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Abstract: In Urban Rail Systems (URS), traffic flow prediction has a long history. However, due to the inherent high 
non-linearity and randomness of transportation systems, it remains a challenging issue. Based on the 
passenger flow data from subway stations in Seoul, South Korea, this study aims to conduct short-term 
passenger flow predictions within the Seoul Metropolitan Subway system in South Korea using the Long 
Short-Term Memory (LSTM) network model, thereby verifying the effectiveness and accuracy of the LSTM 
model in urban subway passenger flow prediction. The model aids in facilitating early safety warnings and 
evacuations for passenger flow. According to the results, the LSTM model is more accurate for short-term 
passenger flow prediction in a high traffic station ("Geongdeok Station") and for a stable station ("Jamwon 
Station"). Compared to traditional time-series prediction models, LSTM shows superior forecasting 
capabilities. The findings and methodology in this study could serve as references and lessons for other 
researchers in similar fields. 

1    INTRODUCTION  

With the accelerated progress of urbanization, rail 
transit is become one of the indispensable means of 
transportation in most of the cities. and as the rapid 
development of urbanization and the continuous 
increasing of population, the passenger flow of URS 
is showing an accelerated trend of increase. Accurate 
short-term prediction of passenger flow at rail transit 
stations play an import role in the optimization of 
operation management and the improvement of 
transportation efficiency (Wu et al 2019). Zhao et al, 
proposed that the application of short-term traffic 
flow prediction in subway systems can plan subway 
departure intervals rationally based on the prediction 
results and serve as a reference for subway and light 
rail departure intervals (Zhao et al 2019). 

Regarding existing traffic prediction models, 
these models can be categorised into two main types: 
parametric models and non-parametric models. 
Parametric models use particular assumptions to 
estimate parameters, providing simplicity, 
interpretability, and computing efficiency. However, 
they may struggle with complex non-linear 
relationships and accuracy if assumptions are not met. 
Non-parametric models, on the other hand, are more 

flexible and adaptable, capable of capturing complex 
data patterns. However, they often require more 
training data and have more complex structures, 
potentially leading to overfitting. The classic 
parametric models include the historical average 
model, regression analysis method, Bayesian 
methods, etc (Tang et al 2021 & Sun and Wei 2017). 
Common non-parametric models include the K-
nearest neighbours approach, support vector 
machines, neural networks, and others (Cai et al 2016 
& Liyanage et al 2022). 

Deep learning has achieved significant 
advancements in various domains, including image 
identification, natural language processing, speech 
recognition, and recommendation systems. This has 
substantially accelerated the progress and use of 
artificial intelligence technologies. Armando 
Fandango et al. proposed the application of iterative 
strategies in constructing Recurrent Neural Network 
(RNN) models for short-term traffic flow prediction 
(Fandango and Wiegand 2018). Although RNN 
models are applied to traffic passenger flow 
prediction because of their ability to process 
sequential data, they have some drawbacks in 
practical applications, especially the problems of 
gradient vanishing or explosion, which affect the 
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stability of model training and the accuracy of 
prediction (Lv et al 2015). LSTM is a unique iteration 
of the Recurrent Neural Network (RNN) model, 
making it more effective than conventional RNN 
models. The LSTM model incorporates forget gates, 
input gates, and output gates to effectively capture the 
long-term dependencies in time series data, resulting 
in enhanced prediction accuracy. Furthermore, due to 
the LSTM model's superior ability to handle high-
dimensional data and extract valuable information, 
numerous researchers employ deep learning 
techniques to analyse high-dimensional 
spatiotemporal data. Shi et al. conducted a 
comparative analysis of the efficacy of random 
forests, Back Propagation (BP) neural networks, and 
LSTM models in predicting rail transit flow. They 
concluded that the LSTM model exhibited superior 
fitting results and demonstrated more comprehensive 
predictive capabilities and higher average prediction 
accuracy compared to the other models (Shi et al 
2020). 

This paper mainly utilizes the LSTM model to 
predict urban subway passenger flow, reaffirming the 
accuracy and irreplaceability of the LSTM model in 
the field of short-term passenger flow prediction, and 
providing more accurate passenger flow information 
for subway operation managers, offering a scientific 
basis for decision-making. 

