
Reliability Analysis of Francis Turbine Cracking Using Gamma Frailty
Model and Censored Historical Maintenance Data
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Abstract: All over the world, the need for electrical energy has increased dramatically, forcing hydroelectric power plants
to operate under non-standard conditions. This leads to premature fatigue cracking and consequently to multi-
ples crack inspections. In this research, a probabilistic model is developed based on frailty and censoring. The
model takes advantage of the use of a Non-Homogeneous Poisson Process (NHPP) because turbine runners
are considered as repairable parts. We develop the marginal likelihood expression incorporating frailty effect
using gamma frailty distribution and we use the stochastic gradient descent (SGD) algorithm to obtain the
optimal parameters. Furthermore, instead of considering the frailty effect z as a random variable, we decide
to derive its expression from the individual unconditional likelihood function that has been also optimized.
Finally, we compare reliability and cumulative hazard functions between family members. We then confirm
the results obtained by comparing reliability between two families that behaved differently. Results shows
that frailty effect, that is fonction of failure statuses and individual final time of observation for a specific
component has played an impor tant role in differentiating heterogeneity among groups of the same family.
Reliability curves clearly demonstrate heterogeneity within and between families.

1 INTRODUCTION

Industrial development throughout the world and even
daily life of human beings have become largely de-
pendent on electrical energy. Among electricity pro-
duction methods, hydropower represents less than
20% of global production (Liu et al., 2016a; Trivedi
and Cervantes, 2017). However, it far exceeds other
forms of green energy production combined. The
availability of turbine runner and alternator units is
therefore essential, especially in region such as Que-
bec with limited potentials in other forms of renew-
able energy. Hydro-Québec, the electricity produc-
tion compagny in Canada, with a fleet of 60 hydro-
electric power plants, saw a drop in electricity sales
from 216.2 TWh in 2022 to 200.3 TWh in 2023
(Hydro-Québec, 2023). Cavitation and cracks that ap-
pear on some turbine runners families, limit the avail-
ability of the units and consequently increase main-
tenance costs, as well as the number of shutdowns
and start-ups due to systematic inspections and re-
pairs. However, these transient zones of start-ups and

shutdowns are generally responsible of turbine crack-
ing because of high stress fluctuations (Morin et al.,
2021). On the other hands, some families are run in
off-design conditions to maintain the demand in elec-
trical energy (Morin et al., 2021).

Basically, a turbine runner is designed to with-
stand fatigue damage. Unfortunately, fatigue cracks
appear as a random effects (Georgievskaia, 2020) in
some turbine runners families. Researchers have been
scrambling to identify the principal causes of these
cracks (Liu et al., 2016b) as indicated in Figure 1. An-
alytical, physical, numerical and data based models
were developped. For example, (Morin et al., 2021)
analysed the transients effects on the lifespan of tur-
bine runner. They concluded that the startup, shut
down and time of speed no load create fluctuations
that lead probably to cracks. (Gagnon et al., 2010)
evaluated the fluctuations of the stresses at the start-
up in order to optimize the life expetancy of a turbine
runner. (Thibault et al., 2015) examined the material
properties especially 13% Cr-4%Ni stainless.
Furthermore, site expreriments and campaign mea-
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surements have been used to evaluate reliability
(Trivedi et al., 2013). For instance, (Gagnon et al.,
2014) made strain measurement and used operation
history to capture reliability of turbine runners. (Ba-
jgholi et al., 2021) evaluated the use of advanced ul-
trasonic inspection to learn about the manufaccturing
flaws and cracks. (Bajgholi et al., 2023) evaluated
reliability by using a non destructive testing to cap-
ture manufacturing flaws. In addition, (Wang et al.,
2012), (Zhang et al., 2019) discovered that the man-
ufacturing flaws in runner blades such as heterogene-
ity, anisotropic character and thinning of blade thick-
nesses could be the cause of cracking when runner is
working under critical conditions.
These studies have been done based on simplified
physical models simulations or standard measure-
ments. However, finding a model that incorporates the
complexity of all the predominant causes would be a
major challenge, as the various causes cannot be com-
bined in a physical model (residual stresses, transient
conditions, manufacturing flaws, etc.) (Xiao et al.,
2010, Xiao et al., 2008) . In addition, experimental
measurements have given results quite different with
what were really observed in hydroelectric plant.

