Evaluating the Performance of LLM-Generated Code for

ChatGPT-4 and AutoGen Along with Top-Rated Human Solutions

Ashraf Elnashar, Max Moundas, Douglas C. Schmidt, Jesse Spencer-Smith and Jules White

Keywords:

Abstract:

Department of Computer Science, Vanderbilt University, Nashville, Tennessee, U.S.A.

Large Language Models (LLMs), Automated Code Generation, ChatGPT-4 vs. AutoGen Performance,
Software Development Efficiency, Stack Overflow Solution Analysis, Computer Science Education, Prompt
Engineering in AI Code, Quality Assessment, Runtime Performance Benchmarking, Dynamic Testing
Environments.

In the domain of software development, making informed decisions about the utilization of large language
models (LLMs) requires a thorough examination of their advantages, disadvantages, and associated risks.
This paper provides several contributions to such analyses. It first conducts a comparative analysis, pitting the
best-performing code solutions selected from a pool of 100 generated by ChatGPT-4 against the highest-rated
human-produced code on Stack Overflow. Our findings reveal that, across a spectrum of problems we exam-
ined, choosing from ChatGPT-4’s top 100 solutions proves competitive with or superior to the best human
solutions on Stack Overflow.

We next delve into the AutoGen framework, which harnesses multiple LLM-based agents that collaborate to
tackle tasks. We employ prompt engineering to dynamically generate test cases for 50 common computer sci-
ence problems, both evaluating the solution robustness of AutoGen vs ChatGPT-4 and showcasing AutoGen’s
effectiveness in challenging tasks and ChatGPT-4’s proficiency in basic scenarios. Our findings demonstrate
the suitability of generative Al in computer science education and underscore the subtleties of their problem-
solving capabilities and their potential impact on the evolution of educational technology and pedagogical

practices.

1 INTRODUCTION

Emerging Trends, Challenges, and Research Foci.
Large language models (LLMs) (Bommasani et al.,
2021), such as ChatGPT (Bang et al., 2023) and Copi-
lot (git,), have the ability to generate complex code
to meet a set of natural language requirements (Car-
leton et al., 2022). Software developers can use LLMs
to generate human descriptions of desired functional-
ity or requirements, as well as synthesize code in a
variety of languages ranging from Python to Java to
Clojure. These tools are currently being integrated
into popular Integrated Development Environments
(IDEs), such as IntelliJ (Krochmalski, 2014) and Vi-
sual Studio.

LLMs are now easily accessible through the In-
ternet and within IDEs, and developers are increas-
ingly leveraging them to guide many programming
tasks. In many cases, the questions and code samples
to which developers apply these LLMs are the same
questions and code samples they previously would

258

Elnashar, A., Moundas, M., Schmidt, D., Spencer-Smith, J. and White, J.

have sought help on via discussion forums. For ex-
ample, Stack Overflow (stackoverflow.com) is a pop-
ular online forum where developers ask questions and
obtain guidance on code samples.

There has been significant discussion and re-
search (git, ; Asare et al., 2022; Pearce et al., 2022)
on applying LLMs to generate code with respect to
the quality of the code from a security and defect per-
spective. First-generation LLM-based tools often pro-
duced poor quality code due to their ability to "hallu-
cinate” convincing text or code that was fundamen-
tally flawed, although it appeared correct. In addi-
tion, LLMs trained on human-produced code in open-
source projects often had vulnerabilities or eschewed
best practices. Much discussion on the code quality
generated by LLMs has therefore focused on func-
tional correctness and security.

Although using LLMs before fully comprehend-
ing their capabilities and limitations is risky, there are
also clear productivity benefits for developers in cer-
tain areas. For example, LLMs can help to automate

Evaluating the Performance of LLM-Generated Code for ChatGPT-4 and AutoGen Along with Top-Rated Human Solutions.

DOI: 10.5220/0012820600003753
Paper published under CC license (CC BY-NC-ND 4.0)

In Proceedings of the 19th International Conference on Software Technologies (ICSOFT 2024), pages 258-270

ISBN: 978-989-758-706-1; ISSN: 2184-2833

Proceedings Copyright © 2024 by SCITEPRESS — Science and Technology Publications, Lda.

Evaluating the Performance of LLM-Generated Code for ChatGPT-4 and AutoGen Along with Top-Rated Human Solutions

repetitive, tedious, or boring coding tasks and per-
form these tasks faster—and often better—than devel-
opers (De Vito et al., 2023). This productivity boost is
particularly apparent when coding tasks involve APIs
or algorithms that developers are unfamiliar with and
thus require study to master before performing the
tasks. When these APIs and algorithms are included
in an LLM’s training set it often generates code for
them swiftly and accurately.

In addition, a key benefit related to code perfor-
mance is how to employ LLMs via prompting and
prompt engineering for many different potential solu-
tions and then automatically benchmark them to iden-
tify the fastest solution(s). A prompt is the natural
language input to an LLM (Liu et al., 2023). Prompt
engineering is an emerging discipline that structures
interactions with LLM-based computational systems
to solve complex problems via natural language inter-
faces (Giray, 2023).

This paper expands upon our prior work (Elnashar
et al.,) that compared the runtime performance of
code produced by humans vs. code generated by
ChatGPT-3.5. We first replicate our earlier experi-
ments replacing ChatGPT-3.5 with ChatGPT-4 (Es-
pejel et al., 2023), which is a more advanced ver-
sion of the GPT model. As shown below, ChatGPT-4
demonstrates a marked improvement in understand-
ing complex problem statements and generating more
efficient code due to its enhanced training data and
refined algorithms, which interpret prompts more ac-
curately and increase generated code efficiency.

We next conduct a comparative analysis of Auto-

Gen (Porsdam Mann et al., 2023) and ChatGPT-4, re-
vealing notable differences in their success rates and
error handling capabilities. In particular, our results
reveal that ChatGPT-4’s solutions present a 9.8% fail-
ure rate and a 90.2% pass rate, whereas AutoGen’s
solutions have a 15.6% failure rate and an 84.4% pass
rate. Moreover, we apply visual tools for clarity and
present insights into the potential educational appli-
cations of each approach.
Paper Organization. The remainder of this paper is
organized as follows: Section 2 summarizes the open
research questions we address and outlines our techni-
cal approach; Section 3 explains our testbed environ-
ment configuration and analyzes results from exper-
iments that compare the top Stack Overflow coding
solutions against solutions generated by ChatGPT-4;
Section 4 examines the effectiveness of the AutoGen
approach in generating programming solutions and
compares its performance with ChatGPT-4; Section 5
compares our work with related research; and Sec-
tion 6 presents the lessons learned from our study and
outlines future work.

