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Abstract: Recently, housing has been a fundamental necessity for human survival. However, the challenge lies in the 
often-inflated housing prices, particularly in high-GDP cities. House price prediction is crucial for citizens as 
it aids in effective financial planning and contributes to social stability. This study delves into the factors 
influencing house prices, employing and evaluating four regression models: multiple linear regression, 
regression decision tree, Random Forest, and XGBoost. The focus is on optimizing the performance of the 
two most promising models. The study finds that there is no substantial positive or negative association 
between the prediction label, which is the average house price of a region, and any individual attribute in the 
dataset. Through model comparisons, it is observed that the decision tree model outperforms the regression 
model significantly, with the integrated models, specifically Random Forest and XGBoost, outshining the 
regular regression tree model. In 5-fold cross-validation, the Bayesian optimized XGBoost model yields the 
best results in this study. The post-optimization R2 value of XGBoost is 0.846, showcasing an improvement 
of 0.024 compared to the pre-optimization phase. The hybrid model introduced in this study holds significant 
research potential in the realm of house price prediction. Additionally, it provides valuable insights for 
individuals, enabling them to make well-informed financial plans, particularly in terms of home purchase 
decisions. This, in turn, contributes to addressing potential social issues and fostering greater social harmony 
and stability. 

1 INTRODUCTION 

With the rapid expansion of urban areas and a rising 
population, the real estate market experiences 
frequent and unpredictable fluctuations. Given that 
housing is a fundamental requirement for societal 
well-being, variations in housing demand directly 
influence social security and economic well-being. 
Changes in housing prices can impact a nation's 
economy, political framework, urban safety, and 
various other aspects (Malang et al. 2017). This 
phenomenon has garnered recognition from 
numerous international organizations and research 
institutes (Ebekozien et al. 2019). The significant rise 
in housing prices in certain countries has led to a lack 
of purchasing power for many citizens. This, in turn, 
has directly impacted the country's economy and the 
quality of life for its citizens (Cheng 2018, Tian et al. 
2020, Allen et al. 2009). In the realm of predictive 
modeling, machine learning stands out as a potent 
tool, capable of delivering precise and comprehensive 
predictions. 

With its widespread application in recent years, 
machine learning proves effective in tasks ranging 
from regression target prediction to classification 
target prediction (Hansen 2020, Ho et al. 2021). 
Leveraging extensive datasets and features, machine 
learning excels in uncovering intricate relationships 
concealed within the data. Consequently, there is a 
need to explore and identify which machine learning 
models, among the myriad options available, yield 
superior results in the prediction of house prices 
(Truong et al. 2020). Researchers typically focused 
on testing either the effectiveness of integrated 
models for house price prediction, or solely 
regression models, or conducting tests without 
optimization attempts (Gupta et al. 2022, Debanjan& 
Dutta 2017, Mu et al. 2014, Abigail et al. 2022). 
However, comprehensively evaluates regression 
models, supervised learning models, and integrated 
models. Additionally, Bayesian optimization is 
applied as a mixed optimization technique on the 
better-performing models.  
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This paper aims to compare and analyze various 
machine learning models for house price prediction. 
The study evaluates four different machine learning 
models, including multiple linear regression, 
regression decision tree, Random Forest, and 
XGBoost. This study approaches the prediction of 
housing prices as a regression problem, utilizing a 
publicly available housing-themed dataset from 
Kaggle for research. The objective is to assess various 
models' learning capabilities on feature values, 
identify the most effective model, and subsequently 
optimize it. This paper uses the R2 coefficient of 
determination as its primary evaluation metric. A 
five-fold cross-validation procedure is used to 
examine the research findings. The experimental 
findings indicate that, among the four models 
assessed in this study, the XGBoost model 
consistently outperforms the others. Through 
Bayesian optimization applied to the XGBoost 
model, there is a notable enhancement in the R2 
score, underscoring the positive impact of Bayesian 
optimization within the scope of this research. The 
hybridization of XGBoost and Bayesian optimization 
not only demonstrates promising results but also 
holds enduring exploratory research significance, 
particularly in the domain of house price prediction. 