2 METHOD AND DATE  

2.1 Data Source and Preprocessing  

The dataset employed in this study consists of 
passenger flow data from the Seoul Metropolitan 
Subway system, spanning from 2015 to 2018. This 
dataset is publicly accessible on the Kaggle website. 
It records the number of passengers entering and 
exiting each of the 275 stations of the Seoul subway 
from 5 AM to midnight daily, with a time resolution 
of one hour. The format of the original data is 
presented as shown in Table 1. 

Data preprocessing is a crucial initial step in data 
analysis, aiming to ensure the quality and consistency 
of the data for effective analysis and modeling. The 

Jupyter Notebook development tool and the Python 
programming language were used in this paper to 
preprocess the data. The pandas library was used for 
data cleaning, while the glob library was used to look 
for data file directories and paths. By removing 
duplicate entries, confirming data types, looking for 
missing values, and doing statistical analysis, the 
dataset's accuracy and integrity were verified. There 
were no missing or duplicate records discovered, and 
there were no outliers in the number of passengers for 
any given period. 

Because different features differ significantly 
from one another, it is easy for little data to be missed 
during training. Thus, for analysis to be effective, all 
data must be normalized. 𝐱norm = 𝐱ି𝐱min𝐱maxି𝐱min

                     (1) 

Where, x_"norm"  represents the normalized 
value. x is the sample value, x_"min"  is the minimum 
value, and x_"max"  is the maximum value. 
Normalization, by unifying the data scale, enhances 
the learning efficiency of the algorithm and reduces 
the risk of gradient vanishing or explosion, thereby 
improving the performance and stability of short-term 
prediction models. Normalization, through 
standardizing the data scale, not only increases the 
efficiency of algorithm learning but also minimizes 
the risk of gradient disappearance or explosion, 
consequently enhancing the effectiveness and 
steadiness of short-term forecast models. 

2.2 Cluster Analysis  

By evaluating the correlation between the silhouette 
coefficient of the dataset and the number of clusters, 
it can be deduced that the ideal number of clusters is 
either 2 or 4, as depicted in Fig. 1. From a research 
perspective, two clusters often lack significant 
research value; therefore, four clusters were selected 
for subsequent clustering. 

The 3D visualization following clustering clearly 
indicates that the clustering effect on the original data 
is not pronounced. Therefore, the data was subjected 
to PCA (Principal Component Analysis) for 
dimensionality reduction before clustering, as shown 
in Fig. 2. 

Table 1: Setting Word’s margins. 

USE_DT station_code station_name division 05~06 …… 23~24 
2018/11/1 0:00 2530 Gongdeok in 74 …… 342 

2018/3/26 0:00 309 Jichuk Out 19 …… 2 
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Figure 1: Initial Clustering Results of K-means (Picture 
credit: Original). 

 
Figure 2: Clustering Results after Dimensionality 
Reduction Using K-means (Picture credit: Original). 

Fig. 3 is a heatmap of the clustering results for 20 
selected stations on the Seoul Metro line in South 
Korea. For clearer visualization, the passenger flow is 
categorized into four classes, ranging from high to 
low. It is observable that, spatially, the passenger flow 
radiates from areas of higher to lower density. There 
is a strong correlation in passenger flow among these 
stations. 

 

 
Figure 3: Spatial Heat Map (Picture credit: Original). 

 

2.3 LSTM Model  

The LSTM model is a sophisticated recurrent neural 
network architecture that stands out due to its internal 
structures, capable of maintaining a long-term flow of 
information when processing sequential data. The 
core component of the LSTM model is the cell state, 
often metaphorically referred to as a 'highway' for 
information transfer between network layers. It 
remains almost unchanged, effectively preserving 
long-term information continuity. To precisely 
control the flow of information, the LSTM model is 
equipped with three meticulously designed gate 
mechanisms: the forget gate determines which 
irrelevant information to discard from the cell state; 
the input gate controls the entry of new information; 
and the output gate decides what information to 
output based on the cell state. The intricate weight 
and bias parameters acquired through the network's 
training process govern these gates, enabling the 
LSTM model to excel and exhibit remarkable 
adaptability in various sequence prediction tasks, 
particularly those involving extended time intervals 
and delays. LSTM, an RNN variation, solves the 
RNN's long-term reliance issue. Fig. 4 shows a 
visualization of the procedure (Yousfi 2017). 
 

