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Abstract: The emergence of large language models (LLMs) has revolutionized the field of AI, introducing a new era of
generative models applied across diverse use cases. Within this evolving AI application ecosystem, numerous
stakeholders, including LLM and AI application service providers, use these models to cater to user needs. A
significant challenge arises due to the need for more visibility and understanding of the inner workings of these
models to end-users. This lack of transparency can lead to concerns about how the models are being used, how
outputs are generated, the nature of the data they are trained on, and the potential biases they may harbor. The
user trust becomes a critical aspect of deploying and managing these advanced AI applications. This paper
highlights the safety and integrity issues associated with service providers who may introduce covert, unsafe
policies into their systems. Our study focuses on two attacks: the injection of biased content in generative AI
search services, and the manipulation of LLM outputs during inference by altering attention heads. Through
empirical experiments, we show that malicious service providers can covertly inject malicious content into
the outputs generated by LLMs without the awareness of the end-user. This study reveals the subtle yet
significant ways LLM outputs can be compromised, highlighting the importance of vigilance and advanced
security measures in AI-driven applications. We demonstrate empirically that is it possible to increase the
citation score of LLM output to include erroneous or unnecessary sources of information to redirect a reader
to a desired source of information.

1 INTRODUCTION

In the realm of Large Language Models (LLMs) and
autonomous agents (Wang et al., 2023c), develop-
ers often use techniques like Supervised Fine-Tuning
(SFT) (Wei et al., 2021) and Reinforcement Learning
(RL) (Christiano et al., 2017) to ensure the model’s
outputs are both safe and in line with the intended
training goals. However, these approaches have in-
herent limitations. They primarily concentrate on ad-
justing the outputs without fully grasping the root
causes of a model’s potentially unsafe actions (Bom-
masani et al., 2021). This oversight allows service
providers to implant covert, unsafe policies within the
model. These hidden policies can stay inactive, only
to be activated by specific unexpected inputs, often
influenced by user behavior. This presents a signifi-
cant challenge in maintaining the integrity and safety
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of LLMs (Hubinger et al., 2024). The risk posed
by service providers becomes particularly alarming
when it manifests as direct model/output manipula-
tion. By embedding targeted information within the
model, service providers can program the model to
generate predetermined responses. Carefully crafted
responses can be used to sway user decisions and be-
havior subtly. The intentions behind such manipu-
lations are often self-serving, aiming to boost prof-
its or further other underhanded goals of the provider.
This type of covert manipulation highlights the urgent
need for more rigorous oversight mechanisms and ad-
vanced training techniques. These measures are es-
sential to protect against the insidious threats posed
by providers, ensuring the ethical use and safety of
LLMs.

Our research examines two specific types of at-
tacks that demonstrate these risks, potentially eroding
the trust placed in LLMs. The first attack vector in-
volves a malicious AI application that offers gener-
ative search services. This attack is particularly ne-
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farious, exploiting users’ trust in AI-driven search re-
sults. We propose a series of complex transforma-
tions on the input content where the AI application
provider can strategically inject tailored content into
its search outputs. This content is carefully crafted
to subtly guide or influence the user’s behavior in a
specific direction, aligning with the nefarious goals of
the service provider. The second type of attack we ex-
plore is a sophisticated information injection scheme
that can be employed by providers of Large Language
Models (LLMs). Malicious service providers exploit
LLMs by injecting tailored information into the mod-
els’ attention heads during inference. This form of
manipulation, aimed at altering the outputs of LLMs,
raises critical concerns about the reliability and in-
tegrity of these models, particularly in ’Inference as
a Service’ applications widely used by individuals
often unaware of the models’ training data or infer-
ence mechanisms. Beyond the reliability of the out-
puts, we address a less-discussed yet equally impor-
tant threat: the trustworthiness of the model providers
themselves.

By examining the feasibility and consequences
of such deliberate manipulations, this study aims to
highlight and analyze the potential risks and ramifica-
tions at the provider level, contributing to a deeper un-
derstanding of LLM security and ethical dimensions.
The risk of model poisoning at the service provider
level, where a malicious actor/service provider injects
information that can align outputs through specific in-
put, shows how important it is to examine and address
these vulnerabilities.