2 METHODOLOGY 

2.1 Dataset Description and 
Preprocessing 

Data preprocessing is an essential stage in machine 
learning to guarantee the accuracy and quality of the 
data. In order to ensure that the input data to the model 
is both dependable and applicable, this research does 
extensive preprocessing. In this investigation, the 
20433 × 10 "California Housing Prices" dataset from 
Kaggle is used (Kaggle 2023). The features include 
longitude, latitude, housing median age, total 
bedrooms, population, housing holds, median 
income, median house value, and ocean proximity. 
Median house value is considered a predictive label, 
while ocean proximity is a categorical feature 
classified into five categories: NEAR BAY, <1H 
OCEAN, INLAND, NEAR OCEAN, and ISLAND. 
The remaining eight features are random numeric 
variables. 

As the dataset is relatively complete, with only 
207 missing values in total bedrooms, constituting a 
small portion of the overall dataset, this paper chooses 
to remove these items directly. Further research 
reveals that the ISLAND feature in ocean proximity 

appears only 5 times, and the corresponding house 
prices are significantly higher than the average. 
Therefore, ISLAND is removed to improve the 
accuracy of the model prediction. According to the 
average house price distribution graph, house prices 
above $500,000 stand out as outliers, significantly 
higher than the average house price and exhibiting a 
sudden rise in the distribution graph. Hence, this 
study also deletes them as noise points. For the 
classification type data ocean proximity, Label 
Encoder is used in this paper to process it and convert 
it into numerical form for model training. In the 
meantime, the dataset is split into test and training 
sets in a 7:3 ratio for cross-validation purposes in 
order to evaluate the model's capacity for 
generalization. Table 1 contains detailed information 
on the feature values. 

Table 1: The description of the dataset 

Features Data Type Description 
Longitude float64 Longitude of the 

area
Latitude float64 Latitude of the 

area
Housing 
median age 

float64 Housing median 
age of the area 

Total rooms float64 Total rooms of 
the area 

Total bedrooms float64 Total bedrooms 
of the area 

Population float64 Population of 
the area 

Households float64 Number 
households of 

the area
Median income float64 Median income 

of the area
Median house 
value

float64 Median house 
value of the area

Ocean 
proximity 

object The proximity 
pf a location to 

ocean

2.2 Proposed Approach 

In this research, the focus is on conducting a thorough 
exploration and analysis of the correlation between 
feature values and labels within the dataset. This 
analysis is approached through three dimensions: box 
plots, Correlation heat map, and distribution plots. 
Subsequently, the feature values are utilized for 
training in machine learning models. The resulting 
outcomes from these models are then subjected to 
evaluation, with a comprehensive analysis of four 
models. Ultimately, the model demonstrating 
superior performance undergoes further optimization. 
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The entirety of this process is elucidated in the 
accompanying Figure 1. 
 

 
Figure 1: Flow chart of Methodology (Photo/Picture credit: 
Original) 

2.2.1 Data Analysis 

Prior to the assessment of machine learning models, 
this study delves into a comprehensive exploration of 
the correlations among feature values within the 
dataset. A nuanced understanding of the relationship 
between feature values and the predicted labels is 
deemed imperative for enhancing the efficacy of 
subsequent model development.  

First, distribution plot analysis is conducted as 
part of data exploration. Distribution plots provide an 
intuitive understanding of data distribution, aiding in 
observing the overall shape, central tendency, and 
dispersion of the data. They also facilitate the 
identification of outliers, making it easy to detect any 
anomalies or outliers. Through distribution plots, it 
becomes apparent whether there are outliers or 
abnormal points, enabling straightforward data 
cleaning or outlier handling. In distribution plots, the 
incorporation of Gaussian distribution aids in 
analyzing the charts. The presence of Gaussian 
distribution in the dataset distribution contributes to a 
better understanding of the data's characteristics, 
laying the foundation for subsequent statistical 
analysis and modeling. The formula for Gaussian 
distribution is: 
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Where, μ :Mean of the distribution   σ :Standard 
deviation   e :Natural logarithm 

The graphical characteristics of a Gaussian 
distribution include symmetry, with the mean as the 
central point, resulting in a symmetrical distribution 
on both sides. The distribution graph exhibits a 
typical bell-shaped curve, gradually decreasing on 
either side and approaching the horizontal axis. 

Second, this study conducted an analysis of the 
dataset using a correlation heatmap. During the data 
exploration phase, a correlation heatmap proves 
valuable in identifying features that may significantly 
influence the target variable. This information guides 
subsequent feature engineering or modeling 
processes. By examining the correlation heatmap, one 

can discern the degree of correlation between 
features. Highly correlated features may contain 
similar information, prompting consideration for 
removing one feature during model training to reduce 
redundancy and enhance model simplicity. 