 
Figure 4: LSTM Flowchart (Picture credit: Original). 

The formula for the forget gate in an LSTM is:  
                    𝑓௧ = σ൫𝑊௙ ⋅ ሾℎ௧ିଵ, 𝑥௧ሿ ൅ 𝑏௙൯    (2)  

The forget gate is responsible for selecting and 
discarding specific information from the cell state. 

The formulas for the input gate and the candidate 
values in an LSTM are: 

 𝑖௧ = σሺ𝑊௜ ⋅ ሾℎ௧ିଵ, 𝑥௧ሿ ൅ 𝑏௜ሻ    (3)
 

       𝐶௧෩ = tanhሺ𝑊஼ ⋅ ሾℎ௧ିଵ, 𝑥௧ሿ ൅ 𝑏஼ሻ         (4)              

The input gate determines the selection of fresh 
information to be stored in the cell state, whereas the 
candidate values encompass the potential information 
that can be incorporated into the cell state. 
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The formula for the cell state update in an LSTM is: 
             𝐶௧ = 𝑓௧ ∗ 𝐶௧ିଵ ൅ 𝑖௧ ∗ 𝐶௧෩          (5)  

                     
The cell state is updated through the process of 

discarding previous information and incorporating 
new information. 

The formulas for the output gate and the output 
value in an LSTM are: 

 
          𝑜௧ = σሺ𝑊௢ ⋅ ሾℎ௧ିଵ, 𝑥௧ሿ ൅ 𝑏௢ሻ                (6) ℎ௧ = 𝑜௧ ∗ tanhሺ𝐶௧ሻ                       (7) 

 
The output gate determines the specific portion of 

the cell state that will be emitted, and the resulting 
output value is the refined representation of the cell 
state regulated by this gate. 

The core of an LSTM network is its cell state C୲ ,which is updated through a gating mechanism. 
These gates control the flow of information in and 
out, including the forget gatef୲, the input gatei୲,and 
the output gateo୲.W୤,W୧,W୭,Wୡrepresent the weight 
matrices for the forget gate, input gate, output gate, 
and cell candidate values respectively, each 
determining how information flows and updates 
within the model.b୤,b୧,b୭,bୡ are the bias terms for the 
forget gate, input gate, output gate, and the cell state 
candidate vector, used to adjust the activation level of 
each gate and cell candidate vector. The LSTM 
equations employ the sigmoid function to control the 
selective transmission of information and the 
hyperbolic tangent function to modulate the value 
range of the cell state and output. The LSTM 
equations describe how the long short-term memory 
units dynamically regulate the long-term storage and 
forgetting of information by combining current input 
with past state information, using a complex gating 
mechanism, thereby solving the vanishing gradient 
problem found in traditional recurrent neural 
networks while maintaining the temporal 
dependencies of sequential data.  

3 RESULTS AND DISCUSSION 

3.1 Temporal Segmentation 

The total daily passenger traffic of the Seoul subway 
in South Korea is depicted in Fig. 5. It is observed to 
exhibit a bimodal pattern, with peaks occurring 
between 8-10 AM and 6-7 PM. This aligns with the 
commuting times for most people and the school 
hours for students, consistent with real-world 
scenarios. 

 
Figure 5: Seoul Subway daily station passenger flow 
(Picture credit: Original). 

3.2 Temporal Segmentation 

As shown in Fig. 6, the horizontal axis represents the 
daily passenger flow in December 2018, with each 
day serving as an observation point. The observed 
results indicate a significant periodic pattern in 
passenger flow, particularly evident in the troughs 
observed on December 2nd, 9th, and 16th, with a 
strict seven-day interval between these dates. This 
periodic pattern is likely influenced by the changes 
between weekends and weekdays. 
 

 
Figure 6: Seoul Subway one-month passenger flow (Picture 
credit: Original). 

