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Abstract: Behavioral Authentication (BA) systems employ a verification algorithm to verify users based on their be-
havior patterns. To eliminate the need for a profile database to store the profiles and to enhance the system’s
performance, the verification algorithm usually trains a Neural Network (NN) classifier on user profiles. How-
ever, like other NN applications, the NN-based BA classifiers are also susceptible to adversarial attacks. To
defend against such attacks, we employed a method that adds noise to the training data by using Random
Projection (RP) and its reverse process. This approach prevents model overfitting and maintains the model’s
predictions at an expected level. Our technique has also proven effective against attacks based on adversarial
examples. We tested our proposed method on two BA systems, achieving the expected classification accuracy.
Furthermore, the attacks based on adversarial examples are significantly less effective against BA classifiers
trained with noisy data compared to those trained with plain data. Our approach is general and can be applied
to other BA systems to protect their classifiers from similar attacks.

1 INTRODUCTION

There has been a significant technological shift over
recent years due to the development and widespread
use of smartphones. Different studies have shown
that using smartphone sensors, it is possible to col-
lect users’ behavioral data, such as touch patterns,
keystroke dynamics, and even gait patterns. This col-
lected data can be utilized by Behavioral Authenti-
cation (BA) systems (Gupta et al., 2020; Islam and
Safavi-Naini, 2020) to verify who is using the de-
vice. BA systems are beneficial not only for verify-
ing user identity but also for enhancing the security
of systems that use multiple factors for authentication
(Ding et al., 2019). One of the key advantage of BA
systems is their ability to prevent users from sharing
their credentials.

Every BA system incorporates a verifier, usually
an online server, that uses a verification algorithm to
authenticate users. During the registration phase, the
verification algorithm trains a machine learning (ML)
classifier with the users’ behavioral profiles where
a profile is a collection of a user’s behavioral data.
When a user attempts to log in, the verification algo-
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rithm employs this ML classifier to determine if the
user’s verification profile matches. Recently, Neural
Network (NN) based classifiers have been increas-
ingly used to classify various types of profile data,
such as mouse movements (Chong et al., 2019), gaits
(Jung et al., 2019), and keystrokes (Deng and Zhong,
2015). These NN-based classifiers are designed with
data privacy in mind, utilizing techniques to reduce
the necessity for long-term storage of sensitive raw
data in databases. This approach not only enhances
data privacy but also boosts the overall system per-
formance. Additionally, this strategy is also benefi-
cial for continuous authentication (Meng et al., 2014),
which keeps verifying a user’s identity continuously.

Like other ML models, the NN classifiers of the
BA systems can be vulnerable to certain types of mis-
use, with adversarial examples being one of the most
recent and significant threats. Adversarial examples
involve making minor adjustments to the input data,
such as images, audio, and video, which are crafted
to lead highly accurate ML models to confidently
make incorrect predictions (Szegedy et al., 2013; Jin
et al., 2021; Pacheco and Sun, 2021). These mod-
ifications, often imperceptible to humans, can trick
the ML models into incorrectly classifying the altered
inputs. Therefore, developing robust defense strate-
gies is crucial, especially for the BA classifiers that
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authenticate users based on their behavioral data.
Research on defending against adversarial attacks