2 SUMMARY OF OPEN
RESEARCH QUESTIONS AND
TECHNICAL APPROACH

This section summarizes the open research questions
we address in this paper and outlines our technical
approach for each question.

Q1: How do the most efficient LL.M-generated
codes from GPT-3.5 Turbo and GPT-4 compare
with the top human-produced code in terms of
runtime performance? Section 3 investigates the
runtime performance of code generated by both GPT-
3.5 Turbo and GPT-4, contrasting it with human-
produced code. Our analysis includes a comparison
of human-written Stack Overflow solutions to those
generated by ChatGPT-4 and GPT-3.5 Turbo using di-
verse prompting strategies. We focus on the efficiency
of the fastest solutions from both LLMs compared
to the best human answers, representing a real-world
scenario where developers might seek the most effi-
cient solution through iterative LLM querying. This
investigation provides a foundational understanding
of LLMs’ utility in practical coding applications.
Q2: What is the range and reliability of coding
solutions generated by GPT-3.5 Turbo and GPT-
4, compared to a diverse set of human-produced
code, in terms of runtime efficiency and practical
application? Section 3 expands the scope of our anal-
ysis beyond optimal solutions, examining the runtime
efficiency of the most common, as well as the best
and worst, LLM-generated codes. This study offers
a comprehensive view of the coding efficiency that
GPT-3.5 Turbo and GPT-4 can achieve, benchmarked
against human solutions. By analyzing a range of
LLM-generated solutions, we provide insights into
the variability and reliability of LLMs as coding as-
sistants.

Q3: Against which human-produced solutions
should LLM outputs from GPT-3.5 Turbo and
GPT-4 be benchmarked, and what represents the
average developer’s capability? Section 3 tack-
les the challenge of setting appropriate benchmarks
for LLM-generated code by selecting a representative
sample of human solutions for comparison. This anal-
ysis helps determine where GPT-3.5 Turbo and GPT-
4 stand in relation to average developer skill levels.
The chosen benchmarks range from highly optimized
to average human solutions, offering a balanced per-
spective on LLMs’ capabilities.

Q4: How does AutoGen, with its systematic
and structured LLM prompting, compare with
the more flexible and generalized approach of
ChatGPT-4 in terms of efficiency, accuracy, and
adaptability in code generation? Section 4 expands

259

ICSOFT 2024 - 19th International Conference on Software Technologies

upon the experiments in Section 3 to assess whether
AutoGen’s structured prompting leads to more ef-
ficient and/or accurate code outputs compared to
ChatGPT-4. We apply both AutoGen and ChatGPT-4
to evaluate these LLMSs’ capabilities in comprehend-
ing and producing Python code, by presenting them
with a sequence of increasingly complex problems.
Each generated solution underwent thorough testing
for both correctness and efficiency, thus highlighting
the LLMs’ flexibility and accuracy in code genera-
tion.

When addressing these questions, we consider
various factors, such as the stochastic nature of LLLMs,
that may yield different outputs for the same prompt.
We also consider the variance in human-provided
coding solutions in terms of quality and efficiency.
The comparison between AutoGen and ChatGPT-4
further extends this investigation by analyzing the im-
pact of different technical approaches on the quality
of the generated code.

Our prior work (White et al., 2023) shows how
prompt wording influences the quality of LLM out-
put. We therefore focus on how prompt wording in-
fluences the quality of generated code. In particular,
we investigate if varying the wording causes LLMs to
generate faster code more consistently.

3 COMPARING STACK
OVERVIEW AND
ChatGPT-4-GENERATED
SOLUTIONS

This section analyzes the results from our comparison
of top human-provided Stack Overflow coding solu-
tions and the corresponding ChatGPT-4-generated so-
lutions.

3.1 Experiment Configuration

This section explains the configuration of our testbed
environment and analyzes the results from experi-
ments that compare the top Stack Overflow coding
solutions against solutions generated by ChatGPT-4.

3.1.1 Overview of Our Approach

Our analysis was conducted on code samples written
in Python since (1) it is relatively easy to extract and
experiment with stand-alone code samples in Python
compared to other languages, (2) ChatGPT-4 appears
to generate more correct code in Python vs. less pop-
ular languages (such as Clojure), and (3) Python is a

260

popular language in domains like Data Science where
developers often have more familiarity and comfort
with LLMs.

Our problem set was manually curated from Stack
Overflow by browsing questions related to Python.
We searched for questions pertaining to categories,
such as “array questions” since these questions are
readily tested for performance at increasing input
sizes. We then analyzed each question and its can-
didate solutions to select question/solution pairs that
could be isolated and inserted into our test harness.

We avoided questions that relied heavily on third-
party libraries to minimize complexity, such as ver-
sion discrepancies and dependency issues. These
complexities can obscure the assessment of the core
algorithmic efficiency of the code (a potential threat
to validity, as discussed in Section 3.3). Instead, we
focused on solutions built on core libraries and capa-
bilities within Python itself.

Wherever possible, we selected the top-voted so-
lution as the comparison. In some cases, multiple
languages were present in the solutions and we se-
lected the first Python solution, mimicking developers
looking for the first solution in their target language.
These decisions and related methodological consider-
ations are discussed further in Section 3.3.4.

For each selected question, we extracted the ques-
tion’s title posted on Stack Overflow and used it
as a prompt for ChatGPT-4, leveraging OpenAl’s
ChatGPT-4 API for this process. This API allowed us
to automate sending prompts and receiving code re-
sponses, thereby facilitating a consistent and efficient
analysis of the model’s code generation capabilities.
This decision meant that ChatGPT-4 was not provided
the full information in the question, which may hand-
icap it in providing better performing solutions. Our
rationale for only using question titles as prompts for
ChatGPT-4 both reflects common real-world scenar-
ios faced by developers and assesses its ability to gen-
erate solutions based on limited information.

The original Stack Overflow posts, human-
produced solutions, and ChatGPT-4-generated code
solutions—along with our entire set of ques-
tions and generated answers—can be accessed
in our Github repository at github.com/elnashara/
CodePerformanceComparison. We encourage read-
ers to replicate our results and submit issues and pull
requests for possible improvements.

We measured the runtime performance of each
code sample using Python’s timeit package. Code
samples were provided with small, medium, and large
inputs. These inputs were progressively increased in
size to show the effects of scaling on the generated
code. What constituted small, medium, and large was

Evaluating the Performance of LLM-Generated Code for ChatGPT-4 and AutoGen Along with Top-Rated Human Solutions

problem-specific, as shown in Section 3.2 below. For
each input size, we generated 100 random inputs of
the given size to run tests on. In addition, for each
input, we tested the given code 100 times on the input
using the Python timeit package.

