
A Measures-Driven Decision Support System for Managing
Requirement Change in Scrum: An Empirical Evaluation

Hela Hakim1, Asma Sellami2 and Hanêne Ben-Abdallah3
1Mir@cl Laboratory, University of Sfax, FSEGS, BP 1088. 3018, Sfax, Tunisia

2Mir@cl Laboratory, University of Sfax, ISIMS, BP 242. 3021, Sfax, Tunisia
3Higher Colleges of Technology, Dubai, U.A.E.

Keywords: Managing Change, Decision Support System DSS, Functional Change FC, Structural Change SC, Functional
Size, Structural Size, COSMIC FSM Method, Structural Size Measurement SSM Method, Scrum.

Abstract: In Scrum-based projects, precise assessments of requirement changes are crucial for effective management.
A Decision Support System (DSS) can streamline managing these changes, improve collaboration, and
enhance decision-making. This paper proposes a Measure-Driven Decision Support System (MD-DSS) for
managing requirement changes at both functional and structural levels, using COSMIC FSM (ISO 19761)
and an extended Structural Size Measurement method. The MD-DSS benefits all Scrum stakeholders,
including Product Owners, Scrum Masters, Development Teams, and managers. Its performance was
evaluated quantitatively and qualitatively across 15 software development projects.

1 INTRODUCTION

Managing software projects is challenging due to
their complexity and frequent changes (Fairley,
2009). Effective change management is essential for
balancing budget, timeline, and scope. Early
requirements are often unclear, leading to frequent
and cheaper changes in early stages (Bano et al.,
2012). Agile methods like Scrum are favored for their
adaptability (Dikert et al., 2016), but they face a 61%
failure rate due to poor documentation and change
control (Gilb, 2018).

Requirements are categorized into Functional
User Requirements (FUR), Non-Functional
Requirements (NFR), and Project Requirements and
Constraints (PRC) (Abran, 2015). Change requests
can be functional or technical (ISO, 2007). Scrum
teams usually rely on expert judgment for changes,
but this is not always effective (Abran, 2015).

This paper proposes a Measures-Driven Decision
Support System (MD-DSS) to manage requirement
changes in Scrum, improving on Hakim et al.'s (2020)
work. The MD-DSS helps measure, prioritize, and
evaluate changes at functional and structural levels.

The rest of this paper is organized as follows.
Section 2 provides an overview of the COSMIC FSM
method, the Structural Size Measurement SSM
method and the SCRUM process. Section 3 discusses

the related work. Section 4 provides our proposed
measures-driven Decision Support System used for
managing requirements changes at functional and
structural levels of requirement change. Section 5
discusses the evaluation of the Decision Support
System. Finally, section 6 summarizes the presented
work and outlines some of its possible extensions.

2 BACKGROUND

This section describes an overview of the COSMIC
FSM method, the SSM method and finally the scrum
process.

2.1 COSMIC FSM Method

The Common Software Measurement International
Consortium (COSMIC) represents an internationally
recognized Functional Size Measurement (FSM)
method. It is intentionally crafted to remain neutral
towards any particular implementation choices
embedded within the operational artifacts of the
software under assessment. The COSMIC sizing
process for evaluating the functional requirements
magnitude of software encompasses three distinct
phases: the measurement strategy phase, the mapping
phase, and the measurement phase (as per COSMIC

Hakim, H., Sellami, A. and Ben-Abdallah, H.
A Measures-Driven Decision Support System for Managing Requirement Change in Scrum: An Empirical Evaluation.
DOI: 10.5220/0012807700003753
Paper published under CC license (CC BY-NC-ND 4.0)
In Proceedings of the 19th International Conference on Software Technologies (ICSOFT 2024), pages 161-168
ISBN: 978-989-758-706-1; ISSN: 2184-2833
Proceedings Copyright © 2024 by SCITEPRESS – Science and Technology Publications, Lda.

161

v5.0, 2021). This approach hinges on the
quantification of functional processes (FP), each
comprising a collection of functional sub-processes
that can be categorized into either data movement or
data manipulation. Specifically, these movements are
classified into four types: Entry (E), Exit (X), Read
(R), and Write (W).