is actively exploring diverse strategies to make ML
models less prone to these threats. Among them, ad-
versarial training stands out as a crucial technique that
involves incorporating adversarial examples into the
training dataset, which helps the model learn to iden-
tify and deal with these crafted inputs. For example,
utilizing Projected Gradient Descent (PGD) (Madry
et al., 2017) in adversarial training significantly im-
proves model resilience by systematically introducing
adversarial examples generated via PGD. While this
method has shown promise, studies indicate it might
still be susceptible to other forms of attacks. Addi-
tionally, models generating adversarial examples of-
ten rely on specific datasets, which raises questions
about their applicability across different settings and
effectiveness in real-world situations. The network
layer augmentation approach proposed in (Yu et al.,
2019) enhances the original model by adding multi-
ple auxiliary blocks, akin to a self-ensemble model.
However, this method increases computational com-
plexity, making it less practical for devices with lim-
ited processing capabilities. In (Byun et al., 2022),
the authors advocate for the inclusion of random noise
during training to fine-tune the model’s parameters,
thus mitigating overfitting and enhancing the general-
ization capabilities of the model. Furthermore, (Dong
et al., 2020) highlights that randomization defenses
tend to outperform other defense strategies, leading
to a growing interest in this field. However, ran-
dom noise can introduce uncertainty that might re-
duce model accuracy. Moreover, while most adversar-
ial defense techniques have been developed for com-
puter vision, progress in the behavioral domain has
been limited. Nonetheless, behavioral data is crucial
not only for user authentication but also for emerging
areas like cybersecurity, IoT, and smart cities.
Our Work. We added random noise to the BA
profiles during training, aiming to avoid overfitting
the model and enhance its generalization capabili-
ties without negatively affecting the system’s accu-
racy. This approach also safeguards the BA classifier
against attacks based on adversarial examples. For
this, we utilized a technique based on Random Pro-
jection (RP) and its inverse. RP is a method that
reduces data dimensionality using a random matrix
while preserving the pairwise distances among vec-
tors. In contrast, the inverse RP reconstructs the orig-
inal dimensions of the vectors using a pre-calculated
pseudo-inverse matrix, aiming to keep the vectors and
their inversely projected versions close to each other.
Our strategy involves transforming the BA profiles
with RP using a unique sparse random matrix, which

serves as a user’s secret. We then apply inverse RP to
these projected profiles to restore them to their orig-
inal dimension. These restored profiles, which are
close to the original profiles, are considered as noise,
thereby not compromising model performance. The
closest work to ours is described in (Finlay et al.,
2018), where RP and its inverse were utilized to de-
vise regularization parameters to enhance model’s re-
sistance against adversarial attacks. We implemented
our proposed approach on two existing BA systems to
protect their classifier from adversarial attacks.

2 PRELIMINARIES AND
RELATED WORKS

BA System. In a BA system, a profile is a collection
of m vectors, each with d dimensions, represented as
X = {x1,x2, · · · ,xm}. Each dimension represents a
feature, and each vector is the measurement of behav-
ioral activity. During registration, the BA system col-
lects N profiles to train a NN classifier C(θ), where θ

represents the trained network parameters. We aim to
train a new classifier C(θ̂) using noisy profiles to pro-
tect against adversarial attacks. A verification request
consists of an identity u, and a verification profile Y
which is a collection of n (where n < m) behavioral
samples. The verification process uses the trained NN
classifier to produce prediction vectors that assist in
making authentication decisions. A BA system must
ensure accuracy and security.
Adversarial Examples. Various algorithms exist for
creating adversarial examples in different settings.
One such method is the Fast Gradient Sign Method
(FGSM) (Goodfellow et al., 2014), which enables
gradient-based attacks by calculating the gradients of
loss relative to model inputs and using them to al-
ter input samples toward misclassification. Another
technique is the Jacobian-based Saliency Map Attack
(JSMA) algorithm (Papernot et al., 2016), which de-
termines the effect of altering specific features on the
classification outcome, targeting the most influential
features for perturbation. While other algorithms for
generating adversarial examples exist, we have opted
for FGSM and JSMA due to their proven effective-
ness in compromising the robustness of targeted ML
models. Considering additional algorithms for future
research are planned.
Adversarial Defense. The study by (Dong et al.,
2020) highlights that adding random noise serves as
an effective defense against adversarial attacks. The
Random Self-Ensemble method in (Liu et al., 2018)
uses a randomization strategy by injecting Gaussian
noise into the input of each convolutional layer, en-
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Figure 1: The proposed BA system is robust against attacks based on adversarial examples. In the registration phase, the BA
system trains a NN classifier C(θ̂) using noisy profiles. In the verification phase, the BA verification algorithm decides to
accept or reject a verification request based on the outputs of C(θ̂).