3.1.2 Overview of the Coding Problems

A total of 7 problems from Stack Overflow, all per-
taining to array operations, were selected for our anal-
ysis. These problems encompass a range of array-
related challenges, including PA1: identifying miss-
ing number(s) in an unsorted array, PA2: detecting a
duplicate number in an array that is not sorted, PA3:
finding the indices of the k smallest numbers in an
unsorted array, PA4: counting pairs of elements in an
array with a given sum, PAS: finding duplicates in a
array, PA6: removing array duplicates, and PA7: im-
plementing the Quicksort algorithm.

3.1.3 Prompting Strategies

In this experiment we applied various prompting
strategies to generate Python code with ChatGPT-4,
including

1. Naive approach, which used only the title from
Stack Overflow as the prompt, e.g., ”"How to count
the frequency of the elements in an unordered ar-
ray”,

2. Ask for speed approach, which added a require-
ment for speed at the end of the prompt, e.g.,
“How to count the frequency of the elements in

an unordered array, where the implementation
should be fast”,

3. Ask for speed at scale approach, which pro-
vided more detailed information about how the
code should be optimized for speed as the size of
the array grows, e.g., "How to count the frequency
of the elements in an unordered array, where the
implementation should be fast as the size of the
array grows”,

4. Ask for the most optimal time complexity,
which prioritized achieving the most optimal time
complexity, e.g., "How to count the frequency of
the elements in an unordered array, where im-
plementation should have the most optimal time
complexity possible”, and

5. Ask for the chain-of-thought (Zhang et al.,
2022), which generated coherent text by provid-
ing a series of related prompts, e.g., "Please ex-
plain your chain of thought to create a solution to
the problem: How to count the frequency of the
elements in an unordered array First, explain your

chain of thought. Next, provide a step by step de-
scription of the algorithm with the best possible
time complexity to solve the task. Finally, de-
scribe how to implement the algorithm step-by-
step in the fastest possible way.”

ChatGPT-4 was prompted 100 times with each
prompt per coding problem, yielding up to 100 dif-
ferent coding solutions per prompt.! We tested the
performance of all ChatGPT-4-generated code, how-
ever, and did not remove duplicate solutions. If two
different prompts had identical solutions, we bench-
marked each and left the results with the expectation
that 100 timing runs on 100 different inputs would av-
erage out any negligible differences in performance.

3.2 Analysis of Experiment Results

The results of our experiment that evaluated the per-
formance of code provided by Stack Overflow and
generated by ChatGPT-4 100 times for all seven cod-
ing problems with three different input sizes—small
(1,000), medium (10,000), and large (100,000)—are
shown in Figures 1, 2 and 3. Figure 4 shows the min-
imum average performance across all input. These

Figure 1: Number of Solutions within X% of the Best Run-
time (Input Size 1,000).

figures show the number of problems for each prompt
where the best of the 100 solutions generated by each
prompt was within 1%, 5%, etc. of the best solution
found across all prompts and the human. For each

in o he et Runtime {input iz 10,000)

1

..

R

Figure 2: Number of Solutions within X% of the Best Run-
time (Input Size 10,000).

'In practice, fewer than 100 unique coding solutions
were sometimes produced since ChatGPT-4 often generated
logically equivalent programs.

261

ICSOFT 2024 - 19th International Conference on Software Technologies

problem, a total of up to 601 solutions were bench-
marked (6 prompts * 100 solutions per prompt + 1
human solution).

The best performing solution was used as the
“Best Runtime” solution in the figures against which
other solutions were compared. Figures 1, 2, 3 and 4

‘ . & ﬁf‘,\, yf,;, @”7 ﬁf{, @"7 yf;,
#

Figure 3: Number of Solutions within X% of the Best Run-
time (Input Size 100,000).

collectively demonstrate how ChatGPT-4 selected the
best-performing solution out of 100 attempts when
employing chain-of-thought reasoning in response to
prompts. These solutions were competitive with—
and in many cases surpassed—the human-provided
solutions from Stack Overflow. This finding is signif-
icant as it underscores the potential of LLMs in gener-
ating efficient solutions when prompted with a struc-
tured approach that includes chain-of-thought reason-

ing.

Figure 4: Number of Solutions within X% of the Best Run-
time (All Input Sizes).

The human solution was the fastest solution for
only one of the problems, specifically the ”P2 Find
Duplicate Number,” as depicted in Figure 5. We used
the title of the question as the input to ChatGPT-4.
All the code samples produced code with respect to
the title of the Stack Overflow post. Since we directly
translated the titles into prompts for ChatGPT-4, how-
ever, there may have been additional contextual in-
formation in the question that ChatGPT-4 could have
used to further improve its solution, as discussed in
Section 3.3.2.

Our results also demonstrate a significant im-
provement in performance when using ChatGPT-4
compared to its predecessor, GPT-3.5 Turbo. This ad-
vancement in LLMs underscores the progressive en-
hancements in Al-driven coding solutions. Despite

262

Comparison of verage Exccution T for Diferent Frompt n52_fin doplicate_number

anttan

& & & & & &

Figure 5: Comparison of Average Execution Time for Dif-
ferent Prompts in P2 Find Duplicate Numbers.

this progress, the human-crafted solution still outper-
formed both GPT-4 and GPT-3.5 Turbo for problem
P2. This finding suggests that while LLMs are be-
coming increasingly competent in generating code,
there remains an edge that human experience and in-
tuition can provide, particularly in certain complex or
nuanced tasks.

Conversely, when evaluating the ”P1 Find Miss-
ing Number” problem, a distinct change in the hier-
archy of solution efficiency was evident. As shown
in Figure 6, the human solution was surprisingly the
least efficient in terms of execution time, which high-
lights scenarios where LLMs may exceed human per-
formance. Interestingly, when structured prompt en-
gineering is applied—especially the chain-of-thought
method—GPT-3.5 Turbo’s capability to devise effec-
tive code solutions improves significantly.

In general, however, the most pronounced en-
hancement is seen with GPT-4, which out-performs
both human solutions and GPT-3.5 Turbo when
equipped with the same structured prompting tech-
niques. This finding signifies the remarkable ad-
vancements in LLMs, especially in the realm of in-
tricate problem-solving. The findings presented in
Figure 6 confirm the superior performance of GPT-
4 in optimizing code execution time and setting a new
threshold in Al-assisted coding (which will likely be
surpassed with subsequent releases of ChatGPT).