A data group is a set of attributes that describes
one object of interest. The COSMIC measurement
unit is one data movement of one data group indicated
as one CFP (COSMIC Function Point). The size of a
functional process is determined by the sum of the
data movements it includes.

According to COSMIC (v5.0, 2021), a functional
change is described as "any amalgamation of
additions, modifications, or deletions of existing data
movements." In a functional process, the magnitude
of a functional change is determined by the total of its
added, deleted, and modified data movements.
Subsequently, the functional size of the software
following the change is calculated as the cumulative
size of all added data movements minus the size of all
removed data movements.

2.2 The Structural Size Measurement
SSM Method

An extension of the COSMIC Functional Size
Measurement (FSM) method, the Structural Size
Measurement (SSM) method serves as a vital tool for
addressing the need for more detailed measurements
to quantify data manipulation within software
products. Mirroring the approach of COSMIC, the
SSM measurement process comprises three distinct
phases: the Measurement Strategy Phase, Mapping
Phase, and Measurement Phase. Proposed by Sellami
(Sellami et al., 2015), the SSM method is tailored for
UML sequence diagrams, developed in accordance
with the measurement process advocated by Abran
(Abran, 2010). The Structural Size Measurement
method is applied to the combined fragments of a
sequence diagram to gauge its Structural Size (SS).
This SS, also referred to as control structural size,
encompasses the structural size of both Conditional
Control Structures (CCS) and Iterative Control
Structures (ICS), as depicted through constructs like
alt, opt, and loop. The SS of a sequence diagram is
defined at a granular level, specifically reflecting the
size of its control structures' flow graph.The use of SS
requires the identification of two types of data
manipulations depending on the structure type: CCS,
ICS.

Each data manipulation is equivalent to one CSM
(Control Structure Manipulation) unit. The sequence

structural size is computed by adding all data
manipulations identified for every flow graph.

The SSM The Structural Size Measurement
(SSM) method defines a Structural change as "any
combination of additions, modifications, or deletions
of existing data manipulation" (Hakim et al., 2017).
Within a functional process, incorporating its
structural aspect, the magnitude of a Structural
change is determined by the total of its added, deleted,
and modified data manipulations. Consequently, the
software's structural size following the change is
calculated as the cumulative size of all added data
manipulations minus the size of all removed data
manipulations.

2.3 Overview of the Scrum Process

The Scrum process is a collaborative method for
managing software projects, focusing on adaptability,
transparency, and iterative progress. Key roles
include the Product Owner, Scrum Master, and
Development Team. Scrum uses artifacts like the
Product Backlog and Sprint Backlog to organize
work. Structured events, including Sprint Planning,
daily Scrum meetings, Sprint Reviews, and
Retrospectives, help guide the process. These
principles enable teams to deliver value incrementally
and respond to changes effectively.

3 RELATED WORK

Agile development effectively handles requirements
changes(Abran, 2015), especially in Scrum. Key
studies have addressed this:

Drury-Grogan and O’Dwyer (Drury-Grogan et
al., 2013) identified factors influencing decision-
making in Scrum, such as sprint duration, experience,
and resource availability. Decisions often rely on
subjective expert judgment, which lacks
transparency. To improve objectivity, COSMIC FSM
and SSM methods are recommended for accurate
change evaluation.

Commeyne et al. (Commeyne et al, 2016)
validated using ISO standards to measure agile
project size, demonstrating COSMIC's reliability.
Lloyd et al. (Lloyd et al., 2017) proposed a tool for
managing changes in distributed agile development,
and Stålhane et al. (Stålhane et al., 2014) analyzed the
impact of technical change requests on safety
requirements. Sellami et al. (Sellami et al., 2018))
developed a COSMIC-based tool to evaluate
functional changes in Scrum. Hakim et al. (Hakim et
al., 2020) proposed a detailed Requirements Change

ICSOFT 2024 - 19th International Conference on Software Technologies

162

Evaluation Process considering functional and
structural levels for better decision-making.

While Scrum teams typically avoid mid-iteration
changes to prevent defects, some necessary changes
should be prioritized. This paper suggests a Decision
Support System for managing requirement changes in
Scrum, evaluated through 15 software development
projects

4 MEASURES-DRIVEN
DECISION SUPPORT SYSTEM
FOR MANAGING
REQUIREMENTS CHANGES

This section presents the steps describing our
proposed MD-DSS for managing change in SCRUM.
The MD-DSS proposed in the herein work is
composed of three main parts.