3.3 Spatial Characteristics  

Fig. 7 demonstrates the significant differences in 
passenger traffic across different subway stations. 
This highlights the necessity of analyzing and 
comparing the daily passenger flow distribution at 
various subway stations. 

Due to the significant differences in passenger 
flow distribution characteristics among various 
subway stations, this study has selected two 
representative stations for in-depth analysis. 
"Geongdeo Station" (transfer station) and "Jamwon 
Station" (non-transfer station). 
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Figure 7: One day’s passenger flow at each subway station (Picture credit: Original). 

3.4 Results  

Given the complexity of the Seoul subway system in 
South Korea, which comprises 23 lines, this paper 
focuses solely on "Geongdeo Station" and "Jamwon 
Station" for study. Gongdeok Station, as a 
transportation hub connecting Lines 5 and 6 of the 
Seoul Subway, has a high volume of passenger flow 
and complex traffic patterns due to its transfer 
characteristics. On the other hand, Jamwon Station, a 
standard station on Line 3, has a more stable flow of 
passengers, reflecting the daily commuter status of 
ordinary stations in the Seoul subway system. 

The selection of these two stations as research 
subjects aims to compare and analyze the passenger 
flow characteristics of different types of subway 
stations. The data from Gongdeok Station helps to 
understand and predict the fluctuation of passenger 
flow at transfer stations during different periods. 
Meanwhile, Jamwon Station provides a benchmark 
for assessing the accuracy of the model in predicting 
regular passenger flow. 

After a thorough analysis of the graphical data 
characteristics, this study selected a specific 8-day 
period as the subject for short-term passenger flow 
prediction based on LSTM. The parameter 
adjustments of the LSTM model used are detailed in 
Table 2. 

Table 2 : Parameter Tuning. 

learning_rate Batch_Size Epochs 
0.01 32 100 

 
Figure 8: 2530 station Predicted data and true results of the 
test set (Picture credit: Original). 

Fig. 8 presents the experimental results for 
passenger inflow at "Geongdeo Station" 
(station_code: 2530). The horizontal axis represents 
the date, while the vertical axis indicates passenger 
volume. The time interval spans from 5 a.m. to 24 
p.m. each day. The blue star line denotes the predicted 
values, and the yellow plus line represents the actual 
values. It can be observed that most of the predictions 
closely align with the real values, though there are 
slight deviations in certain areas. 

 

 
Figure 9: 328 Station Predicted data and true results of the 
test set (Picture credit: Original). 
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Fig. 9 illustrates the predicted inbound passenger 
flow results for "Jamwon Station" (station code: 328). 
Similar to the case of "Geongdeo Station," the overall 
predictions are accurate. 

In this paper, ARIMA and BP models are used as 
comparative models. The study utilised two 
evaluation metrics, namely Mean Absolute 
Percentage Error (MAPE) and Root Mean Square 
Error (RMSE), to conduct error analysis. As shown in 
Table 3, it is evident that, whether it is MAPE or 
RMSE, the performance of the LSTM model is 
superior to the other models.  

 Table 3: MAPE and RMSE of Three Test Models. 

Model MAPE/% RMSE 
LSTM 9.19 156.67 

BP 15.86 228.74 
ARIMA 18.43 279.87 

4 CONCLUSION 

This paper focuses on short-term passenger flow 
prediction for specific stations within the Seoul 
Metropolitan Subway system in South Korea using 
LSTM network model. The LSTM network is capable 
of learning time series with long-term dependencies, 
offering a flexible framework for employing various 
combinations of variables. The study not only 
demonstrates the effectiveness of the LSTM model in 
forecasting passenger flows at different types of 
subway stations but also highlights the advantages of 
deep learning in handling high-dimensional 
spatiotemporal data. These findings provide more 
accurate passenger flow information for subway 
operation management and scientific decision-
making support for policymakers. While this research 
focuses on the impact of time on traffic flow, it does 
not account for other factors such as commercial 
zones or weather conditions. Future studies could 
consider incorporating these additional elements, 
including weather and the presence of commercial 
areas, to further enhance the model's predictive 
accuracy. 
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