Figure 1: Cracks on Francis runner blades.

Another approach is the use of probabilistic model
based on operational hydroelectic site data to appre-
hend crack initiation (Gagnon et al., 2014). For in-
stance, (Georgievskaia, 2021) run an algorithm using
operational data to predict the remaining lifetime for
turbine runners that were above 30 years old. These
measurement processes are essentially costly when it
comes to monitoring each individual turbine runner.

The third approach is based on experience. This
approach makes use of historical maintenance data
to evaluate reliability of components. For example,
(Ivanchenko and Prokopenko, 2020) analyzed cracks
on turbine blades based on failure history. They found
that residual stresses and internal defects in the mate-
rial promote cracking. They predict the possible loca-
tion of the crack according to maintenance data and
show that reliability is decreasing with the age.

This study is also based on the processing of real
historical maintenance data for two turbine families.
The main objective is to develop a probabilistic model
that can reflect what is actually observed in hydroelec-
tric power plants. To do this, we build a model that
incorporates the individuality of each turbine in terms
of its frailty effect, and use censored maintenance data
to capture the reliability information stored in preven-
tive inspections and crack observations. By classify-
ing individuals with similar reliability trends, we can
decide whether to reduce unnecessary systematic in-
spections or monitor just one of the individuals of the
same type with similar reliability trends. The choice
of two different families will enable us to validate the
robust family and the most vulnerable one observed.

2 FRAILTY MODEL

Simulations done by (Gagnon and Nicolle, 2019)
demonstrate that non-uniformities and excentricities
of a turbine runner assembly could affect the dynamic
behaviour among the same family. This combined
with manufacturing varaibilities make each turbine
unique and explain the fact that cracks do not appear
in the same way among the family members. Hence,
turbine runners could not be considered as homoge-
nous in the same family. Futhermore, turbine runners
that were repaired and welded will show different be-
haviour. All these factors demonstrate that each tur-
bine runner is unique and has its own frailty. Frailty
is an unobserved covariate or a random effect that can
not be measured but affects the reliability in the model
(Therneau et al., 2003).

Indeed, the behaviour of a repairable component
can be captured in historical maintenance data, and
can lead to a frailty parameter that distinguishes com-
ponents from each other, even if they belong to the
same family. One of the best methods is to optimize
censored maintenance data using a survival analysis
model.

2.1 Censoring

Censoring generally communicates partial informa-
tion on the observation of the event. When a visual in-
spection is carried out and no crack (fatigue damage)
is detected, this information is censored (Wienke,
2010).
Let us consider a repairable entity with observation
times t1, t2, . . . , tk which could be inspection or repair
times, let t∗1 , t

∗
2 , ..., t

∗
k be the survival times when fail-

ure occurs (crack detected) and c1,c2, ...,ck be the
censored times (no crack detected). At each obser-
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vation, we will have the couple (ti,δi) (Munda et al.,
2012) such that:

δi =

{
1 when t∗i ≤ ci, ti is not censored
0 when t∗i > ci , ti is censored (1)

Each δ represents a failure status, indicating
whether or not the crack was observed at the time of
the event (crack inspections during cavitation repair,
systematic inspections or crack detection).

2.2 Stochastic Process

There are mathematical probabilistic models that can
be used to process time-dependant data to obtain
a distribution. These models differ depending on
whether the observation data are for a repairable en-
tity or not (Ascher, 2008).

A non-repairable entity has a unique lifetime. It is
replaced once the failure has occurred. The reliability
of this type of entity can be modeled by probabilistic
mathematical distributions such as Kaplan Meier, ex-
ponential distribution, Weibull’s distribution (Asfaw
and Lindqvist, 2015). Some repairable components
can be replaced when the cost of maintenance be-
comes too excessive. In this case, they are considered
and modeled as non-repairable components. Mainte-
nance activities on a repairable entity can either bring
it back to the state where it looks new (as good as
new) by improving the reliability, or back to the state
it was before the failure was observed (as bad as old)
(Love and Guo, 1991),(Ascher, 1968) .