Third, this study conducted a box plot analysis on 
the dataset. Box plots provide a concise way to 
represent the distribution of a dataset, including the 
median, quartiles, and potential outliers. They are 
highly effective for a quick comparison of central 
tendency and spread across multiple datasets. This is 
particularly useful in exploratory data analysis for 
comparing different groups or categories. Important 
elements of a box plot: The median (Q2) is the 
midpoint number obtained by sorting the data in 
ascending order. Q1, or lower quartile: The 25th 
percentile of the data, representing the value at the 
25% location. Upper Quartile (Q3): The value at the 
75% position, or the 75th percentile of the data. 
Interquartile Range (IQR): IQR indicates the spread 
of the data and is calculated as IQR = Q3 - Q1. Lower 
Whisker: Calculated as Q1 - 1.5 × IQR, the starting 
point of the whisker. Upper Whisker: Calculated as 
Q3 + 1.5 × IQR, the end point of the whisker. 
Outliers: Data points beyond the upper and lower 
whiskers are considered outliers and are typically 
marked with individual points on the box plot. 

2.2.2 Multiple Linear Regression 

Multiple linear regression is a commonly used 
regression analysis method in the fields of statistics 
and machine learning. It aims to study the linear 
relationship between multiple independent variables 
and a dependent variable. This method attempts to 
establish a linear model to explain or predict the 
variability of a dependent variable, taking into 
account the combined effects of multiple influencing 
factors: 

 
0 1 1 2 2 p pY x x xβ β β β ε= + + + + +  (2) 

 
where Y represents the dependent variable (predicted 
label values), x represents the independent. variable 
(features involved in model training), β is the 
coefficient specific to the independent variable, 
representing the intercept, ε is the error term, 
representing the unexplained portion of the model. In 
this study, the parameters for multiple linear 
regression were configured with the following 
settings: In the model fitting process, the 'fit intercept' 
parameter is configured as True, enabling the 
calculation of the intercept. Similarly, the 'normalize' 
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parameter is set to True, ensuring normalization of the 
regression variables before fitting. Additionally, 
'copy X' is adjusted to True, leading to the creation of 
a data copy. Lastly, the 'n job' parameter is set to -1, 
allowing the utilization of all available CPUs for 
efficient computation." 

2.2.3 Decision Tree Regression 

Decision tree regression is a machine learning 
algorithm used to address regression problems. In this 
study, decision tree regression is employed to predict 
house prices. The generation process involves 
recursively partitioning the feature space by selecting 
the optimal features to divide the dataset into subsets 
until reaching a stopping condition. Each leaf node 
stores a numerical value, representing the continuous 
output prediction. This study employed an exhaustive 
grid search to optimize decision tree regression. The 
purpose was to identify the optimal parameter 
configurations. Exhaustive grid search is a technique 
that explores all possible combinations within 
specified parameter ranges. Widely used in machine 
learning, especially in hyperparameter tuning, the 
main advantage of exhaustive grid search lies in its 
ability to try all possible parameter combinations, 
ensuring the discovery of the globally optimal 
hyperparameter configuration. Through exhaustive 
grid search, the final optimal parameter ranges for 
decision tree regression were determined as follows: 
The 'max depth' parameter is defined within the range 
of 10 to 17, while 'min samples split' is fine-tuned 
with values [35, 40, 45, 50]. Simultaneously, 'min 
impurity decrease' undergoes adjustments with the 
values [0, 0.0005, 0.001, 0.002, 0.003, 0.005, 0.006, 
0.007]. The 'max depth' setting governs the maximum 
depth of the decision tree, striking a balance between 
model complexity and generalization. Regarding 'min 
samples split,' it denotes the minimum number of 
samples a node must have before splitting, 
influencing tree growth and mitigating overfitting 
risks for larger values. Similarly, 'min impurity 
decrease,' representing the Minimum Impurity 
Decrease, establishes a threshold for evaluating the 
worthiness of a split, thereby controlling tree growth 
and minimizing overfitting. The remaining 
parameters adhere to the default settings for decision 
tree regression in scikit-learn. 

