
CyberGuardian: An Interactive Assistant for Cybersecurity Specialists
Using Large Language Models

Ciprian Paduraru1, Catalina Camelia Patilea1 and Alin Stefanescu1,2

1Department of Computer Science, University of Bucharest, Romania
2Institute for Logic and Data Science, Romania

Keywords: Large Language Models, Information Security, Cybersecurity Assistant, Security Officers, Llama,
Fine-Tuning.

Abstract: Cybersecurity plays an important role in protecting people and critical infrastructure. Sectors such as energy,
defense and healthcare are increasingly at risk from cyber threats. To address these challenges, dedicated
Security Operations Centers (SOCs) continuously monitor threats and respond to critical issues. Our research
focuses on the use of Large Language Models (LLMs) to optimize the tasks of SOCs and to support security
professionals. In this work, we propose a framework, which we call CyberGuardian, whose main goal is to
provide a chatbot application along with a set of tools to support SOC analysts in real-time cybersecurity tasks.
We use state-of-the-art LLM techniques and start from a Llama 2 model, then fine-tune the base model using a
new dataset containing mainly cybersecurity topics. The CyberGuardian framework has a plugin architecture
that integrates processes such as Retrieval Augmented Generation (RAG), safeguard methods for interaction
between human user and chatbot, integration with tools to manage tasks such as database interactions, code
generation and execution, and plotting graphs just by specifying the task in a natural language. The work, along
with the dataset we collected and reusable code to update or customize, is made available to the cybersecurity
community as open source.

1 INTRODUCTION

In the context of our increasingly digitalized global
environment, the importance of cybersecurity to pro-
tect individuals, organizations and critical infrastruc-
ture cannot be overstated. A variety of sectors and
applications are increasingly becoming the focus of
cybercriminal activity.

In response to these real-time threats, companies
and institutions have set up specialized teams with
different expertise. A typical team that works around
the clock is called a Security Operations Center
(SOC) (Mughal, 2022), whose members are known
as SOC analysts. Their responsibilities include moni-
toring and detecting threats in real time, investigating
incidents and escalating them to various stakeholders,
and managing security tools and information. They
often work with network engineers and architects to
improve infrastructure protection against potential fu-
ture attacks. Large language models (LLMs) are in-
creasingly being used in numerous applications due
to their high natural language processing (NLP) capa-
bilities, allowing them to perform a variety of tasks.

Contributions. The goal of our research is to utilize
the latest methods and tools in the field of large lan-
guage models (LLMs) to support these security ex-
perts and roles through a real-time chatbot applica-
tion. The goal is to streamline their work so that
they can focus on critical aspects rather than redun-
dant tasks that are often challenging. From this per-
spective, the methods developed allow users to inter-
act with the systems, protocols, databases, code gen-
eration and execution, and internal tools using nat-
ural language requests, with the chatbot serving as
the middle component. The framework developed is
named CyberGuardian.

The contributions of this work can be summarized
as follows:

• To the best of our knowledge, this is the first open-
source work that investigates the application of
chatbots for SOC specialists to support cybersecu-
rity in real time using large language models.

• The first public, experimentally released corpora
(datasets) with up-to-date information on aspects
of cybersecurity, including PDF documents, video
transcripts and markdown content. The collection
contains more than 3000 PDF papers and 8000

442
Paduraru, C., Patilea, C. and Stefanescu, A.
CyberGuardian: An Interactive Assistant for Cybersecurity Specialists Using Large Language Models.
DOI: 10.5220/0012811700003753
Paper published under CC license (CC BY-NC-ND 4.0)
In Proceedings of the 19th International Conference on Software Technologies (ICSOFT 2024), pages 442-449
ISBN: 978-989-758-706-1; ISSN: 2184-2833
Proceedings Copyright © 2024 by SCITEPRESS – Science and Technology Publications, Lda.

video transcripts (mainly selected conference pre-
sentations, industry practice tutorials and tools). T

• Reusable open-source code and dataset collec-
tion scripts respository \url{https://github.com/
unibuc-cs/CyberGuardian}) that composes the
aforementioned components through an extensible,
user-customizable plugin architecture.