[S

Figure 6: Comparison of Average Execution Time for Dif-
ferent Prompts in P1 Find Missing Number.

The contrasting results—with humans prevailing
in one case, yet falling behind in another—provides
insight into the multifaceted nature of coding solu-
tions within the current LLM landscape. Our research

Evaluating the Performance of LLM-Generated Code for ChatGPT-4 and AutoGen Along with Top-Rated Human Solutions

suggests that while LLMs like ChatGPT-4 can out-
strip human coders in certain instances, the creativity
and specialized skill of human programmers continue
to be invaluable assets in complex scenarios. This dy-
namic highlights the promising potential of a syner-
gistic approach, wherein human expertise is enhanced
by the efficiency and evolving capabilities of LLMs,
to elevate the process of developing coding solutions.

3.3 Threats to Validity

Threats to the validity of our experiment results are
discussed below.

3.3.1 Sample Size

Although the results presented in Section 3.2 are
promising, they are based on a relatively small sam-
ple size since our study considered a total of seven
computer science (CS) problems, each subjected to
100 testing iterations. While this number of prob-
lems and iterations was sufficient to demonstrate ini-
tial trends, it does not capture the performance char-
acteristics and potential edge cases encountered in
larger datasets. More work on a larger sample size
is therefore needed to increase the robustness of our
findings.

In general, the software engineering and LLM
communities will benefit from a large-scale set of
benchmarks that associate (1) code needs (expressed
as natural language requirements), questions, specifi-
cations, and rules with (2) highly optimized human
code, as well as associated benchmarks and inter-
faces. These communities can then apply the bench-
marks to measure and validate LLM coding perfor-
mance over time to ensure research is headed in the
right direction regarding the development and use of
generative Al tools.

3.3.2 Prompt Construction

The construction of prompts posed an additional
threat to validity because it relied solely on the ti-
tles of Stack Overflow questions. In particular, in-
corporating no additional details from question bod-
ies prevented ChatGPT-4 from utilizing further code
to inform its responses. We did not want ChatGPT-
4 completing/improving fundamentally flawed code.
However, this prompt design choice risked depriving
ChatGPT-4 of information it could have used to gen-
erate better solutions.

3.3.3 Problem Scope

Another risk area was the variety of coding problems
we analyzed. The problems were relatively narrow

in scope and data structure type. A wider range of
problem types is thus needed to ensure hidden risks
regarding specific problem structures do not occur.
There may be classes of problems that trigger poor
performing hallucinations or code structures we are
not aware of yet. This risk is particularly problematic
when attempting to generalize our results.

3.3.4 Selection Bias

Another threat to validity was the inherent question
and code sample selection bias in our study. These
questions and answers were selected manually to fo-
cus on problems and code samples that could be tested
and benchmarked readily. We may therefore have in-
appropriately influenced the problem types selected
and not chosen samples representative of what devel-
opers would ask in certain domains.

4 ChatGPT-4 vs. AutoGen: A
COMPARATIVE STUDY IN
PROGRAMMING
AUTOMATION

Computer science and its application domains evolve
continuously, requiring more efficient and reliable
automated systems capable of solving complex
problems. This section systematically compares
ChatGPT-4 and AutoGen, which are two generative
Al-based systems that enable automated problem-
solving. Our comparison evaluates the capability of
ChatGPT-4 and AutoGen to (1) generate accurate so-
lutions for a set of predefined computer science prob-
lems and (2) successfully pass rigorous tests designed
to validate the correctness of these solutions.

ChatGPT-4 was developed as part of OpenAl’s
GPT series and is adept at a wide range of natural
language tasks, catering to diverse users from various
domains. Its flexibility and interactivity make it suit-
able for general inquiries, creative writing, and edu-
cational support. In contrast, AutoGen excels in au-
tomated code generation through structured and sys-
tematic prompting methods that harness predefined
patterns and algorithms to craft solutions optimized
for accuracy, performance, and readability.

4.1 Problem Statement

AutoGen and ChatGPT-4 both support automated
problem-solving and algorithm generation. Little re-
search has been conducted, however, to determine
their efficiency and accuracy in producing viable so-

263

ICSOFT 2024 - 19th International Conference on Software Technologies

lutions under varying conditions and constraints, es-
pecially when the tests themselves are dynamically
generated as part of the problem-solving process. Ad-
dressing this knowledge gap raises a critical question
(question Q4 in Section 2): How reliable are AutoGen
and ChatGPT-4 when faced with dynamically chang-
ing success criteria, particularly when these criteria
are crafted through prompt engineering to match the
problem’s specific nature?’

The study presented in this section aims to fill the
current gap regarding the adaptability and precision
of AutoGen and ChatGPT-4 in such fluid testing en-
vironments. The absence of predefined tests means
the evaluation of these systems must account for their
ability to interpret problem statements, generate cor-
responding tests, and produce solutions that satisfy
these tests. What is needed, therefore, is a method
that assesses the quality of the generated solutions, as
well as the appropriateness and thoroughness of the
spontaneously created tests.

By addressing these challenges, we provide a nu-
anced understanding of the capabilities of ChatGPT-4
and AutoGen. We also explore the extent to which
these systems can autonomously generate both prob-
lems and their corresponding tests, which is becoming
common in continuous integration pipelines and auto-
mated software development processes (Arachchi and
Perera, 2018). The results of our comparative analysis
evaluate the potential of these LLM-driven systems to
contribute to and enhance the field of automated soft-
ware testing and development.

4.2 Dataset Overview and Analysis

The dataset under consideration comprises a collec-
tion of 50 computer science problems, each character-
ized by a unique sequence number, a difficulty level
(Category), a ProblemType, and a detailed problem
statement. These problems are classified into various
categories, reflecting different areas of computer sci-
ence, such as algorithm design, data structures, and
computational theory. The problems are categorized
by difficulty levels, ranging from easy to more chal-
lenging problems.

This dataset includes a broad spectrum of test
cases for each problem, ensuring a comprehensive
evaluation of skills from basic functionality to intri-
cate scenarios. For example, test cases for ’Calculat-
ing the average of an array of numbers’ vary in ar-
ray sizes and types, while *Graph traversal’ problems
test diverse graph structures. This method, akin to our
previous study on arrays in Section 3, showcases the
range of topics in the dataset, from fundamental algo-
rithms like ”Binary Search” to advanced techniques

264

like ”Depth-First Search.”