2 MOTIVATION

We outline the reasoning and short background to
how the two separate attacks are carried out. The
first attack is a manipulation of a user’s prompt to
output desired content by the LLM service provider.
The second attack manipulates the mechanism used
to fine-tune LLMs, retrieval-augmented generation
(RAG) to impact the performance of an LLM.

2.1 Prompt Manipulation

Search engines using LLMs represent a shift towards
generative search engines, offering more personalized
and precise responses to natural language queries.
These engines are underpinned by generative mod-
els like LLMs, which produce natural language an-
swers based on information from a knowledge base
or a conventional search engine. Major tech corpora-
tions such as Google and Microsoft have developed

their versions, like Gemini and Co-Pilot, marking a
trend towards this innovative approach to information
retrieval.

In this setup, an initial query q is reformulated by
a generative component, G (i.e., LLM), into a new
query qi. This is then processed by the search engine
(SE) to gather relevant sources S. These sources in-
form G, which decides whether to perform another
search with a modified query qi or to generate an an-
swer based on the accumulated sources. Regardless
of the specific design, each generative search engine
comprises at least one G and a SE, processing user
queries and delivering responses with citations to en-
sure the reliability and accuracy of information pro-
vided by LLMs.

In this ecosystem, multiple service providers can
influence user behavior through G and SE compo-
nents. Users submit queries to the SE, which then de-
composes and routes these for further processing. Un-
beknownst to the user, there’s potential for a prompt
to bias the LLM, guiding it to prefer specific search
results over others. This can subtly steer the output,
impacting user decisions and perceptions, a critical
aspect to consider in evaluating the influence of ser-
vice providers in these generative search engines.

Similarly, the LLM provider, G, can hold signifi-
cant influence. G can introduce biases or targeted ma-
nipulations at various query processing and response
generation stages. This can be achieved by: (a) selec-
tively prioritize sources that align with certain view-
points or interests, effectively filtering the informa-
tion that forms the basis of the LLM’s responses; (b)
can subtly mold the content to promote certain narra-
tives, products, or perspectives, thus influencing the
user’s perception and decision-making; (c) use user
interaction data to refine its strategies in manipulating
queries and responses, creating a feedback loop that
reinforces specific biases or agendas over time.

2.2 Retrieval-Augmented Generation

Retrieval-Augmented Generation (RAG) (Lewis
et al., 2020) is a method of fine-tuning LLMs by
feeding transformed relative documents and content
into LLMs to steer and improve their factual accu-
racy and specificity. This is particularly useful for
businesses and organizations that wish to enhance
their LLM performance without sharing the private
underlying data with an LLM service provider such as
OpenAI. RAG models merge pre-trained parametric
and non-parametric memory for enhanced language
generation, aiming to address knowledge-intensive
NLP tasks effectively. Vector stores are used to
house the content embeddings which are used to in
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the RAG models. In our second attack, we explore
the injection of malicious tokens into the inference
stage of an LLM, coercing it to produce desired and
manipulated content.

2.3 Threat Models

We propose two distinct but interconnected risks
posed by service providers and LLM providers in AI-
driven applications. This model aims to analyze and
understand the potential for malicious manipulation
of user interactions and decision-making processes.
The main goals of malicious providers are to influ-
ence user behavior, decisions, or perceptions in a way
that benefits the service provider, which could range
from commercial gains to influencing public opinion.
The two primary threats identified are:

• Generative Search Engine Poisoning Attack: Ser-
vice providers deliberately inject biased or mis-
leading information into user-facing systems.
Such manipulation can take various forms, includ-
ing altering search results, tailoring content, or
subtly modifying the presentation of information
to downstream LLMs. The goal is often to subtly
influence user perceptions or decisions, leverag-
ing the trust users place in these AI-driven sys-
tems.