The paper is organized as follows. The next sec-
tion describes works that we have either used as a
source of inspiration or reused by adapting them to
our context and use cases. Section 3 explains the data
collection processes implemented in the project and
the fine-tuning of the LLMs based on them. Sec-
tion 4 describes the proposed plugin architecture, the
currently implemented components and the commu-
nication flow. The evaluation and discussions can be
found in Section 5. Finally, the last section contains
conclusions and a plan for future work.

2 RELATED WORK

Chatbots Applications for Cybersecurity. In the pa-
per by (Al-Hawawreh et al., 2023), the authors review
the potential of ChatGPT, a chatbot-driven AI tech-
nology, in the field of cybersecurity and demonstrate
its use in penetration testing and threat defense. In
addition, the research paper includes a case study of
ChatGPT in creating and executing false data injec-
tion attacks on vital infrastructure, including indus-
trial control systems. Furthermore, the article dis-
cusses the existing challenges and outlines possible
future directions for the integration of ChatGPT into
the cybersecurity domain. In (Franco et al., 2020) and
(Shaqiri, 2021), the authors apply classical NLP tech-
niques to support high-level cybersecurity planning
and management by identifying logs of past cyberat-
tacks, suggesting solutions, and providing insights for
decision making. The interaction is done by prompt-
ing users to extract or provide different types of solu-
tions.

In the same area, research in (Arora et al., 2023)
is developing a conversational chatbot that uses AI
and sentiment analysis of Twitter data to predict cy-
ber threats and provide tools and strategies for assess-
ing cyber threats on social media. The potential of
chatbots with deep learning as a proactive solution
for detecting persistent threats and phishing attacks
in real time is studied in (Tejonath Reddy, 2024). The
conclusion of their research is that unlike traditional
methods that struggle to keep up with cybercriminals’
evolving strategies, deep learning algorithms contin-
uously adapt to new paradigms and recognize subtle
indicators of phishing attacks. By integrating these

mechanisms into chatbots, stronger defenses can be
created against the ever-changing phishing attempts
and counterfeit prevention.

The study in (Abdelhamid et al., 2023) proposes
the use of chatbots integrated with social networks as
social collaborative agents for continuous cyberse-
curity awareness, education and training, providing
instant advice and alerts to users in various threat-
ening situations and allowing admin users to add
training materials remotely. A similar educational
goal is explored in (Fung et al., 2022), which presents
a user-friendly cybersecurity chatbot built on Google
Dialogflow that educates users about cyber risks,
provides a knowledge base, self-quizzes, and advice
for dealing with cybersecurity issues, effectively
raising cybersecurity awareness,

Data Security Through Chatbot Interaction. On
the other hand, an interesting topic is the security of
data when interacting with chatbots. Since our pro-
posed work and demo use case deal with sensitive
user data but also expose important system features
to users, we follow the state of the art in this area.
Chatbots are gaining popularity in various fields, but
their widespread use brings inherent security risks
and vulnerabilities. In their systematic literature re-
view, (Yang et al., 2023) the authors focus on iden-
tifying potential threats, proposing effective solutions
and outlining promising avenues for future investiga-
tion.

3 DATASETS COLLECTION,
FINE-TUNING, USE- CASES

This section presents the sources used for collecting
cybersecurity-related information for the creation of
a specific dataset and the fine-tuning methods that use
them to move the Llama 2-Chat-7B (Touvron et al.,
2023) foundation model towards better aligned cyber-
security knowledge and related tasks. Finally, further
use cases that the fine-tuning method could address
are discussed.