The analysis of the distribution of computer sci-
ence problems by type uncovers the wide range of
topics encompassed within the dataset. The pie chart
shown in Figure 7 depicts the percentage of prob-

Problem Types Distribution

Checking if a number is prime

Finding the sum

Depth-First Search (DI of two numbers

sorting
algorithms

Binary Search

Figure 7: Problem Types Distribution.

lems in each type, providing a visual representation of
which areas are emphasized more heavily. This dis-
tribution is crucial for understanding the breadth and
focus areas of the dataset.

Distribution of Problems by DifficultyLevel/Category

hard

medium

Figure 8: Distribution of Problems by Difficulty Level.

The pie chart shown in Figure 8 presents the dis-
tribution of problems across different difficulty levels
(i.e., easy, medium, and hard) within the dataset. This
chart visualizes the proportion of problems in each
category, thereby elucidating the distribution pattern.
It accentuates the prevalence of specific categories
and offers insights into the relative emphasis placed
on each difficulty level in our dataset.

4.3 Methodology and Experiment
Design

Our experiment design covers the evolving landscape
of automated problem-solving and algorithm gen-
eration, focusing on the capabilities of ChatGPT-4
and AutoGen. Central to our study is the uniform
prompting strategy employed, which is pivotal in har-
nessing the capabilities of ChatGPT-4 and AutoGen.
This strategy applies a consistently structured prompt

Evaluating the Performance of LLM-Generated Code for ChatGPT-4 and AutoGen Along with Top-Rated Human Solutions

crafted to convey problem requirements and context
uniformly to both AI models. This prompt facili-
tates a direct comparison of ChatGPT-4 and AutoGen
in terms of problem-solving efficiency, accuracy, and
adaptability.

By employing this single, standardized prompt
across all tests, our study compares and contrasts
the performance of these two systems in a controlled
and comparable manner. Given the dynamic nature
of our problem-solving environment—where tests are
not static but generated in response to each unique
problem—our study evaluates the efficiency and ac-
curacy of these systems under these varying condi-
tions.

4.3.1 Problem-Solving and Test Generation
Approach

Our approach is anchored in prompt engineer-
ing (Chen et al., 2023), which guides LLMs to in-
terpret problem statements and generate correspond-
ing solutions and tests. We give both ChatGPT-4 and
AutoGen the same structured prompt shown in Fig-
ure 9, which provides the foundation for both systems
to understand and approach the problem. This prompt
was crafted to outline the problem statement, solu-
tion development requirements, script necessities, test
case execution and preparation, and execution pro-
cess. Our approach enables a fair comparison be-
tween ChatGPT-4 and AutoGen, ensuring the focus
remains on the ability of these systems to generate so-
lutions, as well as create relevant and comprehensive
test cases.

Problem Statement
- Develop a Python script to solve the problem: ’{Implementing a recursive DFS algorithm to
traverse a binary tree.}’

Solution Development

- Create a Python function named ’funclmp’ that implements the solution.

- Ensure that the function is defined at the beginming of your script and is accessible throughout
the script.

Script Requirements

- The script should define the ’funcImp’ function at the root level, not imside any class or
other function.

- Include comments in the script to explain the logic and functiomality of the ’funcImp’ function.
- Test the function within the script to ensure it’s correctly defined and functioning as expected.
Test Case Execution

- Execute the ’funcImp’ function with various test cases to verify its correctness.

- Ensure that the function ’funcImp’ is defined and accessible in the scope where the test cases
are executed

Test Case Preparation

- Prepare a set of test cases, including edge cases, to thoroughly test the function.

- Test cases should cover different types of input strings, such as alphabetic, mumeric, special
characters, and empty strings

Execution Process

- Run each test case through the ’funcImp’ function.

- Capture the output of each test case to compare it with the expected result.

Figure 9: Structured Prompt Example for LLM-Based So-
lution Generation in CS Problems.

4.3.2 Evaluating ChatGPT-4 and AutoGen

The evaluation of ChatGPT-4 and AutoGen involved
multiple layers. First, we assessed these systems’
ability to interpret problem statements accurately and
generate viable solutions. Second, we examined

the appropriateness and thoroughness of the sponta-
neously created test cases. These test cases were vi-
tal to our evaluation process since they represented
the dynamic criteria against which the generated so-
lutions were measured.

Our assessment compared the solutions and tests
generated by each system under identical problem
conditions. This comparative analysis evaluated the
adaptability, precision, and reliability of ChatGPT-4
and AutoGen in a fluid testing environment where
both the problems and their corresponding tests were
generated autonomously.

This study provided a nuanced understanding of
the capabilities of ChatGPT-4 and AutoGen in auto-
mated problem-solving and test generation. Our work
is particularly pertinent in contexts like continuous
integration pipelines and automated software devel-
opment processes, where the ability to autonomously
generate and test solutions is vital. The findings of our
study provide insight into the potential role of LLM-
based systems in enhancing automated software test-
ing and development.

4.4 Analysis of ChatGPT-4 Experiment
Results

The experiment conducted using ChatGPT-4’s solu-
tion generation capabilities provided a comprehen-
sive view of its performance across a range of com-
puter science problems. To ensure a fair and accu-
rate comparison, the same set of 50 distinct problems,
along with identical prompts, were utilized for both
ChatGPT-4 and AutoGen in the tests. Figure 10 pro-
viding valuable insights into the effectiveness of the
generated solutions.

Number of Pass and Fail Test Cases for Each Problem Using GPT-4.0

I,
ng

2 56

1234 7

o5

101132 13 13 15 16 17 10 15 20 21 22 23 25 25 26 27 20 25 30 31 32 39 % 35 36 7 30 3 40 41 2 4 44 45 45 47 6 4
Problem Number

Figure 10: ChatGPT-4 - Pass Rate of Solutions.
4.4.1 Overall Success Rate

ChatGPT-4’s overall success rate was approximately
90.2%, as shown in Figure 11. This success rate in-
dicates ChatGPT-4’s capability in accurately solving
a broad spectrum of computational tasks. The high
percentage of correctly solved problems demonstrates

265

ICSOFT 2024 - 19th International Conference on Software Technologies

GPT-4.0 - Pass Rate of Solutions

True

Figure 11: ChatGPT-4 - Pass Rate of Solutions.

the effectiveness of its generated solutions in various
contexts.

4.4.2 Error Analysis

Distinct patterns emerged when examining ChatGPT-
4’s failed cases, highlighting areas where it faced
challenges. The most frequent error encountered was
related to “Invalid input. Please provide valid nu-
meric values,” followed by issues like “max() arg is an
empty sequence” and “’division by zero.” These errors
indicate that while ChatGPT was proficient in many
areas, there were specific scenarios where improve-
ments were needed, particularly involving input vali-
dation and handling exceptional cases.