(1)-Change Request Classification
(2)-Requirement Change impact analyses at

functional and structural level
(3)-Prioritizing Change and making-Decisions

In Scrum, change requests are made by the product
owner or development team and must be articulated
as a user story (USc). An impact analysis is then
conducted. If the change is in an ongoing sprint,
details like sprint size and start date are noted, and the
functional and structural sizes of the changed
components and all incomplete user stories in the
sprint are measured. For implemented sprints, only
the sizes of the changed components and user stories
are measured. These measurements help evaluate the
change and guide decisions to accept, deny, or defer
the request.

4.1 Change Requirement Request
Classification

In the context of software development or project
management, "Change Requirement Request
classification" refers to the systematic categorization
of change requests based on various criteria such as
their nature, impact, urgency, and priority. This
process helps project teams and stakeholders better
understand and manage change requests by
organizing them into meaningful groups and
facilitating decision-making and prioritization.

In this research work, we are interested to classify
change request based on the nature of Change. We
distinct between the functional change request and the
structural change request.

4.1.1 Functional Change Request

A functional change request in the context of Scrum
refers to a request for modifying or adding new
functionality to the product being developed. Based
on the refined US templates proposed by (Hakim et
al., 2020) that support the COSMIC ISO
measurement.

4.1.2 Structural Change Request

A Structural change request in the context of Scrum
refers to a request for modifying or adding new
structural aspects to the product being developed. The
Structural aspect take into account the structure of the option
scenario, alternative scenario (alternative scenario 1, 2) and
the iterative scenario of a feature or functionality. Based on
the refined US templates proposed by (Hakim et al.,
2020) that support the SSM measurement.

4.2 Requirement Change Impact
Analyses at Functional and
Structural Level

4.2.1 Measuring of Requirement Change
Request at Functional and Structural
Level

Once requirements or changes are classified and
described in the user story (US) format, software size
measurements can be applied using measurement
formulas based on this refined format. These
formulas facilitate determining the functional and
structural sizes of requirements. Requirements size
derived from the product backlog differs from that
derived from the increment product due to changes
during the Scrum process. New functionalities may
emerge, while others may be modified or deleted. The
COSMIC functional size measurement method and
the structural size method are used to determine the
functional and structural sizes, respectively. The size
of the product backlog is the sum of the sizes of all
sprints it includes. (see Equation 1 and Equation 2).

 (1)
 (2)

where -FS(P)is the functional size of the product
backlog or the increment product.-SS(P)is the
structural size of the product backlog or the increment
product.-FS(Si) is the functional size of sprinti.-
SS(Si) is the structural size of sprinti.-n is the number
of sprints initially identified in the case when sizing
the product backlog or the number of implemented
sprints in the case when sizing the increment product.

A Measures-Driven Decision Support System for Managing Requirement Change in Scrum: An Empirical Evaluation

163

The functional size, respectively, the structural
size of a sprint is the sum of all the functional sizes,
respectively, the structural sizes of all the user stories
(US) it includes (see Equation3 and Equation4).

 (3)

(4)
where-FS(Si) is the functional size of sprinti(1≤i≤n).
-SS(Si)is the structural size of sprinti(1≤i≤n).-
FS(USij)is the functional size of the USj in Si.-
SS(USij)is the structural size of the USj in Si.
-m is the number of user stories in sprint Si.Note that
FS(USij)is the sum of all the functional sizes of its
actions(see Equation 5).The SS(USij) is the sum of all
the Structural sizes of its alternatives (conditional and
iterative) (see Equation 6)

(5)
(6)

where:FS(USij) is the functional size of the USjin Si. -
SS(USij) is the structural size of the USjin Si.-
FS(Actijk)is the functional size of action- Actijk in
USij(1≤i≤nand1≤j≤m).-SS(Altijk) is the structural
size of alternative Altijkin USij(1≤i≤nand1≤j≤m).-p is
the number of actions in user storyj.-r is the number of
Alternatives in user story j.