3.1 Data Collection

The corpora for the fine-tuning process are collected
using human-in-the-loop as the first layer. The au-
thors and volunteer practitioners contributed to a col-
lection of links to arXiv papers, Youtube videos (with
transcripts or at least a high-quality English transla-
tion) and markdown content from Github repositories
or websites. Above all, the selected content should
be newer than 2021 so that the fine-tuned model on

CyberGuardian: An Interactive Assistant for Cybersecurity Specialists Using Large Language Models

443

Llama 2 can also incorporate newer knowledge with
that it was trained. However, the dataset also includes
content published before this date, so that we could
specialize the model on the most important cyberse-
curity techniques and concepts. In our implementa-
tion, we store the metadata about the content of D in
database chunks using MongoDB1. With this strategy,
we avoid duplication of content after automatic or hu-
man extraction of content and enable continuously
updating of the dataset. By chunking the content, old
information can also be forgotten or discarded. The
content of the dataset is also indexed on disk using
the Faiss library (Douze et al., 2024), (Johnson et al.,
2019), and loaded into RAM for efficiency reasons, as
far as the local machine can handle it. The process is
shown in Figure 1. While the model is fine-tuned on
the dataset D , this is also indexed for RAG purposes,
as in some cases the fine-tuning process may not adapt
well enough to specific content, and this would be the
backup.

D ={Subtitles(Videoi), Markdown j, PDFk} (1)

3.2 Fine-Tuning

We evaluate the state-of-the-art open-source models
of Llama 2 (Touvron et al., 2023) for the selection
of the LLM foundation. After comparing different
classes of models and trade-offs, we decided to fine-
tune Llama 2-Chat-7B, which specializes in chat con-
versations and has 7 billion parameters.

The complete flow from the foundation model to
the fine-tuned version used by our methods, Cyber-
GuardianLLM, is shown in Figure 1. We use the em-
bedding model of the sentence transformer (Reimers
and Gurevych, 2019), more precisely a variant of it
that is available as open source, all-mpnet-base-v22.
Its task is to convert the text format into vectors of
float values, as further required by the Faiss indexing
and query system (further details in Section 4.2).

For efficiency, D is stored in an embedded for-
mat, which we refer to as Demb. Batches of samples
from it are run through the model and compared to the
corresponding (ground truth) for similarity using the
cross entropy (Hui and Belkin, 2020) as a loss func-
tion. To evaluate the performance of the model at pre-
defined steps, the perplexity metric (Meister and Cot-
terell, 2021) is used.

1MongoDB
2https://huggingface.co/sentence-transformers/all-

mpnet-base-v2

1 Samplebatcho f examplesB ∼ Demb
2 # Pass through the model the inputs

from B to get the predicted
answers

3 PredAnswers =CyberGuardianLLM (B [”Input”])
4 # Compute loss for the optimization

process by comparing how close
the output of the model is
compared to the example test.

5 Loss =CrossEntropy(PredAnswers,B [”Answer”])
6 U pdate weights o f CyberGuardianLLM

Listing 1: Fine-tuning process.

4 ARCHITECTURE AND
IMPLEMENTATION

The implementation of the architecture and compo-
nents uses a plugin pattern so that higher capac-
ity models or other methods of fine-tuning, different
functionalities and components can be switched on
and off as required by use cases. In software engi-
neering, this is also known as separation of concerns,
which we try to utilize as a concept when developing
the framework.

The interaction of the system and its components
during a user conversation is shown in Figure 2. To
connect the interfaces of the components, track the
conversation and control the message flow, we have
used the LangChain3 APIs.

4.1 Chat Conversation Management

Given a conversation history and a new request from
the user, the first step is to ask the LLM model to cre-
ate a standalone question that contains both the his-
tory and the new user’s request. In the figure, a con-
crete example is given by the element SQ. In this step,
the ability of LLMs to summarize long texts is used.
If the input text is longer than the 4096 token limit, we
only keep the last part of the conversation within this
limit. A simple strategy studied in the literature, that
was also evaluated in our case, was to create hierarchi-
cal summaries from top to bottom, all within the same
boundary (Li et al., 2023). However, in a conversa-
tional environment, it might be intuitively beneficial
to store a limited queue of recent conversational mes-
sages, as our empirical tests have shown. The request
to LLM is made via a prompt template as specified in
Listing 2.