2.2.4 XGboost 

XGBoost is a powerful gradient boosting algorithm 
that employs decision trees as base learners. It 
iteratively trains weak learners, focusing on samples 
that the previous model failed to classify correctly, 

gradually improving the overall model accuracy. 
XGBoost uses CART trees, defines an objective 
function incorporating regularization terms to 
measure model performance, and fits new tree models 
through gradient boosting. Regularization is 
employed to prevent overfitting. Ultimately, by 
summing the predictions of all trees, the final 
prediction of the XGBoost model is obtained. 
XGBoost is renowned for its efficiency, fast training 
speed, robust performance, and handling of missing 
values. In this study, the XGBoost model is 
configured with the following parameters: The 'n 
estimators' parameter is configured at 300, signifying 
the number of base learners employed. 
Simultaneously, 'learning rate' is fine-tuned to 0.1, 
governing the weight contraction of each base 
learner. Additionally, 'max depth' is established at 7, 
delineating the maximum depth of each base learner. 
All remaining parameters in the XGBoost regressor 
retain their default values. 

2.2.5 Random Forest 

Several decision trees are used in Random Forest, a 
potent ensemble learning method, to make 
predictions. A randomly chosen sample of the data 
and features is used to train each decision tree. 
Random Forest delivers great accuracy, robustness, 
and successfully reduces overfitting by mixing 
predictions from numerous trees. In this study, the 
Random Forest model is configured with the 
following parameters: The 'n estimators' parameter is 
established at 300, designating the number of base 
learners (decision trees) within the ensemble. The 
'criterion' is configured to 'mse,' specifying the 
criterion for tree splitting using mean squared error. 
'Max depth' is set to 6, indicating the maximum depth 
of each base learner. 'Min samples split' is defined as 
0.1, determining the minimum number of samples 
required for internal node splitting. Additionally, 'min 
impurity decrease' is set to 0.01, specifying the 
minimum impurity reduction necessary for a split. All 
remaining parameters adhere to the default values in 
the scikit-learn Random Forest implementation. 

2.2.6 Optimization 

This study utilized Bayesian optimization to fine-tune 
hyperparameters for XGBoost and Random Forest 
models. Bayesian optimization is an iterative method 
for global optimization, aiming to find the global 
optimum with minimal iterations. It combines prior 
knowledge and observed results to estimate the 
posterior distribution of the objective function. In 
each step, it selects the next sampling point to 
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maximize expected improvement in the objective 
function, making it effective for complex, nonlinear 
optimization problems with significant noise 
interference. 

The steps of Bayesian optimization include: 
Select Prior Distribution: Choose an initial prior 
distribution for the objective function. Sampling: Use 
the prior distribution to select the next sampling point, 
minimizing uncertainty in the objective function. 
Evaluation: Calculate the objective function value at 
the new sampling point. Update Posterior: Update the 
posterior distribution with new observed results, 
adjusting mean and variance parameters. Select Next 
Sampling Point: Choose the next sampling point 
based on the posterior distribution, maximizing 
expected improvement. Iteration: Repeat these steps 
until reaching the predetermined number of iterations 
or other stopping criteria. 

In this study, the model optimization is based on 
the "bayes opt" library. For Random forests, the 
Bayesian optimization process involves defining the 
hyperparameter search range and executing the 
optimization function. The grid search includes 'n 
estimators' within the range of 100 to 1000, 'max 
depth' adjusted from 2 to 20, and 'min samples leaf' 
ranging from 1 to 10. Following this, optimal 
parameters and scores are generated and evaluated on 
the validation set. Subsequently, a Random Forest 
regression model is constructed using these optimal 
parameters, and predictions are made on the test set. 

In the case of XGBoost, Bayesian optimization 
commences by establishing the search range for 
hyperparameters, including 'max depth' ranging from 
1 to 5, 'n estimators' from 100 to 500, and 'learning 
rate' adjusted between 0.01 and 0.2. The optimization 
function is then invoked to yield optimal parameters 
and scores. After evaluating the validation set, the 
optimal parameters are utilized to construct the 
XGBoost regression model, and predictions are made 
on the test set for a comprehensive analysis. 

3 RESULT AND DISCUSSION 

This section presents an analysis and visual 
representation of the dataset and model testing 
results. 

3.1 Analysis of Distribution Plots 
Results 

First, Figure 2 displays the distribution of median 
house value, revealing that it does not follow a 
Gaussian distribution trend. This distribution 

characteristic, where the graph is not symmetric about 
the center, and there is a difference between the 
median and mean values, suggests a high dispersion 
and non-linear correlation in housing prices. This 
non-linear trend could be attributed to various factors 
such as market sentiment, government policies, 
indicating outcomes beyond a simple linear 
relationship. 

 
Figure 2: Median house value distribution (Photo/Picture 
credit: Original). 

