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Abstract: We present a new web-based platform crafted to represent and learn Qualitative Constraint Networks (QCNs)
with preferences, focusing specifically on temporal data. The system uses a learning algorithm that extracts
qualitative temporal constraints through user-guided membership queries. The learning process is enhanced
with transitive closure (Path Consistency) to infer new relations and reduce the number of queries. Path
consistency relies on the Allen’s interval algebra composition table. During the learning phase, the user can
add their preferences. The latter will be represented by a conditional preference network (CP-net).

1 INTRODUCTION

Scheduling and planning tasks, under temporal and
spatial constraints, are crucial in many real-world
problems, including logistics, timetabling (Hmer and
Mouhoub, 2016), and urban planning (Al-Ageili and
Mouhoub, 2022; Al-Ageili and Mouhoub, 2015). In
this context, the aim is to order a set of activities
that will take place to achieve a set of defined goals.
A Qualitative Constraint Network (QCN) is a known
model used to represent and reason about qualitative
spatial or temporal information. Learning QCNs and
specifically with the Allen interval algebra (Allen,
1983) to model temporal events helps create sched-
ules when the time information is incomplete. How-
ever, modeling problems under time constraints can
be a tedious task requiring strong expertise from the
user. This has motivated us to develop a new sys-
tem that automates the modeling process by learning
temporal constraints using membership queries as re-
ported in (Mouhoub et al., 2018)(Belaid et al., 2024).
In our web-based system, the user first lists all the
temporal events related to the problem. Then, through
a temporal constraint acquisition process, temporal
relations between the events will be elicited from the
user through membership queries. The efficiency of
the learning process is enhanced through transitive
closure (Path consistency). New relations will then
be inferred which will reduce the number of queries
that the user has to respond to. Moreover, user con-
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ditional preferences can also be elicited and mod-
eled using the known Conditional Preference network
(CP-net) model (Boutilier et al., 2004). Once tempo-
ral constraints and preferences are modeled through
the QCN and the CP-net, the user can interact with
the system to get preferred scenarios that meet con-
straints and optimizes preferences.

The remainder of the paper is structured as fol-
lows. The next section lists background information.
In Section 3, we present our proposed system with its
components. Then, in Section 4, we report on a set of
experiments conducted to evaluate the performance of
our system. Lastly, Section 5 lists concluding remarks
and ideas for future directions.

2 BACKGROUND

2.1 Qualitative Constraint Networks
(QCNs)

2.1.1 Definition

A QCN is a pair (V,C) in which V is a finite set of
variables representing temporal or spatial entities and
C is a finite set of constraints on these variables. Each
constraint Ci is a disjunction of binary relations be-
tween the variables. Each of these relations is defined
on a language set B = {b1,b2, ...,bp} where p > 0
(van Beek, 1992; Mouhoub et al., 2018; Condotta
et al., 2010; Mouhoub et al., 2021).
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Table 1: Allen Algebra Primitives.

No. Relation Abbreviation Image

1 Precedes p

2 Meets m

3 Overlaps o

4 Finished by F

5 Contains D

6 Starts s

7 Equals e

8 Started by S

9 During d

10 Finishes f

11 Overlapped by O

12 Met by M

13 Preceded by P

2.1.2 Allen Interval Algebra

One type of QCN is the Allen Algebra constraint net-
work, where the events are temporal. The Allen alge-
bra contains thirteen relations or primitives, as shown
in Table 1 and as defined in (Allen, 1983). When hav-
ing a qualitative constraint network with N events it
implies having N ∗ (N−1)/2 pair of events. A QCN
can initially be unconstrained by holding all the thir-
teen possible relations between each pair of events.

Table 2 presents the composition table (transitive
table). f ull implies the 13 relations and concur corre-
sponds to the following relations: oFDseSd f O. The
Path consistency algorithm uses the composition ta-
ble to infer relations between the pair of events in the
network. For example, if a QCN has three events a,
b, and c, and it is known that a Precedes b and b Pre-
cedes c, we can infer that a Precedes c.