hancing stability through an ensemble of predictions
for each image. The Parametric Noise Injection ap-
proach in (He et al., 2019) increases NN resilience by
adding trainable Gaussian noise to the activations or
weights of layers. The technique in (Xie et al., 2017)
introduces a random input transformation method that
applies random resizing and padding to the input im-
age prior to network analysis, thus introducing noisy
gradients to stop adversaries. While this method can
be straightforwardly applied to pre-trained models, it
requires an increase in computational effort due to the
input size expansion. In our case, we generated ran-
dom noise using RP and inverse RP.
Random Projection (RP). RP is a projection method
that uses a function P(·) : Rd → Rk to map vectors
x from a higher-dimensional space d to x′ to a low-
dimensional space k, through a random matrix R as
x′ = 1√

kσr
RT x. Here, σr denotes the standard devia-

tion of R’s entries and RT is the transpose of R. When
projecting a profile X, this is denoted as X′ = RT X,
assuming X and X′ are collections of vectors. In-
verse projection P−1(·) : Rk → Rd , aims to reverse
this mapping. Ideally, applying P−1 to P(x) would
return the original vector x. However, in practice, the
recovered vector x̂ and the original x are not identical,
but rather closely approximate each other. This con-
cept of approximation also applies to sets of vectors,
where each vector x in set X and its approximate x̂ in
set X̂ closely resemble each other.

3 A ROBUST BA SYSTEM

The proposed BA system is outlined in Figure 1. The
registration phase comprises four key activities:
Generating Profiles and Random Matrices: The
user’s device collects behavioral data from the user’s
activities to create a profile X and produces a set of
random matrices {R1,R2, · · · ,Ri} to be used in RP.
Performing Random Projection: The device gen-

erates a series of projected profiles X′
1 = R1X,X′

2 =
R2X, · · · ,X′

i = RiX by applying RP on X using gen-
erated secret random matrices. This process uses a
Lipschitz mapping to transition profile vectors from d
to k1,k2, · · · ,ki dimension, respectively.
Inverse Random Projection: The device
uses inverse RP to project {X′

1,X
′
2, · · · ,X′

i} to
{X̂1, X̂2, · · · , X̂i}, treats all of them as noise, and adds
them with X before sending the data to the verifier.
Training a NN Classifier: The verifier, potentially
a third-party service provider offering MLaaS, uses
noisy profiles from N users to train C(θ̂) and keep
model accuracy above a threshold.

During the verification phase, C(θ̂) generates m
prediction vectors corresponding to the m vectors of
Y. The verifier then combines these predictions into
a single binary decision (0 to deny and 1 to approve)
and returns this decision back to the user.
Adversarial Assumptions. We assume that an at-
tacker has the following knowledge and capabilities:
(i) The attacker can access the plain profiles collected
by intercepting the communication. (ii) The attacker
knows the architecture and input-output dimensions
of the trained BA classifier. Attackers can use this
information and collected profiles to train a classifier
similar to C(θ) to generate the adversarial examples.
(iii) The attacker knows the distribution and dimen-
sions of R, as this is public information. However,
since R is secret, the attacker cannot train a BA clas-
sifier similar to C(θ̂) to generate adversarial examples.

4 EXPERIMENTAL RESULTS

We applied and tested our method using voice (Gupta
et al., 2020) and drawing pattern (Islam and Safavi-
Naini, 2020) data. We downloaded all profiles, pre-
pared them for experiments by cleaning, and normal-
izing. All voice profiles include information from 86
users, each have 120 records and 240 features. The
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Table 1: The second and third columns display the accuracy of C(θ) and C(θ̂), trained on regular and noisy profiles, re-
spectively. The final two columns reveal how well adversarial examples performed against both C(θ) and C(θ̂). In both
scenarios, the results met our expectations, indicating that the classifier trained on noisy profiles showed improved resistance
to adversarial examples, as anticipated.