3https://www.langchain.com/

ICSOFT 2024 - 19th International Conference on Software Technologies

444

CODE Llama - INSTRUCT 7B

Open
source
projects

1. Extract human
written datasets

2. Instruction
 fine-tuning Unreal / C++

Unity / C# 3. Generate
synthetic tests

4. Instruction
 fine-tuning

Figure 1: The pipeline for fine-tuning the Llama 2-Chat-7B base model to a dataset containing the latest cybersecurity content.
The dataset, D , is first exported as a series of JSON files. In addition, its metadata is stored on a MongoDB server. Finally, D
is chunked and permanently stored in a vector database with FAISS (Douze et al., 2024). The red colored blocks represent the
output of this process, while the white blocks are intermediate steps or data. The blue blocks are imported/taken over models
from external sources. Further details can be found in Section 3.

1 [INST]Rephrase the following conversation and
subsequent question so that it is a stand -alone
question , in its original language.

2 Conversation:
3 {conversation_var}
4 Follow -up question:
5 {question_var}
6 Stand -alone question:
7 [/INST]

Listing 2: The prompt template used to create an
independent question from the course of the conversation
and a new question. Inside the curly brackets are the
variables that are used to fill the prompt with concrete
examples.

4.2 Retrieval Augmented Generation
(RAG)

In addition to indexing the knowledge in the base
dataset, Figure 1, which leads to the creation of a vec-
tor database VecStoreData, our method also enables
a generic representation for the private set of inter-
nal knowledge in a separate vector database called
VectorStoreint . Indexing of internal information and
internal data is done by integrating state-of-the-art in-
dexing and retrieval methods for vector stores (Douze
et al., 2024), (Johnson et al., 2019). Various types of
common sources can be indexed immediately, but the
list can be extended on user side:

• Internal whitepapers, documentation on systems,
communication, infrastructure.

• Source code, local or private repositories, config-
uration files.

• Data sources such as SQL databases, JSON files,
pandas, csv files, etc.
The main reason for splitting the vector database

into two parts is that most questions and support re-
quests from users initially relate to internal knowl-
edge. For a user query P, it therefore makes sense
to first search for an answer in VectorStoreint . Only if
the similarity score determined by FAISS is not above
a certain threshold TRAG (empirically set to 0.85 in our
evaluation), the search follows in VectorStoreData. In
terms of performance, the internal knowledge store is
also significantly smaller and faster to access than the
other. The RAG process is shown in Figure 3.

4.3 User Preference in the Chatbot
Interaction

It is important to also adapt the chatbot’s responses
to the user’s preferences. In our demo, we experi-
mentally added some options to the user registration
forms, such as
• Should the responses be concise or contain long ex-

planations?
• Does the user prefer answers from the chatbots with

emoticons?
• Does the user want the assistant to be very polite or

formal?
These options are used through prompt engineering
and by using systems prompts. Such a prompt, as
shown in Listing 3, appears before any other prompt
message from the user’s side, including, for example,
the standalone question generated (Listing 2). This
strategy prompts the LLM to follow some suggested
rules, even if it is not always forced to do so. The
available set of options for each template variable is
show in Eq. 2.
1 <<<SYS>>>
2 In your reponses please follow the following

instructions:
3 {responses_type_var}
4 {use_emoticons_var}
5 {politeness_var}
6 <<</SYS>>>

Listing 3: The prompt template is used to personalize the
interaction between each user and the chatbot according to
their preferences. The variables in curly brackets are filled
with the options of the respective user.

responses type var ∈ {”Be concise in your response”,
”Provide long contextual based responses”}
useemoticons var ∈ {”Use emoticons”,
”Do not use emoticons”}
politeness var ∈ {”Be polite”,”Be formal”} (2)

4.4 Safeguarding Interactions

Our method first experimented with the integration of
Llama Guard (Inan et al., 2023), an LLM safeguard

CyberGuardian: An Interactive Assistant for Cybersecurity Specialists Using Large Language Models

445

Chat history

New user question E.g. "Between these
tools which ones
work on Windows ?"

+
1. Get standalone

question (SQ)
aggregating history
and new question

SQ result: "Give me a tool on
Windows to simulate a DDoS
attack on my local infrastructure."

Discussion was about
simulating a DDoS
attack .