Several stochastic processes exist for repairable
entities (Slimacek and Lindqvist, 2016):
- Renewal Process (RP)
- Homogeneous Poisson Process (HPP)
- Nonhomogeneous Poisson Process (NHPP)
- Branching Poisson Process (BPP)

In literature, NHPP is most suitable for repairable
entities in which failures occur randomly (Slimacek
and Lindqvist, 2016). Therefore, the minimal repair
assumption is used which means that after repair, the
reliability still decreasing as if failure were not ap-
peared. Several mathematical laws exist to model
a NHPP. However, the power law remains the most
practical (Oliveira et al., 2013),(Brown et al., 2023).
The baseline hazard function of the power law is
given in Equation 1.

h0(t) = ωρtρ−1 (2)

with ω the scale parameter and ρ the shape parameter
of the curve.

If ρ > 1, the system is deteriorating (sad system),
If 0 < ρ < 1, the system is improving (happy sys-

tem)

If ρ = 1, the failure intensity function is a constant
and the model can be used in a HPP process with the
exponential distribution.

2.3 Frailty Distribution

In survival analysis, several models are not giving ex-
pected results for the fact that heterogeneity effect
was not taken into account. Incoporating frailty in
the model allows to consider both random effects and
unobservable heterogeneity in the survival analysis.

Let z be a positive time-independent random fac-
tor that acts multiplicatively on the intensity function.
We assume that the z is time-independent and is re-
lated to each entity. However, this factor, in general,
can also vary over time depending on certain criteria
or the data of the problem. The intensity function with
frailty effect is:

h(t) = zωρtρ−1 (3)
z > 1 means that failure will often occur and z < 1
leads to less failure occurence (Vaupel et al., 2023).
In case we will find z = 1,this means that the compo-
nents have no heterogeneity and can only be modelled
by a power law without frailty effect. In addition,
components with z = 0 fragility refer to those with
higher reliability, especially when nothing is recorded
to classify them.

The random variable z is expected to follow a spe-
cific probability distribution. Let f (z) be the frailty
probability density function of z. For time-event
data, several univariate frailty models exist. The most
widely used are the Gamma frailty and inverse Gaus-
sian frailty models. However, the Gamma frailty dis-
tribution is the most popular because of the gamma
function’s mathematical properties and computational
aspects (Asfaw and Lindqvist, 2015).

2.3.1 Gamma Frailty Distribution

(Duchateau and Janssen, 2008), (Brown et al., 2023),
(Asfaw and Lindqvist, 2015) used gamma distribution
to model heterogeneity. (Abbring and Berg, 2007)
has revealed that in most cases, for a large class, the
frailty distribution converges to a gamma distribution
as time approaches infinity. As we are using data
for turbine runner that approach to end of lifetime,
we have considered gamma frailty distribution in the
model. In the literature, the likelihood comparison
of the data obtained with frailty gamma distribution
gave better results compared to traditional parametric
models (Brown et al., 2023). The probability density
function of the gamma distribution is :

f (z) =
1

Γ(k)
λ

kzk−1e−λz (4)
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with λ the inverse scale parameter and k the shape
parameter. Using the Lapace transform and mathe-
matical properties of gamma function, we can show
that the mean and variance of the gamma distribution
respectively are

var(z) =
k

λ2 (5)

and
E(z) =

k
λ
. (6)

With z being a positive number. Let assume that
the mean of the gamma distribution is unit and let call
the variance by θ. Therefore k = 1

θ
= λ. The probal-

ity density function for gamma frailty distribution be-
comes:

f (z) =
1

Γ( 1
θ
)
(

1
θ
)

1
θ z

1
θ
−1e−

z
θ (7)

2.3.2 Likelihood Function

One of the best way for determinimg different param-
eters of the frailty model that could highly fit with
data is to optimize the likelihood function. Let j be
a repairable entity with a finite number of failures n j,
with j = 1,2, . . . ,m components in the system. The
conditional likelihood function for this entity is given
by:

L j(h0(ti j)|z j) =

[
n j

∏
i=1

(z jh0(ti j))
δi j

]
. . .

×exp [−z j (H0(τ j)−H0(S j))]

(8)

with H0(t) the cumulative hazard function given in
Equation (9).