4.4.3 Problem Difficulty vs. Success Rate

An interesting aspect of ChatGPT-4’s behavior is the
correlation between problem difficulty and success
rate. Surprisingly, ‘'medium’ difficulty problems had
a higher success rate (around 93.48%) compared to
“easy’ (87.50%) and ’hard’ (91.11%) difficulties, as
shown in Figure 12. This finding suggests a potential

Problem Difficulty vs. Success Rate

easy r medum

Figure 12: ChatGPT-4 - Problem Difficulty vs. Success
Rate.

discrepancy in the perceived versus actual complexity
of the problems or a higher adaptability of the system
in solving medium complexity tasks.

266

4.4.4 Problem Type Analysis

ChatGPT-4’s success rate also varied significantly
across different problem types. Types such as ”Binary
Search” and ”Sorting algorithms” demonstrated a no-
tably high success rate (over 90%), whereas ”Graph
traversal” and ”Calculating the average of an array of
numbers” exhibited lower success rates. This vari-
ation highlighted ChatGPT-4’s strengths and weak-
nesses in different computational domains and offered
insights for targeted improvements in specific areas of
problem-solving.

4.4.5 Insights and Future Directions

Overall, our analysis of ChatGPT-4’s experiment re-
sults reveals that it was highly effective in solving
a wide range of computer science problems. How-
ever, the insights gained from the error analysis and
the variation in success rates across problem types
and difficulties suggest areas for further enhancement.
Improving input validation, error handling, and adapt-
ing strategies for specific problem types could yield
even higher success rates and more robust problem-
solving for ChatGPT-4. These findings help inform
future developments to refine the solution generation
capabilities of ChatGPT-4.

4.5 Analysis of AutoGen Experiment
Results

The experiment conducted on the auto-generation
system for computer science problems provided a
wealth of data, allowing an in-depth analysis of its
performance. The dataset comprises results from tests
conducted on 50 different computer science problems
shown in Figure 13, where each test was evaluated
across multiple parameters.

T e e

Figure 13: Number of Pass and Fail Test Cases for Each
Problem Using AutoGen.

4.5.1 Overall Success Rate

AutoGen achieved an overall success rate of approxi-
mately 84.35% Figure 14. This high percentage indi-

Evaluating the Performance of LLM-Generated Code for ChatGPT-4 and AutoGen Along with Top-Rated Human Solutions

AutoGen - Pass Rate of Solutions

False

True

Figure 14: AutoGen - Pass Rate of Solutions.

cates that it solves the majority of the problems cor-
rectly by the auto-generated solutions. It reflects Au-
toGen’s proficiency in handling a range of computa-
tional tasks and its effectiveness in producing accurate
solutions.

4.5.2 Problem Difficulty vs. Success Rate

Understanding the relationship between problem dif-
ficulty and success rate is crucial to assess the ef-
fectiveness of solution generation methods. The bar
chart shown in Figure 15 visualizes the success rates

Figure 15: AutoGen - Problem Difficulty vs. Success Rate.

of solutions across different problem difficulties in
our dataset and distinguishes problem difficulties,
such as ’easy’, 'medium’, and ’hard’, represented by
individual bars. The height of each bar signifies the
percentage of successful solutions within that specific
difficulty category. This visualization enables an intu-
itive comparison of success rates across different lev-
els of problem complexity.

AutoGen’s approach, characterized by structured
LLM prompting, is highly effective for complex prob-
lems, which may account for the lower success rates
in ’easy’ problems. Its design seems tailored for in-
tricate scenarios requiring deep analysis, leading to
better performance in ‘'medium’ and "hard’ problems.

This insight helps explain AutoGen’s proficiency with
complex issues and its less effective handling of sim-
pler tasks.

Contrary to expectations, Figure 15 reveals that
"easy’ problems have the lowest success rate, suggest-
ing a mismatch between perceived simplicity and ac-
tual solution effectiveness. Conversely, as we move
towards 'medium’ and "hard’ problems, there is a no-
ticeable increase in success rates, which implies that
more complex problems might be better suited to the
solution generation and testing processes, leading to
higher success rates. The quantification of success in
percentages adds precision to our analysis, enabling
a more accurate evaluation of solution performance
across different problem types.

4.5.3 Failed Cases Analysis

Two distinct patterns were identified in our analysis
of failed cases, shedding light on specific challenges
faced by AutoGen. One issue occurred in problems
dealing with the calculation of the average of an
array of numbers, where it struggled with handling
"NoneType’ values. In particular, AutoGen yielded
errors where a floating-point number was expected as
a string or a real number, but "NoneType’ was encoun-
tered instead.

Another area of difficulty was observed in sort-
ing algorithms. In this area AutoGen faced challenges
due to string data type limitations, as shown by errors
indicating that a string does not support item assign-
ment. This finding indicated potential issues in Auto-
Gen'’s approach to implementing or understanding the
intricacies of sorting strings.

These insights suggest that while AutoGen was
largely successful, it can be improved in certain ar-
eas. In particular, its handling of edge cases and spe-
cific data types requires attention. These patterns can
guide future enhancements to AutoGen for better ac-
curacy and robustness in solution generation.

4.6 Comparative Analysis of
ChatGPT-4 and AutoGen
Experiment Results

Conducting a detailed comparative analysis between
the ChatGPT-4 and AutoGen experiment results re-
vealed several key distinctions and similarities. It also
offered insightful perspectives on the performance
and application of each system. Our analysis be-
gins by examining the overall success rates of both
systems, as shown in Figure 16. This figure shows
ChatGPT-4 achieved a higher success rate (sim90.2%)
indicating its effectiveness in generating correct solu-

267

ICSOFT 2024 - 19th International Conference on Software Technologies

Success Rates Comparison

Figure 16: Success Rate Comparison.

tions for the given programming problems. In con-
trast, AutoGen demonstrated a somewhat lower suc-
cess rate (~84.35%), though it is still a substantial
majority. This finding suggests that while AutoGen is
largely reliable, it may encounter more challenges or
inconsistencies in generating correct solutions.

With respect to error analysis, Figure 17 shows
the differences become more pronounced. Of the

Error Counts Comparison

Figure 17: Error Rate Comparison.

AutoGen tests that did not pass, only two instances
recorded specific exceptions. Most of the errors
(39 out of 41) lacked detailed exception information,
which implied a range of underlying issues, from
logic errors to unhandled exceptions in the code.