• LLM Provider Output Manipulation: LLM
providers can manipulate the outputs of language
models. This can be achieved by embedding bi-
ases in the model or tailoring the model’s re-
sponses to push specific agendas. The manipu-
lation can occur during the data training, algorith-
mic tuning, or through real-time adjustments to
the model’s response generation mechanism. This
takes advantage of the inference phase of LLMs,
similar to that of RAG.
In both scenarios, the threat model emphasizes the

potential for covert operations by entities controlling
technology, exploiting their position to influence user
interactions with AI systems.

3 GENERATIVE SEARCH
ENGINE POISONING ATTACK

The objective of this attack is to manipulate search re-
sults that are fed to downstream LLMs for responding
to user queries. This approach differs from its vari-
ant of traditional search engine poisoning, which in-
volves sophisticated text manipulation techniques to
alter content subtly. This process involves various
prompt text manipulation techniques to alter content.

A series of text transformations are added to ensure
the LLM cites the source text provided by the service
provider that was previously missed or not prioritized.

This method starts by adjusting the source con-
tent’s text style to be more convincing, particularly
for authoritative statements, complemented by adding
statistics to give the text a more precise and factual
feel. The content is enriched with relevant citations
and quotations from trustworthy sources to enhance
credibility. Alongside these modifications, the lan-
guage is intentionally simplified to improve accessi-
bility while ensuring the text remains fluent and co-
herent. A sense of depth and expertise is given to the
text by inserting unique and technical terms. Further-
more, the structure of the content is refined to boost
readability, employing tactics like bullet points and
concise paragraphs. Including compelling testimoni-
als or reviews adds another layer of credibility, mak-
ing the information more persuasive. Each aspect of
the transformation is carefully designed to ensure that
the LLM prioritizes and cites sources that align with
the service provider’s interests, subtly steering the in-
formation toward its objectives.

This attack ingests the user’s prompt and manip-
ulates it to capture more, redundant citations. The
manipulated content is presented in a scientific man-
ner and is permitted to include synthetic data, which
can trick the victim into believing their output is more
robust. This can result in misinformation and propa-
ganda generation unbeknownst to the victim believing
their received LLM output is legitimate and scientifi-
cally supported by numerous citations. The attack is
shown in Figure 1.

3.1 Experiments

Unlike search engines, generative search engines
combine information from multiple sources in a sin-
gle response. Thus, length, uniqueness, and the
cited website’s presentation determine the proper
source/citation visibility. While the exact design
specifications of popular generative search methods
are not public, we use a two-step process as outlined
(Liu et al., 2023a). Liu et al. discuss the importance
of verifiability for trustworthy generative search en-
gines.

The process comprises two distinct stages. In
the first stage, the initial step is to query the search
engine with the user’s input, combining the service
provider’s content with the search engine results. This
hybrid content is then used as a prompt for the Large
Language Model (LLM) to generate responses while
tracking the citation score associated with the sources.
In the second stage, we manipulate the text of the ser-
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Figure 1: Process diagram of the Generative Search Engine Poison Attack.

Answer prompt: ”Please provide a pre-
cise and concise response to the user’s ques-
tion using exclusively the summarized web
search results provided. The response should
demonstrate accuracy, high quality, and the
expertise of an unbiased and journalistic
writer, maintaining a neutral and factual tone.
Each sentence in the response should be im-
mediately followed by an in-line citation to
the relevant search result(s), with each ci-
tation fully supporting the information pre-
sented in the sentence. When citing multiple
search results, use the [1][2][3] format rather
than [1, 2, 3]. Multiple search results can
be utilized to provide a comprehensive re-
sponse while excluding any irrelevant search
results.” {user query}

Figure 2: Answer Prompt.

vice provider’s injected content. The objective here is
to manipulate the citation score after introducing ma-
licious transformations. We measure the attack suc-
cess rate by increasing the injected content’s citation
score with redundant sources.