H0(t) = ωtρ (9)

τ j and S j represent respectively the final and the start-
ing times of the observation period for the component
j. Let assume that S j = 0 day as an initial time for the
model.

The conditional likelihood function for this com-
ponent with respect to z j is given in the equation (10).

L j(θ|h0(ti j)) =
∫

∞

0

[
n j

∏
i=1

(z jh0(ti j))
δi j

]
. . .

×exp(−z jH0(τ j)) f (θ|z j)dz j

(10)

By replacing gamma distribution and using
gamma function properties, the marginal or uncondi-
tional likelihood function for component j is

L j(ω,ρ,θ) =

[
∏

n j
i=1 (h0(ti j))

δi j
]

Γ(d j +
1
θ
)θd j

Γ( 1
θ
) [θH0(τ j)+1](d j+

1
θ
)

(11)

with d j = ∑
n j
i=0 δi j.

Equation (11) was developed in this study and is
of great importance as it takes into account the frailty
effect, censored data and the stochastic process of re-
pairable components, the NHPP. This increases the
probability of having a model that matches the histor-
ical maintenance data and will enable vital informa-
tion to be extracted. Moreover, instead of simplifying
the model by considering the final time τ j as a con-
stant for all components as seen in the literature, we
manage to keep it individual in order to model the ex-
act effect of the heterogeneity that differentiates the
components.

For m components in the system, the total likeli-
hood function is the sum of likehood function for each
component. Therefore, the marginal likelihood func-
tion for the system is:

L =
m

∑
j=0

L j(ω,ρ,θ) (12)

The simplest way to handle this complex expres-
sion is to use the logarithmic function. Therefore, the
logarithm of the marginal likelihood function for m
components is

lmarg =

m

∑
j=1

[
n j

∑
i=1

δi j(logω+ logρ+(ρ−1) log(ti j))

]
. . .

+
m

∑
j=1

[
logΓ(d j +

1
θ
)+d j log(θ)− log(Γ(

1
θ
))

]
. . .

−
m

∑
j=1

[
(d j +

1
θ
) log(θωτ

ρ

j +1)
]

(13)
The maximum of the marginal likelihood function

is the value at which parameters (ω,ρ,θ) are opti-
mums. Let find the partial derivative of marginal like-
lihood with respect to each parameter of the model.
Equations (14,15,17) give these partial derivatives.

∂lmarg

∂ω
=

m

∑
j=1

[(
n j

∑
i=1

δi j
1
ω

)]
. . .

−
m

∑
j=1

[
(1+θd j)

τ
ρ

j

1+θωτ
ρ

j

] (14)

∂lmarg

∂ρ
=

m

∑
j=1

[(
n j

∑
i=1

δi j(
1
ρ
+ log(ti j))

)]
. . .

−
m

∑
j=1

[
(1+θd j)

(
ωτ

ρ

j logτ j

1+θωτ
ρ

j

)] (15)
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Define number of iteration N
Define number of components m
Define the learning rate α

Define initial values of parameters ω1, ρ1, θ1
Data: Input ti j, τ j, δi j, n j
while k < N do

while j < m do
while i < n j do

compute expressions in marginal
likelihood and partial derivatives
function starting from i=1 to n j;

end
compute expressions in marginal
likelihood and partial derivatives
function starting from j=1 to m ;

end
lmarg(ωk,ρk,θk);

gradω= ∂lmarg
∂ω

(ωk,ρk,θk);

gradρ= ∂lmarg
∂ρ

(ωk,ρk,θk);

gradθ= ∂lmarg
∂θ

(ωk,ρk,θk);
ωk+1 = ωk +α×gradω;
ρk+1 = ρk +α×gradρ;
θk+1 = θk +α×gradθ

end
Result: Plot lmarg
Result: Print (ωl ,ρl ,θl), with l the index of

maximal value of lmarg
Algorithm 1: Stochastic Gradient Descent Algorithm.

The partial derivative with respect to θ is done us-
ing the property of derivative of logΓ(u) which in-
volves the use of digamma function 𭟋(u) such as

d
du

logΓ(u) =
Γ′(u)
Γ(u)

= u′𭟋(u) (16)

Using Equations (13) and (16), the partial deriva-
tive of the logarithm of the marginal likelihood func-
tion with respect to θ is

∂lmarg

∂θ
=

m

∑
j=1

[
d j

θ
− 1

θ2𭟋(d j +
1
θ
)+

1
θ2𭟋(

1
θ
)

]
. . .