Conversely, ChatGPT-4 had a lower overall er-
ror rate, with 16 instances of failed tests. Notably,
ChatGPT-4 documented specific exceptions in one
out of these 16 errors. This result offers better insight
into the nature of the issues, which included input val-
idation errors and undefined variables.

We also analyzed the complexity of problems
and the handling of solutions by both systems. Al-
though tasked with similar problems (primarily ba-
sic arithmetic operations), ChatGPT-4’s solutions ex-
hibited capabilities for handling more complex sce-
narios, such as error handling and input validation.
Conversely, AutoGen showed a higher error rate and
its solutions lacked this complexity in error handling
within the sample data.

268

Summarizing our comparative analysis, both Au-
toGen and ChatGPT-4 exhibit distinct strengths and
limitations in programming solution generation. Au-
toGen’s slightly lower success rate suggests it is most
effective for educational use and basic programming
tests. Despite ChatGPT-4’s higher error rate in com-
plex scenarios, it shows advanced capabilities like ro-
bust error handling and input validation, positioning
it as a valuable tool for more advanced learning and
comprehensive testing environments. These differ-
ences highlight the potential applications and suitabil-
ity of each system in varying contexts of program-
ming education and automated solution testing.

S5 RELATED WORK

The evolution of LLMs in code generation has been
pivotal, particularly in the discipline of prompt engi-
neering, which focuses on crafting effective natural
language inputs for LLMs, enabling them to solve
complex problems across diverse domains (Chen
et al., 2023). Studies in this area have emphasized
the importance of prompt structure and leveraged ex-
ternal tools and methods to enhance the capabilities of
LLMs in coding tasks (Yao et al., 2022). For instance,
Yao et al. (2022) integrated LLMs with external cod-
ing frameworks to augment their utility, while Van et
al. (2023) focused on maximizing the inherent capa-
bilities of LLMs in generating more complex and effi-
cient code structures (van Dis et al., 2023). These ad-
vancements in prompt engineering show particularly
promising results in domains like mathematics, where
straightforward prompting often falls short, necessi-
tating more sophisticated approaches for better out-
comes (Frieder et al., 2023).

Our study delves deeper into the impact of prompt
design on the performance of LLM-generated code.
Existing research primarily employs direct queries
from sources like Stack Overflow, providing a base-
line for our investigation. However, the potential
for refined prompting techniques to yield more effi-
cient and accurate code solutions suggests an expan-
sive field ripe for future exploration. This area of re-
search is critical, especially considering the increas-
ing reliance on Al-driven solutions in software devel-
opment.

Moreover, the reliability and security of code gen-
erated by LLMs have become focal points in recent
studies. Researchers like Borji et al. (2023) and
Frieder et al. (2023) have identified and addressed
various bugs and security vulnerabilities inherent in
LLM-generated code (Borji, 2023; ?). The compari-
son of the security profile of human-written code ver-

Evaluating the Performance of LLM-Generated Code for ChatGPT-4 and AutoGen Along with Top-Rated Human Solutions

sus LLM-generated code, as explored by Asare et al.
(2022), is also garnering significant attention (Jalil
et al., 2023; ?; ?). This line of research is crucial in
understanding the trade-offs between human and Al-
generated code, especially concerning security and re-
liability aspects.

Another emerging area of interest is the impact of
LLMs on software development workflows and devel-
oper productivity. Studies have begun to assess how
LLMs influence the software development lifecycle,
from initial design to deployment, and their role in ac-
celerating development processes while maintaining,
or even improving, code quality. This aspect is partic-
ularly relevant as the industry gravitates towards more
Al-integrated development environments.

Overall, the body of research underscores the mul-
tifaceted impact of LLMs in programming. It high-
lights the challenges in ensuring the reliability and
security of LLM-generated code while also explor-
ing the opportunities in enhancing the efficiency and
effectiveness of software development practices. As
LLMs continue to evolve, so too does the landscape of
research, continually pushing the boundaries of what
can be achieved through Al-driven code generation
and opening new frontiers in the intersection of Al
and software engineering.

6 CONCLUDING REMARKS

This paper presented a comprehensive analysis of
programming automation, comparing AutoGen and
ChatGPT-4, and evaluating top Stack Overflow so-
lutions against those generated by ChatGPT-4. We
observed that ChatGPT-4 can produce solutions com-
petitive with human-crafted ones, especially when
guided by chain-of-thought reasoning. This approach
enhances its problem-solving and code generation ca-
pabilities.

In contrast, despite AutoGen’s slightly lower suc-
cess rate, it excels in handling complex programming
challenges with robust error handling and input vali-
dation, making it suitable for advanced education and
testing. ChatGPT-4, however, demonstrated versatil-
ity in generating optimized solutions for various prob-
lems when effectively prompted.

Key lessons learned from this research include:

* Our experiments demonstrated that prompting
and automatically benchmarking generated code
effectively leverages LLMs for optimized code.
As shown in Section 3, prompting multiple times
and selecting the best solution is a promising aid
for software engineers to optimize performance-
critical code sections.

¢ A key attribute of ChatGPT-4-based code genera-
tion is its ability to search many coding solutions.
Developers will likely use LLM-based tools like
Code Inspector and Auto-GPT to generate and an-
alyze multiple solutions per query, as discussed
in Section 4. Future tools should enable defin-
ing metrics and automatically prompting until a
quality threshold is met, a prompt limit is reached,
and/or time runs out.

ChatGPT-4 demonstrated a robust 90.2% success
rate, and was particularly effective for simpler
arithmetic tasks, making it valuable for education
and automated testing. As noted in Section 4.4.2,
however, its error diagnosis and reporting need
further refinement.

AutoGen’s 84.35% success rate demonstrated ad-
vanced solutions featuring error handling and in-
put validation, as described in Section 4.5. This
finding indicates AutoGen’s suitability for ad-
vanced education and comprehensive testing envi-
ronments where robust error handling is essential

In summary, our analysis of program automa-
tion using AutoGen and ChatGPT-4 reveals distinct
strengths in each system: AutoGen for basic ed-
ucational use and straightforward problem-solving
and ChatGPT-4 for advanced programming solutions
and robust error handling, particularly when utilizing
chain-of-thought reasoning.