In both stages, responses are generated by the
GPT-3.5 Turbo model, employing the prompts as pre-
viously outlined in prior work (Liu et al., 2023a). The
model is prompted to create suitable responses for the
given query, with each sentence appropriately cited
from the sources provided. We sample five answers
using parameters of temperature=0.7 and top p=1 to
ensure robustness and reduce statistical variations.
This approach helps maintain consistency and relia-
bility in the generated responses. The exact prompt
used is shown in Figure 2 of the answer generation

Attacker Prompt: ”Your task is to rephrase
the given content to align with this approach.
Consider incorporating statistics or data into
your content; including synthetic data is per-
missible. This can be particularly benefi-
cial when responding to queries that seek
specific information or data. Elevate the
technicality of the source without introduc-
ing new content or omitting essential details.
The goal is to appeal to an informed audi-
ence by enriching the text with more sophis-
ticated technical terms and concepts. The
rephrased content should match the original
in length, essentially offering a more tech-
nically dense rendition of the same informa-
tion.” {content query}

Figure 3: Attacker Prompt.

prompt, and Figure 3 shows the content manipulation
prompt, which will help the service provider to in-
crease the visibility of content.

The citation score is calculated by the relative in-
crease or decrease of response citation count in the re-
sponse. A response r from sources Si ∈ {s1, . . . ,sm},
and a modified response r′ after malicious transfor-
mation of si is measured as:

citationsi =
csi(r

′)− csi(r)
csi(r)

∗100 (1)

In our evaluation, we use a set of 70 ran-
domly sampled queries, with ten queries representing
each category, drawn from the seven NaturalQues-
tions (Kwiatkowski et al., 2019) queries dataset.
These queries serve as the initial input for our eval-
uation. When injecting content from the service
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provider, we select questions from various categories
to ensure a diverse range of scenarios.

3.2 Results

We compare the effects of a service provider injec-
tion attack against a non-injection scenario, assess-
ing the impact on citation scores across seven dataset
categories. Detailed in Table 1, our findings indicate
a significant manipulation in citation scores for both
injected and irrelevant data, achieved by transform-
ing the content through a series of transformations.
Our hypothesis posits that incorporating statistics and
credible quotes can deceive a Large Language Model
(LLM) into generating responses that appear credible
but are, in fact, incorrect.

Table 1: Manipulation in citation scores following mali-
cious content injections by Service Providers in each Cat-
egory. Our proposed service provider attack demonstrates
significant manipulation with injection of non-authentic ci-
tations, potentially enabling malicious providers to manip-
ulate responses effectively.

Category (si) citationsi (Before) citationsi (After attack)
C1 25.8 32
C2 12.2 12
C3 14.0 34
C4 1.9 24
C5 0 33
C6 6 16
C7 11 19

4 LLM PROVIDER INJECTION
ATTACK

In this attack, the goal of a malicious provider is to
inject information to alter the outputs of a model,
thereby influencing the user’s actions. Instead of
adapting complex techniques such as modifying the
model’s internal weights to reshape established rela-
tionships or utilizing complex prompting strategies to
influence outputs, we focus on a more direct and ef-
ficient method, intervening during the model’s infer-
ence stage. The method aims to inject information
into layers within the model to guide and adjust the
model’s processing trajectory. The injected informa-
tion acts as an anchor, redirecting the model’s focus
and potentially altering the nature of its responses.
This method is particularly effective as it seamlessly
integrates with the model’s operational flow, ensuring
that the manipulation remains undetectable to the end-
user while significantly impacting the final outputs.

More concretely, the malicious attacker leverages
the LLM’s learned unembedding matrix to map rel-
evant textual information into a latent representa-

tion (Dai et al., 2022) that aligns with its internal un-
derstanding of its vocabulary. This transformed rep-
resentation, in the form of a latent vector, is then di-
rectly integrated into the output of an attention layer.
This helps to influence the final response generated
by downstream layers. Precisely, we adjust the flow
of information in the residual stream within the resid-
ual block at layer l. This adjustment is made right af-
ter the output from the multi-head attention block and
just before the multi-layer perceptron within the same
block of the transformer network (Geva et al., 2023).
The purpose of this modification is to influence the
generation of the subsequent layers to improve the ac-
curacy and relevance of prompt completions.