4.2.2 Evaluating of Requirement Change
Request at Functional and Structural
Level

Table 1: Evaluating a FC request when USc status =
undone/done (Hakim et al, 2020).

Low Moderate High
FS(FC)=1CFP 2CFP≤FS(FC)≤FS(USun

done/USdone)
FS(FC)>FS(USundone

/USdone)

Table 2: Evaluating a SC request when USc status =
undone/done. (Hakim et al, 2020).

Low Moderate High
SS(SC)=1CSM 2CSM≤SS(SC)≤SS(US

undone/USdone)
SS(SC)>SS(USundo

ne/USdone)

Tables 1 and 2 present respectively the Evaluating a
aFC request when USc status = undone/done
respectively the Evaluating of a SC request when USc
status = undone/done

4.3 Prioritizing Change and
Making-Decision

Ensuring alignment between user stories (US) and
product owner expectations is crucial for software
project success. While Scrum prioritizes user stories

based on the product owner's preferences, this may
overlook implementation details. Incorporating
developer insights into prioritization is vital for
optimizing business value. A holistic approach
integrates perspectives from both product owners and
development teams, considering importance, priority,
and functional and structural sizes. User story
priority, determined by the product owner, uses
higher numerical values for greater priority. User
story importance, categorized as Essential or
Desirable, is assessed by development teams.
Functional size is measured using COSMIC FSM,
and structural size through a structured method.

4.3.1 Prioritizing Change

Algorithm 1 presents how to prioritize the
requirements changes using both the COSMIC
functional and structural size measurement methods.
Each Functional change is evaluated using the
COSMIC FSM method, while each Structural change
is evaluated using SSM method.

Four basic values (Priority, Importance, CFP, and
CSM) are used for running ‘prioritizing user stories’
algorithm, and therefore implementing the decision-
making.

Aim: Prioritizing user stories taking into account the
following inputs: P(US), I(US), FS(US),and SS(US)
Inputs: P(US): The Priority of a User Story (US);
I(US): The Importance of a US;FS(US): The
Functional Size of a US;SS(US): The Structural Size
of a US.
Outputs:User stories are organized by taking into
account their priorities, importance, and their
functional and structural sizes (Hakim et al, 2020).

If P(USi) != P(USj) then
Select the more prior user story (US);

Else if P(USi) == P(USj) & I(USi) != I(USj)
then Select the most important
(Essential) US ;

Else if P(USi) == P(USj) & I(USi) == I(USj) &
FS(USi) != FS(USj) then
Select the user story with minimum functional size;

Else if P(USi) == P(USj) & I(USi) == I(USj) &
FS(USi) == FS(USj) & SS(USi) != SS(USj) then

Select the user story with minimum
Structural size;

Else
Select the user story that requires less demand

on resources (time or budget);
End

Algorithm 1: Prioritizing user stories.

ICSOFT 2024 - 19th International Conference on Software Technologies

164

4.3.2 Decision-Making in Ongoing/ an
Implemented Sprint

The evaluation of software size across various levels
of detail is crucial not only for estimating effort/cost
but also for facilitating decision-making, including
budgetary allocations and portfolio management
(Abran, 2010). In this section, we introduce
Algorithms 2 , outlining a series of steps tailored for
decision-makers (e.g., product owner, scrum master,
development team) to guide their choices regarding
Functional Change (FC) requests and Structural
Change (SC) requests. The decision-making process
entails the following actions: Accept the FC request
and SC request, Deny the FC request and SC request,
Defer the FC request and SC request

Deciding on a RC in an Ongoing Sprint
Algorithm 2: Deciding on a RC based FC and SC in
an ongoing sprint.