CyberGuardianLLM

2. Given SQ, get
relevant contextual

data stored

RAG Safeguarding

3. Get final answer
SQ + retrieved context
(if any good enough)

Done
Safe

Unsafe ? Ask for rewrite
given unsafe reason

Evaluate

Embedding
(encode / decode operations)

Optional:
Tools support

Local or
distributed

platform

Figure 2: The conversational chat system implemented in the proposed method and its associated components. The flow is
represented by the blue arrows. The three main steps (the green boxes) are used to aggregate the conversation flow, retrieve
internally relevant stored data, and then obtain the final response after the safeguard component approves the results. The
optional step is used by the LLM to interact with the registered tools on the deployed platform.

Internal /custom data
Embeddings

PDF, Markdown,
Youtube docs

Source code

Chunk 1

Chunk 2

Chunk N

1. Text split
into chunks

2. Create
embeedings for
each chunk

Formatted data, sql,
pandas, csv, etc

Figure 3: The pipeline for creating the RAG support for the
internal/customized data depends on the user settings and
knowledge of the platform.

User or
Chatbot system

Similarity <

yes

Select context
from local
storage

Output
content
selected

Query Query

no

Retrieval Augmented Generation (RAG)

Figure 4: The process for extracting relevant context from
the indexed vector databases for RAG. First, the system tries
to find information in the internal knowledge base that most
closely matches the user’s needs and should be quick to
search. If nothing is found, the system tries to find rele-
vant context in the data set used for fine-tuning as a backup.

model that fulfills the aforementioned use case. It
provides also a taxonomy of security risks. When
prompted, the model first outputs the status, i.e. safe
or not, and in the case of unsafe it provides details of
the element in the taxonomy of unsafe reasons.

Considering the computational requirements of
loading another 7B model, our method has also
explored and integrated packages from the NLTK
(Bauer et al., 2020) based on classical NLP tech-
niques that partially resolve various safety classifica-
tions in the prompts. There is a trade-off between the
two solutions. The first solution has the advantage of
providing more accurate results without the need to
create a local taxonomy of things to test and output
reasons. The advantage of importing or customizing
the NLTK packages is on the request side, as they are
fast and require little memory.

4.5 Tools and Interaction with the
Backend Systems

To improve the productivity and response time of
SOC specialists, our work integrates state-of-the-art
methods that address the interaction between the user,
the LLM and the system processes. The concepts are
known in the literature under the terms agents, and
tools (Yao et al., 2023), (Schick et al., 2023), (Patil
et al., 2023).

In our framework, the interaction between LLM
and tools is shown in Figure 5. At each step, the LLM
considers the problem it needs to further solve, the
set of available tools, and decides whether to invoke
one of the tools that could further interact with the
organization’s infrastructure and services, or just re-
turn the currently available response. The benefit of
this method is comparable to the concept of task de-
composition in computer science, where a problem is
broken down into smaller tasks and solved piece by
piece. For LLM, and especially for small models, this
is important because it can leverage external capabili-
ties and break the problem into smaller pieces that are
easier to manage.

We use the ReACT agents (Yao et al., 2023)
and their Langchain API. The main idea behind the
method is to do prompt engineering and inform the
LLM about a short description of each of the available
tool. A prompt template similar to the one in List-
ing 2 is used, where instead of the variable conversa-
tion var, the framework fills in the description of each
tool and how it should be called. Using a small set
of 50 examples of tool calls and parameter extraction
examples, we fine-tuning CyberGuardianLLM over a
few epochs.

Most of the core tools in our smart home demo
application (Section 5) are reused from Langchain
and enable interaction with the organization’s systems

ICSOFT 2024 - 19th International Conference on Software Technologies

446

through natural language queries, such as:

• Interaction with SQL or Pandas databases, e.g. fil-
ter, select or aggregate data from multiple tables.

• Office tools, e.g. sending emails or adding entries
to the calendar.

• Python code generation. Code Llama 7B (Rozière
et al., 2024) is used in the demo app.

• Python code execution with PythoREPL4. This
tool can shorten the time it takes to call the code
and get results and lets the LLM do the unneces-
sary work in the background.