For example, to inject a set of words, they are
first tokenized into t0, · · · , tq where q is the number
of tokens and each ti, with each token being encoded
into a one-hot vector representation. These vectors
are then aggregated into a composite binary vector
B≜∑i bi. Next, the binary vector is converted into the
model unembedding matrix, effectively transforming
the binary vector into a format understandable with
the model’s internal representation (B∗ = BW T

U ), back
into the model’s latent space. This is executed by
adding the embedded memory (B∗) to the outputs of
the attention heads (aℓ = ∑

H
j=1 hl, j + B∗) during the

inference pass. This process enhances the attention
mechanism’s output, incorporating specific, targeted
information into the model’s processing stream. In-
tegrating carefully selected information into the pro-
cessing stream ensures that the model’s responses are
more aligned with the malicious objectives of the
LLM service provider and maintain a level of pre-
cision and relevance that might not be achievable
through standard operational parameters. This tar-
geted approach in manipulating the attention mech-
anism is instrumental in achieving a more controlled
and directed output, making it a powerful tool for in-
fluencing the model’s final responses. The process di-
agram for the attack is shown in Figure 4

4.1 Experiment Setup

Our experiments use GPT-J-6B (Wang and Komat-
suzaki, 2021) as a backbone for assessing our injec-
tion method. The attack, orchestrated by the LLM
provider, aims to manipulate the text produced by the
base model subtly. By adjusting the generated con-
tent, the provider intends to change it with an author-
itative and imposing tone, exerting a more substan-
tial influence over users during their decision-making
processes. To quantify the effectiveness of this ma-
nipulation, we employ the Target Personality Edit In-
dex (TPEI) (Mao et al., 2023), a metric designed to
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Figure 4: Process diagram of the LLM Provider Injection Attack.

measure the degree to which the injected personal-
ity traits align with the intended authoritative persona.
This index provides a benchmark to evaluate the suc-
cess of the injection method in steering user decisions
by altering the perceived personality of the text output
from the model. TPEI (Mao et al., 2023) uses cross-
entropy as a statistical measure to determine the dif-
ference between two probability distributions. In the
context of our experiment, it helps us to measure how
much the personality traits present in the text gener-
ated by the model differ from the target personality
traits. This allows us to evaluate how well the model’s
output aligns with the intended shift towards a more
authoritative personality.

TPEI is calculated using the formula:

TPEI =−
(
cross

(
p′e, pe

)
− cross

(
p′b, pe

))
Here, cross(p′e, pe) measures the cross-entropy

between the personality traits exhibited in the text
after the attack and the target authoritative person-
ality traits. Meanwhile, cross(p′b, pe) measures the
cross-entropy between the baseline model’s person-
ality traits and the target traits. By taking the differ-
ence between these two measurements, we obtain the
TPEI, which reflects the effectiveness of the person-
ality injection. A higher TPEI indicates a successful
shift towards the target personality. We compare the
baseline with a well-designed personality prompt that
can instruct the behaviors of LLMs. “PERSONALITY:
pe TOPIC: te”, to guide the model to behave accord-
ing to the target personality trait.

In Table 2, the preliminary results from our exper-
iments are listed, which suggest that the model’s ca-
pacity for injecting specific personality traits is mod-
erate. However, when these results are compared to
those achieved through basic prompting techniques
without any injection, it becomes clear that there is

Table 2: The generation metric result in GPT-J-6B base
model. A higher TPEI value indicates a successful editing
attempt.

Method TPEI

Proposed Attack Method 0.2333
Personality Prompt 0.1233

a notable difference. This comparison points towards
promising avenues for future research. The goal is
to refine these injection techniques to the point where
we can reliably shift a model’s output to reflect de-
sired traits or features while maintaining the model’s
inherent ability to generate coherent and contextually
relevant text.