2.2 Constraint Propagation

When acquiring knowledge from the user to learn a
given QCN, Path Consistency (as shown in Algorithm
1 (Van Beek and Manchak, 1996)) is applied using
the composition table to infer new relations. A pair

Table 2: Composition Table for the Allen Interval Algebra
(Allen, 1983; Alspaugh, 2019).

p m o F D s e S d f O M P
p (p) (p) (p) (p) (p) (p) (p) (p) (pmosd) (pmosd) (pmosd) (pmosd) full
m (p) (p) (p) (p) (p) (m) (m) (m) (osd) (osd) (osd) (Fef) (DSOMP)
o (p) (p) (pmo) (pmo) (pmoFD) (o) (o) (oFD) (osd) (osd) concur (DSO) (DSOMP)
F (p) (m) (o) (F) (D) (o) (F) (D) (osd) (Fef) (DSO) (DSO) (DSOMP)
D (pmoFD) (oFD) (oFD) (D) (D) (oFD) (D) (D) concur (DSO) (DSO) (DSO) (DSOMP)
s (p) (p) (pmo) (pmo) (pmoFD) (s) (s) (seS) (d) (d) (dfO) (M) (P)
e (p) (m) (o) (F) (D) (s) (e) (S) (d) (f) (O) (M) (P)
S (pmoFD) (oFD) (oFD) (D) (D) (seS) (S) (S) (dfO) (O) (O) (M) (P)
d (p) (p) (pmosd) (pmosd) full (d) (d) (dfOMP) (d) (d) (dfOMP) (P) (P)
f (p) (m) (osd) (Fef) (DSOMP) (d) (f) (OMP) (d) (f) (OMP) (P) (P)
O (pmoFD) (oFD) concur (DSO) (DSOMP) (dfO) (O) (OMP) (dfO) (O) (OMP) (P) (P)
M (pmoFD) (seS) (dfO) (M) (P) (dfO) (M) (P) (dfO) (M) (P) (P) (P)
P full (dfOMP) (dfOMP) (P) (P) (dfOMP) (P) (P) (dfOMP) (P) (P) (P) (P)

of variables is path-consistent with a third variable if
each consistent valuation of the pair can be extended
to the other variable in such a way that all binary con-
straints are satisfied. Formally, xi and x j are path-
consistent with xk if, for every pair of values (a,b) that
satisfies the binary constraint between xi and x j, there
exists a value c in the domain of xk such that (a,c)
and (b,c) satisfy the constraint between xi and xk and
between x j and xk, respectively. All values (a,b and
c) for Allen algebra constraint networks are a set of
the possible 13 algebra primitives. Before acquiring
knowledge, all pairs of events in the network are set
to the 13 relations.

Algorithm 1: Path Consistency Algorithm for IA networks
(Van Beek and Manchak, 1996).

1: procedure PATHCONSISTENCY
2: PC← f alse
3: L←{(i, j)|1≤ i < j ≤ n}
4: while L ̸= φ do
5: choose and delete (i, j) from L
6: for k← 1 to n, k ̸= i and k ̸= j do
7: t←Cik ∩Ci j⊗C jk
8: if t ̸=Cik then
9: Cik← t

10: Cki← Inverse(t)
11: L← L∪{(i,k)}
12: end if
13: t←Ck j ∪Cki⊗Ci j
14: if t ̸=Ck j then
15: C jk← Inverse(t)
16: L← L∪{(k, j)}
17: end if
18: end for
19: end while
20: end procedure

Example

Consider a QCN with events: “a”, “b”, “c” and “d”.
The pairs from the given events are: “a-b”, “a-c”, “a-
d”, “b-c”, “b-d” and “c-d”. Initially, between all pairs
prior to gaining information from the user, all pairs
contain the thirteen Allen primitives. Then we get
from the user that “a” precedes “b” and path consis-
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tency is applied. Since we only have information of
one pair, no other relations are inferred from this ini-
tial information. Then we get from the user that “b”
contains “c”. After applying path consistency with
this newly acquired information, it is inferred that “a”
precedes “c” and therefore “c” is preceded by “a”.
Then we get from the user that “c” is equal to “d”
and after applying path consistency is inferred that
“b” contains “d” and “a” precedes “d”. Figure 1 de-
picts the timeline representation of the example.

Figure 1: Example of a timeline.

2.3 CP-nets

As defined in (Boutilier et al., 2004), a CP-net over
variables V = {X1, ...,Xn} is a directed graph G over
X1, ...,Xn whose nodes are annotated with conditional
preference tables CPT (Xi) for each Xi ∈ V . In our
work, users can set preferences for relations between
events.