Aim: Deciding on a FC and SC in an ongoing
sprint Require: FS(FC), SS(SC), FS(USundone),
SS(USundone),FS(USc), and SS(USc).
If FS(FC)>FS(USundone)

&&SS(SC)>SS(USundone)then
Defer the FC to the next sprint;
Defer the SS to the next sprint;
Delete (USc)i from the ongoing sprint;
Add (USc)f to the next sprint;

Else if FS(FC) <FS(USundone)&&SS(SC)
< SS(USundone) then
If FS(FC)>FS(USc)i && SS(SC)>SS(USc)i
then

Defer the FC to the next sprint;
Defer the SC to the next sprint;
Delete (USc)i from the current sprint;
Add (USc)f to the next sprint;

Else if FS(FC)<FS(USc)&& SS(SC)<SS(USc)
then
If FS(USc)f>FS(USc)i && SS(USc)f>SS(USc)i
then
If Remainingtime(USc)f
<requiredtime&&teamprogress= early
then

Accept the FC;
Accept the SC;
Delete(USc)i from the current sprint;
Add(USc)f to the current sprint;

Else
Defer the FC;
Defer the SC;
Delete (USc)i
Add (USc)f to the next sprint;

Else if FS(USc)f<FS(USc)i && SS(USc)
f<SS(USc)i
then

Accept the FC; Accept the SC;
Delete(USc)i from the current sprint;

Add(USc)f to the current sprint;
Else if FS(FC) == 1 CFP &&SS(SC) == 1 CSM

Then
Accept the FC; Accept the SC;
Delete (USc)I from the current sprint;
Add (USc)f to the current sprint;
End

Algorithm 2: Deciding on a RC.

5 EVALUATION

Table 3: A comparison between MD-DSS evaluation
and experts’ evaluations.

Change
Evaluation

Software
projects

MD-DSS Expert1 Expert2

1 Low Low Moderate
2 Low Moderate Low
3 Moderate Moderate Moderate
4 Low Moderate Low
5 High High High
6 Moderate Moderate Moderate
7 Moderate Moderate Low
8 Moderate Moderate Moderate
9 Moderate Low Moderate

10 Moderate Low Moderate
11 High High High
12 Low Low Low
13 High High High
14 Low Low Moderate
15 Moderate Moderate Low

This section evaluates the MD-DSS by comparing its
change evaluation with that of experts. This
information helps stakeholders decide on the
prioritization and acceptance, deferral, or denial of
functional and structural changes. Feedback was
collected from two experts on our MD-DSS, and 15
SCRUM-based final projects were used for
evaluation. These diverse projects include mobile
apps, web applications, business applications, and
real-time software. We used the same database as in
our previous work (Sellami et al., 2018).

5.1 Experts Evaluation

The MD-DSS was evaluated through an empirical
verification based on a comparison between the
results derived from an automated tool and that
derived from experts (See Table 3).

A Measures-Driven Decision Support System for Managing Requirement Change in Scrum: An Empirical Evaluation

165

These results are based on functional and
structural size measurements, change size
evaluations, and prioritization algorithms, compared
with assessments from two experienced Scrum
experts. The experts, with over 10 years in the
industry, evaluated the importance of requirement
change requests for 15 projects. They were provided
with pre- and post-change functional and structural
sizes, change descriptions, and change sizes. Experts
classified each request as low, moderate, or high. In
81% of the cases, their classifications matched those
of the MD-DSS. High-priority changes were
accurately identified by both methods. However, for
smaller changes, experts sometimes differed from the
automated evaluation, often classifying them higher
based on comparisons with other projects.

5.2 Comparative Evaluation

5.2.1 Case Studies and Results

The measurement results are given in Table 4. For
each project we measure its functional size before and
after the change noted by FSi(sw) and FSf(sw),
respectively. We also measure its structural size
before and after the change noted by SSi(sw) and
SSf(sw). Then we measure the functional size of the
change request manually and automatically using our
MD-DSS noted by FS(FC)m, SS(SC)m and
FS(FC)aut, SS(SC)aut, respectively. Based mainly on
the functional size of the functional change and the
structural size of the structural change, we determine
the functional change status, the structural change
status, both of them, manually and automatically
noted by FC status m and FC status aut and SC status
m and SC status aut, respectively (See Table 4).

Table 4: Experimentation result.