+
m

∑
j=1

[
1
θ2 log(1+θωτ

ρ

j )

]
. . .

−
m

∑
j=1

[
(d j +

1
θ
)

ωτ
ρ

j

1+θωτ
ρ

j

]
(17)

In this study, we use the stochastic gradient decent
(SGD) algorithm for optimizing the likelihood func-
tion, as it is a Newton-Raphson method that has given
better results in the literature (Haji and Abdulazeez,
2021, Mercier et al., 2018).

Algorithm 1 gives details on the stochastic gradi-
ent descent method used for this study. We first define
all functions and compute them at each step of itera-
tion and get optimum parameters at maximum likeli-
hood value for a specific family.

Finally, we calculate the frailty parameter z, the
cumulative hazard function and the reliability func-
tion. These functions enable us to classify the risk
of cracking within a family. A comparison between
two turbine families is adopted to validate what has
been observed: turbine runners (groups) from family
B crack more than those from family A. We therefore
used the same length of observations for both fami-
lies.

2.3.3 Frailty Parameter

Previous research has treated z as a random variable.
In this study, as we are motivated to compare the
risk of cracking between individuals, we adopt an-
other approach to derive the value of z immediately
from censored data. From equation (8), we can obtain
the frailty parameter that maximizes the conditional
likelihood function L j. The logarithm of the condi-
tional likelihood function L j for a specific component
is given by equation (18).

log(L j(ω,ρ,θ)) =

[
n j

∑
i=1

δi j(log(z j)+ logω+ logρ

]
. . .

+

[
n j

∑
i=1

δi j +(ρ−1) log(ti j))

]
− z jωτ

ρ

j

(18)
Consequently, the optimal frailty parameter that

expresses the data for the j component is obtained by
calculating the partial derivative of Equation (18) with
respect to z j and equalizing it to zero. This yields

z j =
∑

n j
i=1 δi j

ωτ
ρ

j
(19)

Equation (19) reveals that z j is highly dependent
on the failure status data δi j and the final event time
for component j. If no failure is recorded during the
observation period, the value of z j equals zero and
frailty distribution can no longer be used for that spe-
cific component. However, the contribution of that
component with zero frailty have been included in the
overall system model in the marginal likelihood ex-
pression.

2.3.4 Reliability

With the parameters of the model and frailty effect, it
is easier to compute the unconditionnal reliability of

SIMULTECH 2024 - 14th International Conference on Simulation and Modeling Methodologies, Technologies and Applications

132



the component j as given in Equation (20).

R j(t|z j) = exp(−z jωtρ) (20)

In addition, the marginal reliability function for
the same component is given by

R j(t) =
∫

∞

0
f (z j;θ)exp(−z jωtρ)dz j (21)

3 SIMULATIONS

3.1 Events Data

To validate the model, we choose two different fami-
lies of turbine runners. Family A has reliable groups
than family B. We also choose the same observa-
tion period to compare the curves of the two fami-
lies. Within the same family, the frailty effect will
play a role in differentiating turbine runners. This
will enable comparisons to be made within and be-
tween families. The data used for simulations are the
real observation times (inspections and crack repairs)
and failure statuses for ten Francis turbine runners be-
longing to families A and B. The failure statuses pro-
vide information on censoring. The observation pe-
riod runs from January 2001 to January 2022. Data
are collected from the maintenance history database.
Tables 1 and 2 show the age in years of the ten groups
at the start of the observation period.

Table 1: Age for groups in family A (years).

GR 01 GR03 GR05 GR07 GR10
19 19.5 19.7 20 21.2

Table 2: Age for groups in family B (years).

GR 01 GR03 GR05 GR07 GR10
19.4 19.5 20 20.1 21.4

Table 3 gives the observed event times for family
A, and the corresponding failure statuses are in Table
4.

In the same way, table 5 contains recorded event
times data for family B and the corresponding failure
statuses are in Table 6.

3.2 Results and Discussion

We use the SGD algorithm described in section 2.3.2
and the data in section 3.1. The learning rate is 0.0071
for both families. The initial parameters used for fam-
ilies A and B are given in Table 7.