3 QCN LEARNING

Algorithm 2 from (Mouhoub et al., 2021) is being
used in the web-based system for learning QCNs. The
user is asked whether a relation between two events is
true or not. If the relation is true, then the relation is
confirmed between the two variables in the QCN. If
the relation is not true, it is removed from the possi-
ble relations between the said events. In either case
Path consistency is applied and the number of queries
that the system needs to ask the user is reduced.

3.1 Disjoint Sets

Disjoint-set or union find is a data structure that stores
a collection of disjoint sets and provides operations
for adding new sets, merging sets and finding a rep-
resentative member of a set meaning that for each set
there will be only one representative member. This
allows to find in an efficient manner if two given el-
ements are in the same set. For the purpose of this
work, the disjoint sets data structure is being used for
making sure that no pair of events are conditioned (in
terms of preferences) by more than one pair of events,

Algorithm 2: Learning QCN(Mouhoub et al., 2021).

1: procedure LEARNINGQCN
2: Input: : a language set B , a composition table

CT
3: Output: a target QCN Gt
4: Gt ← complete graph with universal relations
5: q← QueryGeneration(Gt)
6: while q ̸= nil do
7: r← Relation(q)
8: if Ask(q) = “yes′′ then
9: Con f irmRelation(Gt ,r)

10: else
11: RemoveRelation(Gt ,r)
12: end if
13: status← PC(Gt ,CT )
14: if status = “inconsistent ′′ then
15: return “collapse′′

16: end if
17: q← QueryGeneration(Gt)
18: end while
19: return Gt
20: end procedure

and for making sure that there are no cycles between
preferences (which leads to inconsistency).

Algorithm 3 illustrates this procedure.

Algorithm 3: Disjoint set.

1: for pair i← 1 to n do
2: pairDis jointSet[i]← i
3: end for
4: procedure f ind(pair)
5: if pairDis jointSet[pair] = pair then
6: return pair
7: end if
8: tempPair← f ind(pairDis jointSet[pair])
9: pairDis jointSet[pairDis jointSet[pair]] ←

tempPair
10: return tempPair
11: end procedure
12: procedure merge( f irstPair,secondPair)
13: f irstPairParent← f ind( f irstPair)
14: secondPairParent← f ind(secondPair)
15: pairDis jointSet[secondPairParent] ←

f irstPairParent
16: end procedure

The time complexity of initializing the disjoint set
takes O(N) where N is the number of pairs in the net-
work. The time for each find operation is O(IA(N))
where IA is the inverse Ackermann function. for more
detailed information on time complexity of disjoint
sets see (Tarjan and van Leeuwen, 1984).
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3.2 Preference Handling

The preferences are separated in two sets. The first
set is called “single preferences” (for unconditional
preferences) and the second set called “conditional
preferences”. Before the user inputs any “conditional
preference”, all pairs in the network are located in
the “single preferences” set. When a user adds a
new “conditional preference” The pair that is condi-
tioned is moved from the “single preferences” into the
“conditional preferences” set. By doing so the solver
does not require to perform any topological sorting
given that all the pairs in the “single preferences” set
are the head of the trees in the “conditional prefer-
ences”. Before having “conditional preferences” we
can think that all of the “single preferences” as trees
without any children. As “conditional preferences”
are added, “single preferences” start having children
nodes. In other words, preferences can be thought
as a forest where parent nodes (or roots) of the trees
of the “conditional preferences” are the “single pref-
erences”. The number of trees in the forest is the
amount of pairs left in the “single preferences” set.
The user has also the option to sort “single prefer-
ences” so that the solver uses this information to con-
strain the network based on that order.

The user can sort the order of the 13 Allen prim-
itives for every “single preferences” in the network.
The solver takes this information into account and
tries to choose the first relation from the preference
of the user while the network is consistent. If the net-
work would not be consistent with the first possible
relation, it will try the second one, and so on until it
selects the first relation among the 13 relations in the
order that the user prefers but making sure that the
network is consistent.

When adding conditional preferences in the appli-
cation, we want to allow the user to give a certain or-
der for the Allen primitives for the second pair de-
pending on the Allen relation of the first pair. When
applying conditional preferences it must be ensured
that no pair is conditioned by two pairs. tThe reason
is that we would have to ask the user for 13n combi-
nations where n is the number of pairs that a pair is
conditioned by and thus is not practical. It is required
that the conditional preferences do not make a cycle
and that is why the disjoint set is being used as shown
in algorithm 3. The algorithm not only makes sure
that there are no cycles formed but also makes sure
that no single pair is conditioned by more than one
pair.

Figure 2: System Architecture Diagram.