Second, Figure 3 presents a clustering correlation 
heatmap, revealing that the predicted label, housing 
price, does not exhibit strong positive or negative 
correlations with other features. This observation may 
be attributed to the influence of outliers and non-
linear correlations, as an abundance of outliers can 
lead to data skewness, resulting in overall weak 
correlations. Additionally, it's important to note that 
correlation heatmaps primarily reflect linear 
relationships, suggesting the potential need for non-
linear models when dealing with non-linear 
correlated data. 

This finding sets the stage for subsequent model 
testing, suggesting that models designed to handle 
non-linear correlations may yield better results. The 
observation of clustering complexity in this dataset 
indicates diverse clustering patterns. The intricate 
nature of clustering may signify the presence of 
multiple correlation patterns or complex data 
structures. This complexity could be attributed to 
interactions or dependencies between different 
features, denoted as "feature interactions." 
Understanding these nuances contributes to a better 
comprehension of the data's underlying structure, 
providing valuable insights for further analysis and 
modeling. 
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Figure 3: Correlation heat map (Picture credit: Original). 

Third, In Figure 4, it is observed that the INLAND 
feature has a significant number of outliers, indicating 
that inland areas may possess market characteristics 
different from coastal regions. The presence of 
outliers may reflect larger fluctuations in housing 
prices in this region or the influence of unique factors. 
For the ISLAND feature, it is noted that the median is 
considerably higher than other features, and there is 
no upper whisker. Further examination reveals that 
this feature consists of only 5 rows of samples, with 
an average house price of $380,440, significantly 
higher than the average house prices of other features 
($206,821). Considering that ISLAND does not align 
with mainstream housing preferences and exhibits an 
unusually high average house price, this study opts to 
remove it to ensure the generality and robustness of 
the model. This decision is grounded in a thorough 
analysis of the data, aiming to ensure that the model  

 
Figure 4: Box plot between ocean proximity and median 
house value (Picture credit: Original). 

reflects general market trends more effectively during 
data processing, without being unduly influenced by 
individual outlier samples. 

This study employs the scikit-learn learning 
library for Python coding, implemented within the 
Spyder source code editor. The primary metric for 
evaluating model performance is the coefficient of 
determination (R2). The calculation formula is as 
follows: 

 
2 1 SSRR

SST
= −  (3) 

 
where SSR represents the portion of variability in the 
target variable that the model fails to explain. In 
contrast, SST encompasses the overall variability of 
the target variable. 

The capacity of a regression model to explain 
variance in the target variable, or the percentage of 
the target variable's variability that the model can 
account for, is measured by the regression model's 
goodness of fit, or R2. It accepts values in the range 
of 0 to 1, with a value closer to 1 denoting a higher 
explanatory power of the model—that is, a closer 
match between the expected and actual values. 

3.2 Model Performance Analysis 

First, in this study the multiple linear regression 
model achieved an R2 score of 0.442 on the test set, 
which is the lowest among all tested models. First, 
observing Figure 5 reveals that the fitting effect 
between predicted values and actual values is 
unsatisfactory, indicating significant prediction 
errors. This could be related to the linear regression 
model's assumption of linearity in the connection 
between independent and dependent variables, which 
may be insufficient to fully represent the complexities 
of non-linear interactions. 

 
Figure 5: Multiple linear regression visualization line graph 
(Picture credit: Original). 
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Second, decision tree regression achieves an R2 
of 0.735 on the test set. Observing Figure 6, compared 
to the multiple linear regression model, the residuals 
between true and predicted values decrease, 
indicating an overall better fit to the true values. This 
suggests that grid search optimization has a positive 
impact on enhancing the performance of decision tree 
regression on this dataset. Furthermore, Fig 6 reveals 
that while predictions align well with true values in 
certain intervals, there are areas where the fit is not as 
accurate. This phenomenon may be attributed to 
specific circumstances or trends affecting certain 
regions, potentially manifesting as anomalies or 
larger errors in the model. The contribution of feature 
values to the model cannot be ignored, as nonlinear 
relationships between certain features and the target 
variable may result in increased errors in specific 
segments. 

 
Figure 6: Decision tree regression visualization line chart 
(Picture credit: Original) 

Third, XGBoost model achieves an R2 score of 
0.822 on the test set, and after 5-fold cross-validation, 
the R2 improves to 0.828. The model exhibits strong 
performance in cross-validation, demonstrating its 
ability to generalize well to unseen data. This 
suggests that the model effectively captures the 
overall patterns in the data, including variations in 
both the training and test sets, without overfitting to 
the training data. This is a positive indication, 
indicating the model's robust performance when 
faced with new data. In Figure 7 and Figure 8, 
learning curves show that further adjusting 
XGBoost's 'n estimators' can help reduce overfitting. 