Table 3: Event times for groups in family A (days).

GR 01 GR03 GR05 GR07 GR10
1304 1739 674 737 369
1403 3057 1373 2199 1102
1892 3427 1495 2483 2602
3427 3708 1556 3427 3393
3680 6701 2314 3708 3617
4009 2347 5036
5593 3057
6236 3176

3427
3708
4394
5575

Table 4: Failure Statuses for groups in family A.

GR 01 GR03 GR05 GR07 GR10
0 0 0 0 0
1 0 0 0 1
0 0 1 0 1
0 0 0 0 0
1 0 0 0 0
0 1 0
0 0 0
0 0

0
0
1
0

Figure 2: Evolution of the logarithm of the marginal likeli-
hood function for family A.

Figure 3: Evolution of the logarithm of the marginal likeli-
hood function for family B.
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Table 5: Event times for groups in family B (days).

GR 02 GR04 GR06 GR08 GR09
292 794 947 347 823
613 1283 1102 766 977
895 1495 1523 947 1495

1403 1768 2255 1130 2227
1892 2089 2497 1201 2868
2347 2588 2679 1710 3232
2658 2889 2854 2227 3624
2777 3202 3099 2595 4062
3260 3379 3253 2847 4412
3687 3533 3638 3134 4636
3722 4002 4051 3561 4715
3911 4379 4410 3981 5085
4445 4711 4051 4392 5441
4716 4755 4442 5469
5184 5195 4606 5777
5423 5406 5040 6081
5709 5816 5830 6238

6311 6311
6660 6531
6733 6965
7091 7336

Table 6: Failure statuses for groups in family B.

GR 02 GR04 GR06 GR08 GR09
1 0 0 1 0
0 0 1 1 0
0 0 0 0 0
1 0 0 1 0
0 1 0 0 0
0 1 0 0 0
0 0 0 1 0
0 0 0 0 1
1 0 0 0 0
0 0 0 0 0
1 0 0 0 1
0 1 0 0 0
1 0 1 1 0
1 1 0 1
1 0 0 0
1 1 1 1
1 1 1

1 1
1 0
1 0
0 0

After running the algorithm, Figure 2 illustrates
the evolution of the logarithm of the marginal like-
lihood function for family A , and the correspond-
ing optimal parameters obtained are shown in Table
8. Similarly, the algorithm run for family B groups

Table 7: Initial parameters of the model.

ω ρ θ

Family A 2 0.5 3
Family B 2 1.0 3

gives the evolution of the logarithm of the likelihood
function in Figure 4, and the corresponding optimal
parameters are in table 9. In Figure 3, we have a sin-
gle optimal value obtained before 3000 iterations, en-
abling us to obtain better expressed results. In family
A, on the other hand, another local optimum can be
obtained with more iterations.

For both families, the ω scaling parameter is al-
most the same. This is because we took the same ob-
servation period for both families.
However, the shape parameter ρ in family A is less
than 1, which implies that the system is improving
after maintenance. If we look at the failure statuses
data in Table 4 for family A, we observe that no fail-
ure was recorded in two groups during the observation
period: GR03 and GR07. This strongly affected the
results. In fact, in family B, ρ is greater than 1, defini-
tively confirming the reality that the system is defined
as a sad system, with many cracking as indicated by
the real data (Table 6). The results reveal the impor-
tance of having taken failure statuses into account in
the overall model.

The optimal parameter θ demonstrates the spread
of heterogeneity among turbine runners in the same
family. In family B, the frailty variance θ is higher
than in family A. Figure 4 shows the frailty probabil-
ity density function curve for family B above that of
family A. This leads to a lower frailty impact in fam-
ily A than in family B.

Table 8: Optimal parameters of the model and the maxi-
mum value of the logarithm of the marginal likelihood func-
tion

ω ρ θ lmarg
Family A 0.011 0.56 3.77 -67
Family B 0.029 1.07 4.77 -262

Figure 4: Gamma frailty function for families A and B.
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Let use Equation (19) that gives the expression of
z j and get values of frailty effect as given in Tables 9
and 10 for families A and B respectively .

Table 9: Frailty effect z for family A.

