0.00 

Area5 GA 14647.0 14648.0 14647.4 0.52 

Area5 PBIL 14647.0 14648.0 14647.3 0.48 

Area5 DEUM 14827.0 15107.0 14974.9 94.77 

Area5 SA 14647.0 14648.0 14647.5 0.53 

Table 8: Number of DCU used for each algorithm for each 

of the 5 tested areas, where Maximum, Minimum and 

average together with standard deviation of the used DCU 

is shown for the 10 runs of each algorithm for each of the 

areas.  

Area Algo MnDCU  MxDCU  AvgDCU  SdDCU 

Area1 GA 69 74 72.30 1.57 

Area1 PBIL 67 72 70.20 1.62 

Area1 DEUM 95 107 97.70 3.56 

Area1 SA 68 71 68.90 0.99 

Area2 GA 118 125 121.20 2.49 

Area2 PBIL 117 121 118.60 1.17 

Area2 DEUM 142 169 150.60 8.09 

Area2 SA 114 117 115.00 0.82 

Area3 GA 218 223 221.10 1.85 

Area3 PBIL 215 219 217.40 1.43 

Area3 DEUM 239 253 246.60 4.03 

Area3 SA 215 217 216.00 0.67 

Area4 GA 148 152 150.40 1.35 

Area4 PBIL 148 150 148.50 0.71 

Area4 DEUM 172 180 175.50 2.90 

Area4 SA 148 149 148.20 0.42 

Area5 GA 104 106 105.00 0.82 

Area5 PBIL 105 107 106.20 0.63 

Area5 DEUM 119 130 125.40 2.88 

Area5 SA 104 105 104.50 0.53 

7 CONCLUSIONS 

In this paper, we explored 4 different evolutionary 

algorithms to address the wireless network meter 

deployment problem. We modelled the problem as an 

evolutionary optimization problem and investigated 

difference encoding schemes. In addition, we 

introduced the concept of a look-up table to speed up 

the fitness calculations. Finally, we tested our four 

algorithms on five typical networks. Our results show 

that Simulated Annealing (SA) is not only the best 

performing algorithm but also the most reliable across 

all tested instances. SA is also among the simpler 

algorithms in terms of workflow and requires fewer 

tuning parameters. 
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