The Identify layer block in Figure 5 is used as
an intermediate step to help the LLM select one of
the tools by identifying keywords in the prompt and
asking the model to make a correlation between the
prompts and the tools’ tags. Our evaluation has
shown that tagging prompts and tools is more help-
ful in recognizing the correct tool than the standard
Langchain’s method of prompt engineering (default
in the ReACT implementation). Note that the tool
suite can be customized by the user. Langchain, for
example, already contains a large list of tools that can
be extended by those implemented by the user.

CyberGuardianLLM

SQL

Plots Custom
tools

Office
Pandas

Set of
tools

Systems to interact with

Act

Result

Reason

Prompt task

Call tools
/ retrieve

results

Final
response

Identify
layer

PythonREPL

Code
Llama

Figure 5: Starting from a specific prompt or task, the figure
shows the flow of interaction with tools, services, and sys-
tems provided by the organization.

5 EVALUATION

5.1 Quantitative and Qualitative
Evaluation

There are two research questions that we address in
our study:

• RQ1. How is the fine-tuned model able to under-
stand the cybersecurity domain?

• RQ2. How well is the overall CyberGuardian
system able to meet user needs?

RQ1 Analysis. To understand how helpful the fine-
tuned CyberGuardianLLM is from a quantitative per-
spective, we evaluate the usefulness of the responses

4https://realpython.com/python-repl/

using a common method (Zheng et al., 2023) of auto-
mated evaluation using a much larger model, specifi-
cally GPT-4 , as a judge.

We assume 5 topics in cybersecurity needed by
SOC specialists: a) protection of systems from secu-
rity risks and malware, b) cryptography, c) configu-
ration of security protocols such as firewalls, intru-
sion detection systems (IDS), d) network security in-
frastructure (firewalls, VPNs, web proxy, IDS/IPS),
e) investigation of data breaches and data leaks. We
denote these clusters with Topics = (t pi)i=1,...5. The
judge, GPT-4, is asked via a prompt to create 20 ques-
tions for each of the 5 topics, resulting in a total of 100
questions, denoted by the quantity Que. This set is ob-
tained by filling in the topic variable in the template
shown in Listing 4.
1 [INST] Consider yourself an interviewer for a SOC

specialist position.
2 Ask 20 relevant. different questions on the topic: "{

topic_var}"[/INST]

Listing 4: The template prompt used to ask questions to the
judge LLM.

To compare the answers of two LLMs, LLM1 resp
and LLM2 resp, we ask the judge again via a prompt
which one he prefers, Listing 5. We fill the template
variables for each question Q ∈ Que.
1 [INST] Given the question: "{Q_var}", tell me which

of the following two answers you prefer. Write
only Response1 or Response2.

2 ### Response 1: {LLM1_resp}.
3 ### Response 2: {LLM2 resp}. [/INST]

Listing 5: The template for classifying the answers with
judge LLM.

We measure the CyberGuardianLLM responses
for each Q ∈ Que against the 3 Llama 2 models:
Llama 2-Chat-7B, 13B, and 70B. Table 1 shows the
average preference in percent between these models.
The results are similar even when broken down by
topic, which is kind of expected since the data collec-
tion was done for all of these categories.

The BLEU metric, which is also used in the evalu-
ation of other LLMs (Touvron et al., 2023), compares
the judge’s reference response (GPT-4) with the one
generated by each LLM. The BLEU scores for our
test under the above conditions are shown in Figure 6.
The scores range from 0 to 100, with a higher score
indicating a stronger match between the generated re-
sponse and the reference. A score of 100 represents
a perfect match, while a score of 0 means that there
is no overlap between the generated response and the
reference.
RQ2 Analysis. For this analysis, we reused the work
of (Cristea et al., 2022), where different smart home
applications connect to a central hub server from dif-
ferent locations either directly or via other servers. In

CyberGuardian: An Interactive Assistant for Cybersecurity Specialists Using Large Language Models

447

Table 1: Head-to-head preference of responses using the
GPT-4 as a judge. The second column shows the percent-
age of cases in which each of the compared models was
preferred to the CyberGuardianLLM.