Sft FSi(sw) FSf(sw) SSi
(s w)

SSf
(s w)

FCdescription FS
(FC)

FS
(FC)aut

SS
(SC)m

SS
(SC)aut

FC status
m

FCstatus
aut

SCstatu
sm

SCstatu
s aut

1 47 50 10 12 Add
US“ Contact

administrator”

3 3 1 1 **M **M *L *L

2 70 76 30 31 Add US“
 communicate

with other client”

6 6 2 2 **M **M *L *L

3 80 88 30 32 Add US “Create
User account”

8 8 2 2 **M **M *L *L

4 43 46 15 17 Add US“ Create 3 3 1 1 **M **M *L *L

5 40 56 10 15 Add three US 16 16 5 5 ***H ***H ***H ***H
6 50 57 15 16 Add user story

“Create user
7 7 1 1 **M **M *L *L

7 22 17 2 3 Delete US “add
employee”

5 5 1 1 **M **M *L *L

8 27 31 8 9 Add US“ add
new

4 4 1 1 **M **M *L *L

9 47 51 10 12 Add US“create a 4 4 1 1 **M **M *L *L
10 28 31 5 7 Add US“ publish

a welcome
3 3 1 1 **M **M *L *L

11 75 85 15 17 Add US
“module

10 10 2 2 ***H ***H ***H ***H

12 197 197 30 35 Modifying the
US “Logon”

users will logged
on using an ID

3 1 1 1 *L **M *L *L

13 105 97 20 30 Changes
between

2versionsV1.0a

92 92 20 20 ***H ***H ***H ***H

14 24 30 4 5 Add US “logon” 6 6 1 1 **M **M *L *L

15 79 83 10 12 Add US
“Registration”

4 4 1 1 **M **M *L *L

*L :*Low **M :M oderate *** H :***High

ICSOFT 2024 - 19th International Conference on Software Technologies

166

5.2.2 Evaluation Metrics

By analyzing all the results listed in Table 4, we noted
that the MD-DSS gives exactly the same results
(software functional size and status identification) for
business applications, web applications and real time
application. However, for the mobile apps (e.g.,
Restaurant management system) our MD-DSS could
not measure correctly the functional size of the
functional change respectively the structural size of
the structural change as well as the functional change
status respectively the structural change status. In
fact, this deviation can be related to the update or
reading information from the data storage device. It
depends on whether the data are stored in an internal
or external data storage devices. We compared the
manual results to the automatic results generated by
our tool by using the precision (see Eq. 2) and the
recall (see Eq. 3) metrics. Thus, our tool achieved a
precision and a recall equal to 93%.

Precision = T P/ T P + FP (2)
Recall = T P/ T P + FN (3)

Where: – TP: number of functional changes
respectively the structural changes status correctly
identified by our tool. – FP: number of functional
changes respectively the structural changes status
incorrectly identified by our tool. – FN: False
negatives are the number of functional changes’
status incorrectly not identified.

6 CONCLUSION

This research explores the importance of a decision
support system based on functional and structural
measures for managing change requests in the
SCRUM process. The system evaluates requirement
changes by quantifying them as user stories, aiding in
prioritization and decision-making for product
owners, Scrum masters, development teams, and
managers. It was tested on 15 software development
projects with expert input, comparing automated and
manual methods. Future improvements will include
incorporating factors such as risk, functionality use,
complexity, urgency, change type, requestor, affected
product parts, and dependencies, using AI for
enhanced decision-making.

REFERENCES

Abran, A. (2010). Software Metrics and Software Metro-
logy. IEEE Computer Society.

Abran, A. (2015). Software Project Estimation: The Fun-
damentals for Providing High Quality Information to
Decision Makers. Wiley-IEEE Computer Society Pr,
1st edition.

Abdalhamid, S. and Mishra, A., 2017. Adopting of agile
methods in software development organizations:
systematic mapping. TEM Journal, 6(4), p.817

Al Salemi, A. M. and Yeoh, E. T. (2015). A survey on
product backlog change management and require- ment
traceability in agile (Scrum). In the 9th Malay- sian
Software Engineering Conference (MySEC), pa- ges
189–194.

Ambler, S. W. (2014). User Stories: An Agile Introduction.
Bano, M., Imtiaz, S., Ikram, N., Niazi, M., and Usman,
M. (2012).

Causes of requirement change - a systematic literature
review. In EASE 2012.

Berardi E., Buglione L., S. L. S. C. T. S. (2011). Guideline
for the use of cosmic fsm to manage agile projects, v1.0.

Cohn, M. (2004). User Stories Applied: For Agile Software
Development. Addison-Wesley Professional.