GR01 GR03 GR05 GR07 GR10
1.35 0.0 2.15 0.0 1.82

Table 9 highlights that GR03 and GR07 have no
frailty effect. These two groups cannot therefore be
modeled using the frailty effect. We use only the
NHPP with the power law to model them. Among the
groups in this family with non-zero z values, GR01
has the lowest value. Consequently, a lower value
of heterogeneity would be associated with higher
reliability.

Table 10: Frailty effect z for family B.

GR02 GR04 GR06 GR08 GR09
0.029 0.012 0.013 0.026 0.015

Likewise, in Table 10, GR02 has the lowest
fragility z-value and should be the most reliable in
family B.

Using equation (9), we can obtain the cumulative
hazard function for GR03 and GR07 as they have no
frailty. For these groups with a non-zero frailty effect,
Equation (9) must be multiplied by the correspond-
ing z j as in Equation (3). Figures 5 and 6 illustrate
the cumulative hazard function for families A and B
respectively. In family A, GR05 is the most vulnera-
ble, representing the highest risk of cracking damage.
GR03 and GR07, on the other hand, have no frailty ef-
fect and are considered as homogeneous and more re-
liable, as shown in Figure 7. Their two curves do not
allow to conclude whether they have the same risk of
cracking or not. We can notice that they almost stick
together.

Figure 5: Cumulative Hazard function for family A.

In Figure 6, we can notice that all groups start with
the same low risk of cracking. As time goes on, the
curves become more scattered and confirm the Table
8. However, the cumulative hazard function curves

Figure 6: Cumulative Hazard function for family B.

of the two groups (GR04 and GR06) stuck together.
They represent the same risk of cracking. In the same
Figure 6, curves of groups GR09, GR04 and GR06
are going in the same direction. So, instead of wasting
inspection time on both, see Table 6, the maintenance
team could decide to monitor only one of the two and
apply the same decisions obtained on the other, con-
sidering them as twin turbine runners. In the same
way, the GR02 and GR08 curves are close to each
other. An examination of the data on failure statuses
reveals that, at the end of their operating life, they
recorded multiple successive cracks.

Figure 7: Conditional reliability for A family.

Figure 8: Conditional reliability for B family.

Figures 7 and 8 have been plotted using equation
(20). They illustrate the reliability for families A and
B respectively. For the same period, 3000 days for
example, all groups in family B have a reliability be-
low 20%, whereas in family A, we have three groups
(GR01, GR03 and GR07) with a reliability above
20%. This confirms that these three groups are the
most robust. The duration of systematic inspections
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could be much longer for them. Furthermore, in Fig-
ure 8, after 5,000 days, it appears that all the groups
have collapsed. These groups have been replaced or
modified supporting the model.

4 CONCLUSIONS

The study is based on a comparison of the reliabil-
ity of ten turbines belonging to two different fami-
lies, using a frailty model. To do this, we used a non-
homogeneous Poisson process with a power law and
the gamma frailty distribution. The model parameters
are found by optimizing the marginal likelihood func-
tion developed in the study. The likelihood function
takes into account censored historical maintenance
data, the gamma frailty distribution and the final indi-
vidual observation time. In addition, the frailty effect
z is not considered as a random variable, but is de-
rived directly from the optimization of the individual
conditional likelihood function. However, for turbine
runners with no observed failures, the heterogeneity
effect was zero, which led us to abandon the frailty
model in this case. We have discovered that by de-
riving z, the frailty effect, as an expression of fail-
ure statuses and individual final observation time, and
adding censoring to the model, the reliability curves
express the results much better and are very close to
reality. For example, groups in family B that have
been replaced due to recurring cracks have a reliabil-
ity of less than 20% at 3,000 days and have collapsed
at around 5,000 days, whereas groups in family A
are robust. Despite the fact that we neglected covari-
ates in the model, we obtained informative results that
may help the maintenance team to group turbines with
the same reliability trend and monitor only one tur-
bine in order to reduce double inspections. This study
could be strengthened by adding important covariates
such as age, turbine runner modification, start-up and
shutdown frequencies. Future work could also focus
on optimizing systematic inspections with regard to
the evolution of reliability curves, and avoiding the
multiplication of maintenance shutdowns, which have
a negative impact on cracking.
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