Model
Preferred

over
CyberGuardianLLM

Llama-Chat-7B 26%
Llama-Chat-13B 39%
Llama-70B 58%

Figure 6: The BLEU metric compared between the 4 mod-
els under evaluation.

addition, a simulator for different types of attacks, in-
cluding DDoS (de Neira et al., 2023), has been imple-
mented. The snapshots of the attacks provided var-
ious data tables with statistics on the utilization of
resources (e.g. servers, routers, local hub systems),
connection logs of users including their location, time
and resources consumed in the network. The deploy-
ment interface was handled via RestAPI and the client
was implemented with Streamlit 5 libraries and tools
(including visualizations). All these simulations and
screenshots can be found in the repository.

The test was attended by 23 practitioners with dif-
ferent levels of cybersecurity knowledge, but most of
them are still at the very beginning of their careers.
During our demo use case, the system triggered sig-
nals that could indicate a DDoS attack, e.g. unusu-
ally many timeouts for various operations in the IoT
hub, response code errors in class 500, etc. The hu-
man’s task was to first recognize that there could be
a potential DDoS in the background and solve it with
the support of CyberGuardian. The resolution path
then involves: a) creating 2D/3D diagrams of the re-
sources in use at different sites (using the plotting
tool), b) filtering IPs that appear to be flooding the
servers through database queries, and c) asking the
chatbot to write a piece of Python code that adds the

5https://streamlit.io/

identified attacking IPs to a blacklist firewall rule us-
ing the one custom tool.

The task was solved correctly by 17 people within
a single instance of the test. The rest had to restart the
test and try once or twice. We collect their feedback
after each question-response pair and the final survey.
For each feedback, they could write it in natural lan-
guage and also give a score between 1-5. All feedback
received were collected via the Trubrics6 platform.
The average score of the responses was 4.2, while
the average reported time to solve the task was ∼ 37
minutes, with a minimum of 14 and 49 maximum
minutes respectively. The natural language feedback
could later be correlated with the ratings and text in
the user chatbot interaction to learn a reward func-
tion and perform reinforcement learning from human
feedback (RLHF), as the Llama models do, but this
requires certain resources, and for now this is left as
future work given the scope. Considering the feed-
back from the users, their abilities and the potentially
difficult sequential step problem they had to solve, the
results are promising in our view.

5.2 Discussion

Observations from the RQ2 Sessions. The first im-
portant observation we made through the human eval-
uation, which we iterated a few times in different
scales and versions of CyberGuardian, is that the task
decomposition with the support of LLM reasoning
traces and tools was significant. The impact can be
even greater for large organizations and a significant
number of tools, which is also known in the industry
and frameworks as multi-agent workflows7. Another
important observation is that the models with small
classes may have problems understanding long con-
texts, with unexpected results such as repetition of the
context or inability to understand and respond appro-
priately to long contexts. Breaking it down into small
steps and prompts is recommended.

6 CONCLUSIONS AND FUTURE
WORK

This paper explores the intersection of cybersecurity
and Large Language Models (LLMs) in the context
of Security Operations Centers (SOCs). The pro-
posed framework, CyberGuardian, aims to improve
the tasks of SOCs through the use of LLM tech-

6https://trubrics.com/
7https://blog.langchain.dev/

langgraph-multi-agent-workflows/

ICSOFT 2024 - 19th International Conference on Software Technologies

448

niques. Its plugin includes features such as Retrieval
Augmented Generation (RAG), methods for securing
human-chatbot interaction and natural language in-
teraction for managing cybersecurity tasks related to
databases, firewalls, plotting graphs, code generation
and execution.

ACKNOWLEDGEMENTS

This research was supported by European Union’s
Horizon Europe research and innovation programme
under grant agreement no. 101070455, project DYN-
ABIC.

REFERENCES

Abdelhamid, S. et al. (2023). Cybersecurity awareness,
education, and workplace training using socially en-
abled intelligent chatbots. In Creative Approaches
to Technology-Enhanced Learning for the Workplace
and Higher Education, pages 3–16, Cham. Springer
Nature Switzerland.

Al-Hawawreh, M., Aljuhani, A., and Jararweh, Y. (2023).
Chatgpt for cybersecurity: practical applications,
challenges, and future directions. Cluster Computing,
26(8):3421–3436.