Data Set Accuracy of C(θ) Accuracy of C(θ̂) Success of FGSM Success of JSMA
Training Validation Training Validation On C(θ) On C(θ̂) On C(θ) On C(θ̂)

Voice 98.35 93.85 99.03 99.69 99.08 1.28 99.12 1.77
Drawing 75.41 81.21 98.37 99.88 83.37 1.07 83.46 9.27

drawing profile contains 80 to 240 records with 65
features, totaling 193 users. We used FGSM and
JSMA algorithms to generate adversarial examples.
Below are the details of our experiments:
Experiment 1: Building and Training C(θ). For this
experiment, we developed and trained two NN-based
BA classifiers using two groups of plain profiles. Both
classifiers incorporate dense, batch-normalization, ac-
tivation (ReLU), and dropout layers, with a softmax
function layer. We allocated 80% of the data from
each profile for training and the remaining 20% for
validation. For both models, we used the Adam opti-
mizer and trained the model for 100 epochs. The re-
sults, shown in the second column of Table 1, indicate
that the voice data classifier achieved 98.35% training
and 93.85% validation accuracy, while the drawing
data classifier reached 75.41% training and 81.21%
validation accuracy. Our results for the drawing data
are slightly lower than those reported in the original
study, possibly because we did not perform data over-
sampling before training, as was done in the original
study.
Experiment 2: Generating Adversarial Examples.
We generated adversarial examples using FGSM and
JSMA algorithms assuming that the attacker could ac-
cess the training profiles. We also hyper-tuned the
epsilon value. Figure 2 (a, b) illustrates how both
classifiers’ performance varies with different epsilon
values. For the voice data, the adversarial exam-
ples achieved their highest success rate, 99.08% for
FGSM and 99.12% for JSMA, at fooling the NN clas-
sifier for epsilon equal to 0.001. However, these suc-
cess rates decrease at varying rates with epsilon val-
ues. Similarly, for drawing data, the highest suc-
cess rate of 83.37% for FGSM and 83.46% for JSMA
was observed with an epsilon of 0.0001, which also
decreased with the increase of epsilon. These op-
timal epsilon settings are used for generating adver-
sarial examples in subsequent experiments. The first
component of the third and fourth columns of Ta-
ble 1 displays how these adversarial examples per-
formed against C(θ) at their optimal epsilon settings.
The generated adversarial examples effectively fooled
both C(θ) due to their inability to robustly generalize
from the training data, despite having higher classifi-

cation accuracy.
Experiment 3: Add Random Noise. To apply RP,
we created multiple matrices R with values of +1, 0,
and -1. Using the Johnson-Lindenstrauss (JL) Lemma
(Dasgupta and Gupta, 2003), we determined the min-
imum dimension k0 necessary for our random matri-
ces Rk×d to preserve distances within a 0.99 probabil-
ity. We found that for voice data and drawing data, k
needs to be at least 73 and 46, respectively (see Ta-
ble 2 for detailed calculation along with the values
of other parameters of the lemma). Therefore, to en-
sure the effectiveness of distance preservation, we se-
lected k = {75,80,85,90,95,100} for voice data and
k = {50,52,54,56,58,60} for drawing data. We then
added noise to the profiles using these matrices. Each
operation injecting noise proportionally to the profile
size. This method introduced a substantial amount
of noise to each profile, thereby affecting both the
model’s performance and the efficiency of potential
attacks. The implications of this noise addition on
the performance of attacks are further examined in the
fifth experiment.
Experiment 4: Building and Training C(θ̂). We al-
located 80% of the noisy data for training C(θ̂) and
the remaining 20% for validation. No architectural
modifications were needed for C(θ̂) and and we used
the same network that was designed for C(θ). During
training, both models reached their acceptable accu-
racy within just 10 epochs, with the voice data model
achieving 99.03% training and 99.69% validation ac-
curacy, and the drawing data model reaching 98.27%
training and 99.88% validation accuracy, as detailed
in the second column of Table 1. In both cases, in-
corporating noise into the profiles paradoxically im-
proved models’ performances. This improvement is