Four, the Random Forest model achieves an R2 
score of 0.805 on the test set, and after 5-fold cross-
validation, the R2 improves to 0.809. It is evident that 
the performance of the Random Forest model in the 
5-fold cross-validation is superior to that on the 
original test set. The results indicate that ensemble 
models outperform individual decision tree and linear 
regression models in addressing the house price 

regression problem for this dataset. Among them, 
XGBoost attains the highest R2 score. 

 
Figure 7: XGboost learning curve (Picture credit: Original). 

 
Figure 8: XGboost learning curve (Picture credit: Original). 

3.3 Bayesian Optimization of XGboost 
and Random Forest 

After Bayesian optimization, the R2 scores on the test 
set for XGBoost and Random Forest improved to 
0.846 and 0.825, respectively. The findings show that 
maximizing the home price regression problem in this 
dataset benefits from the application of Bayesian 
optimization. The fitting effect of the predicted values 
to the actual values is better than Decision Tree 
Regression and Multivariate Linear Regression, as 
shown in Figure 9 and Figure 10. Among the two 
ensemble models discussed in this paper, XGBoost 
consistently exhibits higher R2 values than Random 
Forest, both before and after optimization. The 
underlying reason may lie in the fact that XGBoost, 
as a gradient boosting algorithm, iteratively trains 
multiple weak learners and combines them, 
progressively enhancing model performance. In 
contrast, while Random Forest is also an ensemble 
learning algorithm, it may be constrained by the 
complexity of individual decision trees. XGBoost 
incorporates regularization terms, aiding in 
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preventing overfitting, which could contribute to its 
better generalization on unseen data compared to 
Random Forest, making it more robust. 
Visualizations of the four models discussed in this 
paper reveal that in certain specific intervals, none of 
the models can fit the actual values well. This might 
be attributed to significant nonlinear relationships 
between feature values and prediction labels in those 
specific intervals, influenced by special 
circumstances or trends in that area. For instance, a 
particular geographical region may be affected by 
seasonal or short-term events. Table 2 and Table 3 are 
detailed comparative tables of all the machine 
learning models tested in this study. 

 
Figure 9: XGboost bayesian optimization visualization 
chart (Picture credit: Original). 

 
Figure 10: Random forest Bayesian optimization 
visualization chart (Picture credit: Original). 

Table 2: Summary of results. 

 
Multiple 
Linear 

Regression 

Decision 
Tree 

Regression 
XGBoost Random 

Forest 

R2 0.442 0.735 0.822 0.805 

Table 2: Summary of results. 

After 
Bayesian 

optimization 
R2 

Mean 
Squared 

Error (MSE) 

Explained 
Variance 

(EV) 

Mean 
Absolute 

Error 
(MAE) 

XGBoost 0.846 2162782139.6 0.83 30852.9 

Random 
Forest 

0.825 2377672267.9 0.82 31415.89

4 CONCLUSION 

This study aims to predict housing prices using 
multiple linear regression, decision tree regression, 
XGBoost, and Random Forest. The goal is to identify 
the model that performs best in predicting housing 
prices on the dataset. The conclusion is that XGBoost 
exhibits the best performance in predicting housing 
prices on this dataset. Building on XGBoost, the 
study proposes a novel hybrid model incorporating 
Bayesian optimization. Bayesian optimization 
positively influences the performance of the 
XGBoost model in this study. Therefore, the hybrid 
model proposed in this research holds further research 
significance for housing price prediction. One 
limitation is the low correlation between the features 
and the predicted labels (housing prices), as revealed 
in the data analysis section. This may impact the 
predictive performance of the model, making it 
challenging to learn useful patterns from the features 
due to weak correlation. The model might struggle to 
capture the true data generation process, resulting in 
inaccurate predictions and potential overfitting to the 
training data. Future research could involve using 
datasets with higher feature-label correlation to train 
and test the proposed hybrid model, addressing this 
limitation. Additionally, a more detailed 
hyperparameter tuning of XGBoost and Bayesian 
optimization can be explored. Researchers may also 
consider employing neural network models for 
housing price prediction due to their ability to handle 
nonlinear relationships effectively, leveraging 
network structures and activation functions. 
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