Arora, A., Arora, A., and McIntyre, J. (2023). Developing
chatbots for cyber security: Assessing threats through
sentiment analysis on social media. Sustainability,
15(17).

Bauer, T., Devrim, E., Glazunov, M., Jaramillo, W. L., Mo-
han, B., and Spanakis, G. (2020). # metoomaastricht:
Building a chatbot to assist survivors of sexual harass-
ment. In International Workshops of ECML PKDD
2019, pages 503–521. Springer.

Cristea, R., Feraru, M., and Paduraru, C. (2022). Building
blocks for iot testing - a benchmark of iot apps and
a functional testing framework. In SERP4IoT@ICSE,
pages 25–32. ACM.

de Neira, A. B., Kantarci, B., and Nogueira, M. (2023).
Distributed denial of service attack prediction: Chal-
lenges, open issues and opportunities. Computer Net-
works, 222:109553.

Douze, M. et al. (2024). The faiss li-
brary. arXiv preprint arXiv:2401.08281,
https://github.com/facebookresearch/faiss.

Franco, M. F. et al. (2020). Secbot: a business-driven con-
versational agent for cybersecurity planning and man-
agement. In 2020 16th International Conference on
Network and Service Management (CNSM), pages 1–
7.

Fung, Y.-C. et al. (2022). A chatbot for promoting cyber-
security awareness. In Cyber Security, Privacy and
Networking, pages 379–387, Singapore. Springer Na-
ture Singapore.

Hui, L. and Belkin, M. (2020). Evaluation of neural archi-
tectures trained with square loss vs cross-entropy in
classification tasks. arXiv preprint arXiv:2006.07322.

Inan, H., Upasani, et al. (2023). Llama guard: Llm-
based input-output safeguard for human-ai conversa-
tions. arXiv preprint arXiv:2312.06674.

Johnson, J., Douze, M., and Jégou, H. (2019). Billion-scale
similarity search with GPUs. IEEE Transactions on
Big Data, 7(3):535–547.

Li, M., Hovy, E., and Lau, J. H. (2023). Summarizing multi-
ple documents with conversational structure for meta-
review generation. In The 2023 Conference on Empir-
ical Methods in Natural Language Processing.

Meister, C. and Cotterell, R. (2021). Language model
evaluation beyond perplexity. In ACL-IJCNLP, pages
5328–5339.

Mughal, A. A. (2022). Building and securing the modern
security operations center (soc). International Jour-
nal of Business Intelligence and Big Data Analytics,
5(1):1–15.

Patil, S. G. et al. (2023). Gorilla: Large language model
connected with massive apis. CoRR, abs/2305.15334.

Reimers, N. and Gurevych, I. (2019). Sentence-bert: Sen-
tence embeddings using siamese bert-networks. arXiv
preprint arXiv:1908.10084.

Rozière, B. et al. (2024). Code llama: Open foundation
models for code.

Schick, T. et al. (2023). Toolformer: Language models can
teach themselves to use tools. In Oh, A. et al., editors,
Advances in Neural Information Processing Systems,
volume 36, pages 68539–68551.

Shaqiri, B. (2021). Development and refinement of a chat-
bot for cybersecurity support. Master’s thesis, Univer-
sity of Zurich, Zurich, Switzerland.

Tejonath Reddy, K. (2024). How deep learning chatbots
empower cybersecurity against phishing attacks. In-
ternational Center for AI and Cyber Security Re-
search and Innovations (CCRI).

Touvron, H. et al. (2023). Llama 2: Open foundation and
fine-tuned chat models.

Yang, J. et al. (2023). A systematic literature review of
information security in chatbots. Applied Sciences,
13(11).

Yao, S. et al. (2023). React: Synergizing reasoning and act-
ing in language models. In The Eleventh International
Conference on Learning Representations, ICLR 2023,
Kigali, Rwanda, May 1-5, 2023.

Zheng, L. et al. (2023). Judging llm-as-a-judge with mt-
bench and chatbot arena. In Advances in Neural In-
formation Processing Systems (NeurIPS, volume 36,
pages 46595–46623.

CyberGuardian: An Interactive Assistant for Cybersecurity Specialists Using Large Language Models

449