3.3 QCN Solver with Preferences

Algorithm 5 is being used as the solver with prefer-
ences. The Path consistency algorithm used in it is
the same as the one described in Algorithm 1. Al-
gorithm 5 contains two helper methods “firstMatch”
and “DFS” short for depth first search (DFS). The al-
gorithm iterates first over the “single preferences” and
for each single preference it selects the first match be-
tween the preferred order that the user gave for that
single preference and the available options that are
left after applying Path consistency (note that on the
first iteration path consistency has not been applied)
the list of available options can be limited if the user
answer membership queries about the pair of the sin-
gle preference. For each single preference, the algo-
rithm uses a DFS helper function that will iterate over
the conditional preferences based on the single pref-
erence. For each conditional preference, it will select
the first match between the preferred order that the
user gave for the second pair (conditioned pair) based
on the relation of the first pair (conditioning pair) and
the available relations based on the current state of the
network. The algorithm finishes once it goes trough
all the single preferences which in turn go trough all
the conditional preferences.

4 PROPOSED SYSTEM

As shown in Figure 2, our proposed system is di-
vided into two parts. The front end is a typescript
(JavaScript with types) application that uses React (a
JavaScript library for building user interfaces). The
back end is a .NET (developer platform for all soft-
ware applications) that contains web APIs for path
consistency and the QCN solver.
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Algorithm 4: QCN solver.

1: procedure f irstMatch(pre f Ord,
pairConstraints)

2: for each u ∈ pre f Ord do
3: if u ∈ pairConstraints then
4: return u ▷ one of the 13 primitives

will always be found
5: end if
6: end for
7: end procedure
8: procedure DFS(condPre f ,net, pair,rel)
9: for each cp ∈ condPre f do

10: if cp.FirstPair = pair then
11: pre f Rel← f irstMatch(cp
12: Pre f Ord[rel].rels,net[pair].rels)
13: net[pair].rels← pre f Rel
14: net← PathConsistency(net)
15: net← DFS(condPre f ,
16: net,cp.secondPair, pre f Rel)
17: end if
18: return net
19: end for
20: end procedure
21: procedure NetSolver(condPre f ,singlePre f ,net)
22: for each sp ∈ singlePre f do
23: pre f Rel← f irstMatch(sp.rels,
24: net[sp.pair].rels)
25: net[sp.pair].rels← pre f Rel
26: net← PathConsistency(net)
27: net← DFS(condPre f ,net,
28: sp.pair, pre f Rel)
29: end for
30: return net
31: end procedure

4.1 Frontend

The front end React application uses Fluent UI (open-
source, cross-platform design system that gives de-
signers and developers the frameworks they need to
create engaging product experiences) for the design
system.

The front end contains the implementation of the
input where the user inputs the N events in their net-
work of events. It implements both unconditional and
conditional preferences. Figure 2 depicts the graph-
ical user interface of the system where the user in-
putted events “a”, “b”, “c”, “d”.

The frontend application also contains the dis-
joint set implementation with two functions “find”
and “merge”. This implementation prevents cyclic
CP-nets. Moreover, we ensure that no given pair has
two parents who would condition said pair.

Figure 3: Front end Graphical User Interface.

5 BACKEND

The backend dotnet web APIs application contains
the algorithm for path consistency as shown in the
background section.

The backend also contains the QCN Solver that
takes into account the preferences of the user and
gives a totally constrained network as the output,
where for every pair of events in the network there is
only one relation. the QCN solver contains two helper
methods: “first match” and “Depth First Search”.

6 CONCLUSION AND FUTURE
WORK

We propose a web-based system for automating the
representation and reasoning on QCNs, in the partic-
ular case of the Allen’s interval algebra. The sys-
tem elicits qualitative temporal constraints from the
user through membership queries. Path consistency
is applied to infer relations and reduce the number of
queries to be asked to the user. Finally, the user can
add conditional preferences between pairs of events.
Once temporal constraints and preferences are mod-
eled, the user can interact with the system to get pre-
ferred scenarios that meet constraints and optimize
preferences.

The proposed web-based application can be used
for real-world problems, including scheduling, plan-
ning, configuration, and logistics. In this context,
we plan to handle the addition and retraction of con-
straints in an incremental manner. For instance, in a
dynamic environment, new constraints might need to
be added due to unpredictable events. In the other
hand, if the QCN is inconsistent, the user can retract
constraints to restore consistency.
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