Commeyne, C., Abran, A., and Djouab, R. (2016). Effort
Estimation with Story Points and COSMIC Function
Points: An Industry Case Study.

COSMIC (2017). The COSMIC Functional Size Measure-
ment Method, Version 4.0.2, Measurement Manual.

COSMIC (2020). The COSMIC Functional Size Measure-
ment Method, Version 5.0, Announcement of Version
5.0 of the COSMIC Measurement Manual – March 31,
2020

Drury-Grogan, M., O’Dwyer, O.: An investigation of the
decision-making processin agile teams. Int. J. Inf.
Technol. Decis. Mak. 12(6), 1097–1120 (2013)

Desharnais, J. M., Kocaturk, B., and Abran, A. (2011).
Using the cosmic method to evaluate the quality of the
documentation of agile user stories. In 2011Joint Conf.
of the 21st International Workshop on Software
Measurement and the 6th International Conf. on
Software Process and Product Measurement,
pages269–272.

Dikert, K., Paasivaara, M., and Lassenius, C. (2016).
Challenges and success factors for large-scale agile
transformations. Journal of Systems and Software,
119(C):87–108.

Fairley, R.E.(2009).Managing andLeadingSoftwarePro-
jects. Wiley-IEEE Computer SocietyPr.

Furtado, F., Zisman, A.: Trace++ (2016): a traceability
approach to support transitioning to agile software
engineering. In: The 24th International Requirements
Engineering Conference (RE), pp. 66–75.

Gilb, T. (2018). Why agile product development systemati-
cally fails, and what to do about it!

Haoues, M., Sellami, A., and Ben-Abdallah, H. (2017).
Functional change impact analysis in use cases: An
approach based on COSMIC functional size measu-
rement. Science of Computer Programming, Special
Issueon AdvancesinSoftwareMeasurement,135:88– 104.

Hakim, H,.Sellami, A., and Ben-Abdallah, H. (2020). An
in-Depth Requirements Change Evaluation Process
using Functional and Structural Size Measures in the

A Measures-Driven Decision Support System for Managing Requirement Change in Scrum: An Empirical Evaluation

167

Context of Agile Software Development. In ICSOFT
(pp. 361-375).

Hamed, A.M.M and Abushama, H. Popular Agile
Approaches in Software Development: Review and
Analysis. Computing Electrical and Electronics
Engineering (ICCEEE), 2013 International Conference
on (2013), pp. 160-166.

Download the official Scrum GuideLloyd, D., Moawad, R.,
and Kadry, M. (2017). A supporting tool for
requirements change management in dis- tributed
agile development. Future Computing and Informatics
Journal, 2(1):1–9.

Schwaber, K. (2004). Agile Project Management with
Scrum (Developer Best Practices). Microsoft Press;
1edition.

Sellami, A., Hakim, H., Abran, A., and Ben-Abdallah, H.
(2015). A measurement method for sizing the struc-
ture of UML sequence diagrams. Information &
Software Technology, 59:222–232.

Sellami, A., Haoues, M., Borchani, N., & Bouassida, N.
(2018, July). Guiding the Functional Change Decisions
in Agile Project: An Empirical Evaluation. In
International Conference on Software Technologies
(pp. 327-348). Springer, Cham.

Sellami, A., Haoues, M., Borchani, N., & Bouassida, N.
Orchestrating Functional Change Decisions in Scrum
Process using COSMIC FSM Method.
ICSOFT 2018: 516-527

Sellami, A., Haoues, M., Borchani, N., & Bouassida,
N.Towards an Assessment Tool for Controlling
Functional Changes in Scrum Process. IWSM-
Mensura 2018: 34-47

Shalinka Jayatilleke, Richard Lai, A systematic review of
requirements change management , Information and
Software Technology 93 (2018) 163–185

Stålhane,T.,Hanssen,G.K.,Myklebust,T.,andHaugset,B.
(2014). Agile change impact analysis of safety cri- tical
software. In Bondavalli, A., Ceccarelli, A., and
Ortmeier,F.,editors,ComputerSafety,Reliability,and
Security, pages444–454.Verwijs, C. (2016).

ICSOFT 2024 - 19th International Conference on Software Technologies

168