Table 2: The minimum acceptable value of k in RP, as cal-
culated by the Johnson-Lindenstrauss (JL) Lemma for both
the voice and drawing datasets, are provided. A detailed
description of the symbols used in the lemma is given in
(Dasgupta and Gupta, 2003).

Data Set k0 n ε β 1−n−β

Voice data 73.0 200 0.5 1.0 0.99
Drawing data 46.0 300 0.7 1.0 0.99
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(a) Voice data. (b) Drawing data.

Figure 2: The performance of FGSM and JSMA algorithms on the classifier C(θ), trained with both voice and drawing data,
varies with different epsilon values. At the optimal epsilon value, the adversarial attack achieves a success rate of over 99.0%
against the voice data and over 83.0% against the drawing data classifier.

(a) Voice data. (b) Drawing data.

Figure 3: The performance of FGSM and JSMA algorithms on the classifier C(θ̂), trained with noisy voice and drawing
profiles, varies with different noise levels. Introducing noise roughly equal to the profile size resulted in the best defense.
However, adding slightly more noise beyond this point did not further improve performance and instead began to compromise
the classifier’s resilience against both algorithms.

due to generating noise from the profiles and incorpo-
rating it, which expands the diversity of the training
dataset and increases the models’ exposure to a wider
range of examples. This, in turn, improved their abil-
ity to generalize from the training data to new, unseen
data.
Experiment 5: Performance of Adversarial Exam-
ples Against C(θ̂). We evaluated the performance
of previously created adversarial examples on C(θ̂)
and observed a significant drop in their effectiveness.
For voice data, the success rates ranged only between
1.0% and 4.0% for both FGSM and JSMA algorithms,
and for drawing data, they fell between 1.0% and
3.0% for FGSM and 9.0% to 30.0% for the JSMA al-
gorithm. This decrease is due to an increase in mod-
els’ resilience against adversarial attacks, making it
more challenging for attackers to identify precise per-
turbations. FGSM uniformly alters all input features
based on the sign of the gradient and is less effec-

tive in both classifiers, where JSMA selectively alters
small groups of features based on their calculated im-
portance and is more effective in fooling the drawing
classifiers. However, the success rate is still below
10.0% for its best epsilon value.

While adding noise can be beneficial, balancing
the amount and type of noise is crucial. Excessive
noise can impair the model’s performance by obscur-
ing important patterns in the data, whereas the optimal
amount can enhance the model’s robustness and gen-
eralizability. Consequently, we investigated the im-
pact of different amounts of noise on the models’ sen-
sitivity to attacks. The results, illustrated in Figure
3 (a, b), showed that adding noise roughly equal to
the profile size provided the best defense against at-
tacks. Slightly increasing the volume of noise beyond
this optimal amount improved the attackers’ chances
of success at different rates.
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5 CONCLUSION

We generated noises through RP and inverse RP,
added them to the BA profiles before using them to
train a classifier. This process aimed to increase re-
sistance to attacks based on adversarial examples as
well as maintain stable classifier performance. Our
approach does not rely on cryptography, thus requir-
ing less computing power, and is suitable for devices
with limited processing capabilities. This approach is
general and can also be used to protect other behav-
ioral and biometric classifiers. A future improvement
of this research work is to compare the performance
of our approach with other methods used to avoid ad-
versarial examples. Another future research direction
is to analyze the likelihood of adversarial success in
deceiving this noisy model, taking into account the
attackers’ reasonable knowledge and capabilities.
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