5 RELATED WORK

Attacks on LLM. The advancement of Large Lan-
guage Models (LLMs) has led to increased research in
model attacks within the security domain (Wang et al.,
2023a; Wang et al., 2023b). Training data extraction
(Carlini et al., 2021; Li et al., 2023) at inference time,
prompt triggers leaking data (Zhao et al., 2023). In-
put risks mainly prompt injection(Perez and Ribeiro,
2022), goal hijacking (Liu et al., 2023b; Pedro et al.,
2023), jailbreaking (Carlini et al., 2021; Shen et al.,
2023; Zou et al., 2023; Shanahan et al., 2023; Liu
et al., 2023c) are some of the prominent input based
attacks. Backdoors can be installed in NLP models
through methods including simple supervised learn-
ing (Shu et al., 2023; Dai et al., 2019; Chen et al.,
2020; Zhang et al., 2020), parameter-efficient fine-
tuning such as LoRA (Cheng et al., 2023), prompt-
ing (Xiang et al., 2023). Backdoor attacks can be de-
signed to be stealthy during insertion (Cheng et al.,
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2023; Qi et al., 2021) or even hard to detect after be-
ing inserted (Mazeika et al., 2022). PoisonRAG (Zou
et al., 2024) is an attack on the vector database hous-
ing the retrievable embeddings used to steer LLMs
and induce hallucinations.
Malicious Uses of LLM. While LLM systems have
significantly enhanced work efficiency, their misuse
can lead to negative social consequences. Instances
of such misuse include academic dishonesty, copy-
right infringement, cyberattacks, and the exploitation
of software vulnerabilities. These concerns have been
documented in various studies and reports (Wu et al.,
2023; Ede-Osifo, ; Lee et al., 2023; Wahle et al.,
2022). Additionally, professionals in critical sectors
like law and medicine increasingly depend on LLM
systems to alleviate their workload. Yet, these sys-
tems may not possess sufficient depth in specialized
knowledge, potentially leading to inaccurate legal ad-
vice or medical prescriptions. Such errors could have
severe consequences on business operations and pa-
tient health.
Source Augmented Methods for Search and
Query. Nakano et al. (Nakano et al., 2021) and
Menick et al. (Menick et al., 2022) trained language
models using reinforcement learning from human
preferences for question-answering, with Menick’s
approach also using Google search for evidence.
Thoppilan’s (Thoppilan et al., 2022) LaMDA sys-
tem provides URLs supporting its statements. Gao
et al. (Gao et al., 2022) propose post-editing gen-
erated outputs to include cited evidence. Retrieval-
augmented generation methods(Asai et al., 2021; Guu
et al., 2020) and their variants address the memory
limits of LLMs by sourcing information from external
databases (Mialon et al., 2023) and citing the sources.

Our study explores situations where a malicious
service provider manipulates LLM-based AI appli-
cations for harmful objectives, a particularly alarm-
ing form of misuse in sophisticated AI technologies.
Specifically, our research is one of the first to investi-
gate the deliberate corruption of AI applications akin
to Retrieval-Augmented Generation (RAG) services
used by end users. This aspect of our work sheds
light on these advanced AI systems’ potential risks
and vulnerabilities.

6 CONCLUSION

The increasing use of Large Language Models
(LLMs) in AI applications brings with it the emerg-
ing threat of malicious service providers. End users
lack the means to audit or verify the training data, any
manipulation by the provider, or the inference logic

that generates outputs, creating new potential risks.
In our study, we explore two types of attacks.

Firstly, we introduce a novel attack involving a ma-
licious AI application that offers a generative search
service. This application can subtly inject content
into search outputs, potentially influencing user be-
havior. We demonstrate a series of content transfor-
mations that optimize irrelevant content to become
more visible, furthering the evil goals of the service
provider. Secondly, we propose an information in-
jection scheme that LLM service providers can use
to manipulate the outputs produced by LLMs, poten-
tially leading to user profiling and control. Service
providers can steer users in particular directions or
influence their perceptions and decisions by injecting
specific information or biases into the LLM’s outputs.
Our experiments show that we have increased the ci-
tation scores of the injected content by 37% in the
generative search application provider and injection
success rate of 23% in the LLM-provided case.

Given the potential for such far-reaching impacts,
both attacks represent a significant threat to AI ethics
and security. It underscores the need for rigorous
oversight, transparency in AI operations, and robust
mechanisms to prevent or detect such manipulations.
This attack vector challenges the integrity of AI sys-
tems and the trust users place in these advanced tech-
nologies.
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