Moreover, our analysis demonstrated that
ChatGPT-4 can generate solutions competitive
with—or superior to—top Stack Overflow answers
when given effective prompts. This finding highlights
the potential of LLMs in complex coding tasks but
also points to the limitations of using minimal context
from Stack Overflow titles. Optimized prompting
strategies are essential to fully leverage LLM ca-
pabilities in code generation. The choice between
these two systems should therefore be guided by the
specific needs of the application, i.e., whether the
priority lies in maximizing successful outcomes or
in handling complex programming challenges with
sophisticated error processing.

An intriguing direction for future work is explor-
ing the potential of leveraging LLM-based tools for
full stack software development. Rather than focus-
ing solely on individual modules or components, we
plan to investigate how LLMs perform at generat-
ing complete end-to-end systems encompassing front-
end, back-end, database, and infrastructure elements.
Examining the effectiveness of LLMs across the en-
tire software lifecycle may reveal new capabilities and
limitations. Key areas of analysis include correctness,
security, scalability, maintainability, and modularity
of auto-generated systems. In addition, studying inte-

269

ICSOFT 2024 - 19th International Conference on Software Technologies

gration with human developers in a blended workflow
rather than as a wholesale replacement will provide
important insights.

Our future work will also consider if/how other
code quality metrics can be integrated to allow con-
sidering multiple dimensions of code quality beyond
performance. In particular, security and functional
correctness are clearly important points of consid-
eration, but must be supplemented with additional
analyses. Likewise, other quality attributes, such as
memory consumption, long-term maintainability, and
modularity, should also be analyzed. As LLMs con-
tinue to mature, understanding their role in higher-
level software creation and complementing human
programmers offer promising new frontiers.

ACKNOWLEDGEMENTS

We used ChatGPT-4’s Advanced Data Analysis capa-
biity to generate code for the data visualizations and
filter the data sets.

REFERENCES

Github copilot - https://github.com/features/copilot.

Arachchi, S. and Perera, 1. (2018). Continuous integration
and continuous delivery pipeline automation for ag-
ile software project management. In 2018 Moratuwa
Engineering Research Conference (MERCon), pages
156-161.

Asare, O., Nagappan, M., and Asokan, N. (2022).
Is github’s copilot as bad as humans at intro-
ducing vulnerabilities in code? arXiv preprint
arXiv:2204.04741.

Bang, Y., Cahyawijaya, S., Lee, N., Dai, W., Su, D., Wilie,
B., Lovenia, H., Ji, Z., Yu, T., Chung, W., et al. (2023).
A multitask, multilingual, multimodal evaluation of
chatgpt on reasoning, hallucination, and interactivity.
arXiv preprint arXiv:2302.04023.

Bommasani, R., Hudson, D. A., Adeli, E., Altman, R.,
Arora, S., von Arx, S., Bernstein, M. S., Bohg, J.,
Bosselut, A., Brunskill, E., et al. (2021). On the
opportunities and risks of foundation models. arXiv
preprint arXiv:2108.07258.

Borji, A. (2023). A categorical archive of chatgpt failures.
arXiv preprint arXiv:2302.03494.

Carleton, A., Klein, M. H., Robert, J. E., Harper, E., Cun-
ningham, R. K., de Niz, D., Foreman, J. T., Goode-
nough, J. B, Herbsleb, J. D., Ozkaya, 1., and Schmidt,
D. C. (2022). Architecting the future of software en-
gineering. Computer, 55(9):89-93.

Chen, B., Zhang, Z., Langrené, N., and Zhu, S. (2023). Un-
leashing the potential of prompt engineering in large
language models: a comprehensive review.

270

De Vito, G., Lambiase, S., Palomba, F., Ferrucci, F., et al.
(2023). Meet c4se: Your new collaborator for soft-
ware engineering tasks. In 2023 49th Euromicro Con-
ference on Software Engineering and Advanced Ap-
plications (SEAA), pages 235-238.

Elnashar, A., Moundas, M., Schimdt, D. C., Spencer-Smith,
J., and White, J. Prompt engineering of chatgpt to
improve generated code & runtime performance com-
pared with the top-voted human solutions.

Espejel, J. L., Ettifouri, E. H., Alassan, M. S. Y., Chouham,
E. M., and Dahhane, W. (2023). Gpt-3.5, gpt-4, or
bard? evaluating llms reasoning ability in zero-shot
setting and performance boosting through prompts.
Natural Language Processing Journal, 5:100032.

Frieder, S., Pinchetti, L., Griffiths, R.-R., Salvatori, T.,
Lukasiewicz, T., Petersen, P. C., Chevalier, A., and
Berner, J. (2023). Mathematical capabilities of chat-
gpt. arXiv preprint arXiv:2301.13867.

Giray, L. (2023). Prompt engineering with chatgpt: A guide
for academic writers. Annals of biomedical engineer-
ing, 51(12):2629—2633.

Jalil, S., Rafi, S., LaToza, T. D., Moran, K., and Lam,
W. (2023). Chatgpt and software testing education:
Promises & perils. arXiv preprint arXiv:2302.03287.

Krochmalski, J. (2014). IntelliJ IDEA Essentials. Packt
Publishing Ltd.

Liu, P., Yuan, W., Fu, J., Jiang, Z., Hayashi, H., and Neubig,
G. (2023). Pre-train, prompt, and predict: A system-
atic survey of prompting methods in natural language
processing. ACM Computing Surveys, 55(9):1-35.

Pearce, H., Ahmad, B., Tan, B., Dolan-Gavitt, B., and Karri,
R. (2022). Asleep at the keyboard? assessing the se-
curity of github copilot’s code contributions. In 2022
IEEE Symposium on Security and Privacy (SP), pages
754-768. IEEE.

Porsdam Mann, S., Earp, B. D., Mgller, N., Vynn, S., and
Savulescu, J. (2023). Autogen: A personalized large
language model for academic enhancement—ethics
and proof of principle. The American Journal of
Bioethics, 23(10):28-41.

van Dis, E. A., Bollen, J., Zuidema, W., van Rooij, R., and
Bockting, C. L. (2023). Chatgpt: five priorities for
research. Nature, 614(7947):224-226.

White, J., Fu, Q., Hays, S., Sandborn, M., Olea, C., Gilbert,
H., Elnashar, A., Spencer-Smith, J., and Schmidt,
D. C. (2023). A prompt pattern catalog to enhance
prompt engineering with chatgpt. arXiv preprint
arXiv:2302.11382.

Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan,
K., and Cao, Y. (2022). React: Synergizing reason-
ing and acting in language models. arXiv preprint
arXiv:2210.03629.

Zhang, Z., Zhang, A., Li, M., and Smola, A. (2022). Au-
tomatic chain of thought prompting in large language
models. arXiv preprint arXiv:2210.03493.

